混沌数据恢复与非线性系统的模型参考控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要工作分为两个部分:第一部分(包括第二章和第三章),主要研究了混沌时间序列的缺失数据问题;第二部分(第四章),主要研究了非线性系统的模型参考控制.
     在第二章,我们针对已知终端数据型混沌缺失数据问题,提出了终端控制方法;在跟踪控制变量所组成向量的模最小的意义下,我们给出了带有跟踪控制变量的最优预测函数;最后,我们以经济学中的混沌缺失数据为例,验证了该方法的有效性.在第三章,我们针对截断型混沌缺失数据问题,提出了预测混沌时间序列的新算法,即辅助变量法;最后,我们以Lorenz系统为例,检验了该方法的效率.在第四章,我们将工程学中的模型参考控制方法应用于非线性系统,并以Goodwin增长循环模型为例,首次将模型参考控制方法引入到经济系统的控制问题中.在第五章,我们对本文的工作进行了总结,并对未来的工作进行了展望.
Chaotic Data Recovery and Model Reference Control in Nonlinear System
     In this paper, we have discussed two part:the first part (including Chapter 2 and 3) is the missing data problem of chaotic time series, the second part (including Chapter 4) is model reference control of nonlinear dynamical systems.
     In the first chapter, we have introduced the definition of chaos and some results of delay embedding theorem.
     Chaos is a most important part of nonlinear sciences. It has attractted many attentions of mathematicians, physicists, chemists and experts in some engineering disciplines since 1970s. Chaos, theory of relativity, and quantum mechanics have even been considered as the most important discovery of science in 20th century.
     In 1975, Li and Yorke gave the definition of chaos for the first time[2].
     Definition 0.1 We say continuous map f in [a,b] is chaotic, if:
     (1) There are no upper boundary of the periodic points of f;
     (2) There exists an uncountable subset S (?) [a, b], and there are no periodic points in S, satisfied as below:
     (i)for every x,y∈S, we have
     (ii)for every x,y∈S, we have x≠y,
     (iii)for every x,y∈S and every periodic point y of f, we have 0.
     For disordered data, to verify chaos is equivalent to distinguish between chaos and random.
     Considering the initial value sensitivity of chaotic systems, we usually use Lya-punov exponent to verify chaos. Lyapunov exponent describes the divergence index of the nearby orbits.
     Except for Lyapunov exponent, Kolmogorov information entropy is also an efficient tool for describing chaos.
     The models of chaotic dynamics are Logistic mapping, Henon mapping, Lorenz family and so on.
     Related researches of embedding theorem began with Whitney delay embedding theorem in the 1930s [29].
     With the discovery of Takens delay embedding theorem, it was not difficult for one to describe the complex dynamical behavior. System theory becomed a novel tool for time series analysis.
     Takens delay embedding theorem is as follows:
     Theorem 0.2 Let M be a compact manifold of dimension m.φ:M→M is a smooth diffeomorphism and y:M→Ris a smooth function, it is a geneic property that the mapΦ(φ,y):M→R2m+1, defined by is an embedding; by smooth we mean at least C2.
     Later, people found that the information in 2d+1 dimensions is sometimes redun-dancy. In 1991, T. Sauer, J. Yorke and M. Casdagli introduced a new form theorem based on 2dbox+1 dimensions, called prevalent delay embedding theorem. Here, dbox is box-counting dimension.
     We have also introduce delay embedding theorems of infinite dimensional, forced and stochastic system.
     We have also introduced the fundamental theory of chaotic time scries prediction. From the Takens delay embedding theorem, we can define the delay reconstruction vector x0 is initial value, and Thus, F inΦ(M) have results as below:
     Here, F is the prediction function. The general method for chaotic time series prediction is as below:
     1. Pretreatment of data;
     2. Suppose F is a function with some unkown parameters;
     3. Determine the parameters;
     4. Check out the parameters:predict the time series, if the result is good; repeat the Step 2 and 3.
     Phase space reconstruction method is firstly proposed by Packard, and its theoret-ical foundation is Takens time delay embedding theorem. The method is to use a single scalar time series vector in delay form, and to reconstruct the topological structure of the original system.
     Missing data problem is that a part or all of the target data can not be observed, and these missing data may seriously affect the statistical analysis result of the data set. In recent years, the problem of missing data in various disciplines has become a difficult data analysis and statistical work.
     In Chapter 2, to solve the terminal-known type chaotic missing data problem, we propose the tracking control method, and some numerical simulation results is given.
     In the sense of module minimization of tracking control variable, we construct the optimal prediction function.
     In the first section, we have introduced the background of missing data problem. Generally speaking, data is generated in two ways:experiment data and survey data. Missing data problem is more important than general data analysis. It is because that the accurate statistical results depend on the true, accurate and comprehensive data.
     We also introduce the different kinds of missing data problem, and the special sense of chaotic missing data problem.
     In the second section, to solve the terminal-known type chaotic missing data prob-lem, we propose the tracking control method. In the sense of module minimization of tracking control variable, we construct the optimal prediction function.
     We can describe the terminal-known type chaotic missing data problem as follow: when a sequence of data{x(n)}, n≤N, the first m time series value is observable, the following N-m-1 data is missing, and the terminal data is observable. Here is the data set X:
     To recovery the N-m-1 data in the middle of X, we describe the method as be-low. Firstly, we use the least-square method to determine the parameter in the d-step auto regression model. This is to say that data x(1),x(2),...,x(m) is the training set, determine the regression parameter of the model below based on least-square sense: Here, d andτare optimal embedding dimension and delay based on phase space reconstruction,{x(n)} is the auro-regression estimation value. Therefore, we obtain the substitute values x{m+1), x(m+2),...,x(N-1). Meanwhile, we also obtain the approximate value x (N) of the true terminal data value x(N).
     We say the least-squared regression value is reliable, if the approximation x(N) and x(N) are equal. However, there is always some error between the two values.
     Therefore, we consider the introduction of tracking control variables{r(n)|n= m+1,m+2,...,N},making Here,when i=1,2,...,m,x(n)=x(n);when n=m+1,m+2,...,N,x(n)is the prediction value.
     In the following,we determine the value of{r(n)}.
     Our aim is to make the module of tracking control variable minimal.
     To determine{r(n)}turns out to be a optimization problem:
     Definition 0.3 We define the revised error s(n)between x(n)and x(n) as
     Theorem 0.4 For missing data problem X,when m+1≤n≤N,s(n)can be expressed as the linear conmbination of which is egual to Here,bn(i) are constants.
     Then we have the orollary,
     Corollary 0.5
     Theorem 0.6 For missing data problem X,when m and N are deterministic integer, and d andτare also deterministic, Here,{bN(i)|i=m+1,m+2,...,N}are determinstic constants.
     Whenτ≥N-m-1,we have shown the method is available.
     The minimal module theorom of control variable is
     Theorem 0.7 For missing data problem X,whenτ≥N-m-1,use to regress the model.here oi is the regresszon parameter,x(n)is the regression value, x(n) is prediction value.{r(n)|n=m+1,m+2,...,N}is the tracking control variable. we have the optimal prediction function:
     In common instance,we can also obtain the optimal prediction function.
     Theorem 0.8 For missing data problem X,the optimal prediction function Here,{bN(i)|i=m+1,m+2,…,N)are determinstic constants with regard to{ai|i= 1,2,...,d}.
     In the third section,we apply the optimal prediction function on the real economic problems,and recover the chaotic missing data.The simulation result is great.
     In Chapter 3,to solve the truncated type chaotic missing data problem,we propose the assistant variable method,and simulation examples of Lorenz system are given in detail.
     In the first section,we discuss the existence of prediction function and the predic-tion theory of neighbors in space.
     In the second section, we introduce the assistant variable method for the truncated type chaotic missing data problem.
     We propose the local linear prediction model based on the assistant variable method, Here, A2 depends on Y(n), and its first p nearest neighbors are Y(ni)(i=1,2,...,p). We can obtain A2 by solving the equations A2B=D. Here, B is a (d+1)×p matrix, and its ith rank is B2(ni); D is a 1×p vector, and its ith row is x(ni+1).
     In the third section, we chek out the efficiency of our method in Lorenz system.
     In Chapter 4, we focus on the traditional control method applied in the new disciplines in recent years, such as economics, biology and so on. We put forward the application of model reference control method to nonlinear systems for solving practical problems in some general way. Then, based on the Goodwin growth cycle model between two countries, we show that one can make the employment rates stable at a high level by adjusting the workers' share in the national income.
     In the first section, we introduce the two parts of MRC:system identification and controller generation. We also give the frame of MRC, and introduce the work of Shui-Nee Chow on the application of MRC in SIRS and SIS disease model.
     In the second section, we apply the MRC to the Goodwin growth cycle model. Our idea is to make the employment rates stable at a high level by adjusting the workers' share in the national income.
     In Chapter 5, we summarize the work, and propose some new expection for the future.
引文
[1]Lorenz E N. Deterministic Nonperiodic Flow[J]. Journal of Atmospheric Sciences,1963, 20(2):130-148.
    [2]Li T Y, Yorke J A. Period Three Implies Chaos[J]. The American Mathematical Monthly,1975,82(10):985-992.
    [3]Robert D. An Introduction to Chaotic Dynamical Systems[M].2nd Edition:Westview Press,2003.
    [4]韩敏,混沌时间序列预测理论与方法[M].北京:中国水利水电出版社,2007.
    [5]马军海,齐二石,莫馨.混沌时序重构及上海股票指数预测的应用研究[J].系统工程理论与实践,2003(12):86-94.
    [6]杨一文,刘贵忠,张宗平.基于嵌入理论和神经网络技术的混沌数据预测及其在股票市场中的应用[J].系统工程理论与实践,2001(6):52-78.
    [7]刘文财,刘豹.中国股票市场混沌动力学预测模型[J].系统工程理论方法应用,2001,11(1):12-14.
    [8]李眉眉,丁晶,王文圣.基于混沌理论的径流降尺度分析[J].四川大学学报:工程科学版,2004,36(3):14-19.
    [9]Sivakumar B. Chaos theory in hydrology:important issues and interpretations [J]. Jour-nal of Hydrology,2000,227(1-4):1-20.
    [10]Sivakumar B, Sorooshian S, Gupta H V, et al. A Chaotic Approach to Rainfall Disag-gregation[J]. Water Resour Res,2001,37(1):61-72.
    [11]Wolf A, Swifta J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D:Nonlinear Phenomena,1985,16(3):285-317.
    [12]Gallant A R, McCaffrey D, Nychka D. Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data[J]. Physics Letters A,1991, 153(6-7):357-363.
    [13]Gencay R, Dechert W D. The Identification of Spurious Lyapunov Exponents in Ja-cobian Algorithms [J]. Studies in Nonlinear Dynamics and Econometrics,1996,1(3): Article 2.
    [14]Barna G, Tsuda I. A new method for computing Lyapunov exponcnts[J]. Physics Let-ters A,1993,175(6):421-427.
    [15]Rosenstein M T, Collins J J, Carlo J, Luca D. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D:Nonlinear Phenomena.1993, 65(1-2):117-134.
    [16]Shannon C E, Weaver W. A mathematical theory of communication[M]. Bell Syst Tech J,1948.
    [17]Strelcyn J M, Galgani L, Benettin G. Kolmogorov entropy and numerical experi-ments[J]. Phys.Rev.A,14(6):2338-2345.
    [18]Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal[J]. Phys.Rev.A,28(4):2591-2593.
    [19]Sturrock P A, Scargle J D, Walthcr G, et al. Combined and Comparative Analysis of Power Spectra[J]. Solar Physics,2005,227(1):137-153.
    [20]龚云帆,徐建学.混沌信号与噪声[J].信号处理,1997,13(2):112-118.
    [21]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [22]Theilei J, Eubank S, Longtin A, ct al. Testing for nonlincarity in time scries:the method of surrogate data[J]. Physica D:Nonlinear Phenomena,1992,58(1-4):77-94.
    [23]朱伟勇,王兴元.二维Logistic映射中的阵发混沌与分形[J].东北大学学报:自然科学版,1998,19(5):509-512.
    [24]Grassberger P, Kantz H, Moenig U. On the symbolic dynamics of the Henon map[J]. Journal of Physics A:Mathematical and General,1989,22(24):5217-5230.
    [25]Grassberger P, Procaccia I. Characterization of strange attractors[J]. Phys. Rev. Lett, 1983,50(5):346-349.
    [26]Chen G, Ueta T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos,1999,9(7):1465-1466.
    [27]Lv J, Chen G.. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos,2002,12(3):659-661.
    [28]Yu P, Xu F. A common phenomenon in chaotic systems linked by time delay[J]. Inter-national Journal of Bifurcation and Chaos,2006,16(12):3727-3736.
    [29]Kanz H, Schreiber T. Nonlinear Time Series Analysis [M]. Cambridge:Cambridge University Press,1997.
    [30]Takens F. Detecting strange attractors in turbulence[M]. Heidelberg:Springer Berlin, 1981.
    [31]Huke J P. Embedding Nonlinear Dynamical Systems:A Guide to Takens Theorem[R]. Internal Report:DRA Malvern,1993.
    [32]Sauer T, Yorke J A, Casdagli M. Embedology[J]. Journal of Statistical Physics,1991, 65(3-4):579-616.
    [33]Hunt B R, Kaloshin V Y. Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces[J]. Nonlinearity,1999,12(5):1263-1275.
    [34]Robinson J C. A topological delay embedding theorem for infinite-dimensional dynam-ical systems[J]. Nonlinearity,2005,18(5):2135-2143.
    [35]Stark J, Broomhead D S, Davies M E, et al. Takens embedding theorems for forced and stochastic systems[J]. Elsevier Science Ltd,1997,30(9):5303-5314.
    [36]Stark J. Delay Embeddings for Forced Systems I Deterministic Forcing[J]. Journal of Nonlinear Science,1999,9(3):255-332.
    [37]Stark J, Broomhead D S, Davies M E, et al. Delay Embeddings for Forced Systems. II. Stochastic Forcing[J]. Journal of Nonlinear Science,2003,13(6):519-577.
    [38]Takens F. The reconstruction theorem for endomorphisms[J]. Bulletin of the Brazilian Mathematical Society,2002,33(2):231-262.
    [39]Huke J P, Broomhead D S. Embedding theorems for non-uniformly sampled dynamical systems[J]. Journal Title Nonlinearity,2007,20(9):2205-2244.
    [40]Mundt M, Maguire W II, Chase R. Chaos in the Sunspot Cycle[J]. Analysis and Pre-diction J Geophys Res,1991,96(A2):1705-1716.
    [41]Kugiumtzis D, Lingjaerde O C, Christophersen N. Regularized local linear prediction of chaotic time series[J]. Physica D:Nonlinear Phenomena,1998,112(3-4):344-360.
    [42]Duhau S. An Early Prediction of Maximum Sunspot Number in Solar Cycle 24[J]. Solar Physics,2003,213(1):203-212.
    [43]孟庆芳,张强,牟文英.混沌序列自适应多步预测及在股票中的应用[J].系统工程理论与实践,2005,12:62-68.
    [44]王琰,方自平.高维混沌在疾病流行过程研究中的应用[J].高校应用数学学报:A辑,2000,15A(3):333-338.
    [45]李天云,刘自发.电力系统负荷的混沌特性及预测[J],中国电机工程学报,2000,20(11):36-40.
    [46]蒋传文,袁智强,侯志俭.高嵌入维混沌负荷序列预测方法研究[J].电网技术,2004,28(3):25-28.
    [47]Grauwe N, Dewachter H. A chaotic model of the exchange rate:The role of fundamen-talists and chartists[J]. Open Economies Review,1993,4(4):351-379.
    [48]Rodriguez F F, Rivero S S, Felix J A. Exchange-rate forecasts with simultaneous nearest-neighbour methods:evidence from the EMS[J]. International Journal of Fore-casting,1999,15(4):383-392.
    [49]Soofi A S, Cao L. Nonlinear deterministic forecasting of daily Peseta-Dollar exchange rate[J]. Economics Letters,1999,62(2):175-180.
    [50]Cao L, Soofi A S. Nonlinear deterministic forecasting of daily dollar exchange rates [J]. International Journal of Forecasting,1999,15(4):421-430.
    [51]Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series [J]. Phys. Rev. Lett,1980,45(9):712-716.
    [52]Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors [J]. Rev. Mod. Phys,1985,59(8):617-656.
    [53]Farmer J D, Sidorowich J J. Predicting chaotic time series [J]. Phys Rev Lett,1987, 59(8):845-848.
    [54]Casdagli M. Nonlinear prediction of chaotic time series [J]. Physica D:Nonlinear Phe-nomena,1989,35(3):335-356.
    [55]Giona M, Lentini F, Cimagalli V. Functional reconstruction and local prediction of chaotic time series [J]. Phys. Rev. A,1991,44(6):3496-3502.
    [56]Kugiumtzis D, Lingjaerde O C., Christophersen N. Regularized local linear prediction of chaotic time series[J]. Physica D:Nonlinear Phenomena,1998,112(3-4):344-360.
    [57]Casdagli M. Nonlinear prediction of chaotic time series[J]. Physica D:Nonlinear Phe-nomena,1989,35(3):335-356.
    [58]Zhao P F, Xing L, Yu J. Chaotic time series prediction:From one to another [J]. Physics Letters A,2009,373(25):2174-2177.
    [59]朱义东,李玉林,黄炳光,等.基于最大Lyapunov指数方法预测油田产量[J].西南石油学院学报,2005,27(3):32-33.
    [60]侯曙光,汪双杰,黄晓明.基于相空间重构的冻土路基变形预测[J].交通运输工程学报,2005,5(2):35-37.
    [61]梁志珊,王丽敏,付大鹏,等.基于Lyapunov指数的电力系统短期负荷预测[J].中国电机工程学报,1998,18(5).
    [62]Cao L Y, Hong Y G, Fang H P, et al. Predicting chaotic time series with wavelet networks [J]. Physica D:Nonlinear Phenomena,1995,85(1-2):225-238.
    [63]Chen Y H, Yang B, Dong J W. Time-series prediction using a local linear wavelet neural network[J]. Neurocomputing,2006,69(4-6):449-465.
    [64]Masuda N, Aihara K. Prediction of chaotic time series with wavelet coefficients [J]. Electronics and communications in Japan,2001,84(6):50-59.
    [65]Rosipal R, Koska M, Farkas I. Prediction of chaotic time-series with a resourcce-allocating RBF network [J]. Neural Processing Letters,1998,7(3):185-197.
    [66]张军峰,胡寿松.基于一种新型聚类算法的RBF神经网络混沌时间序列预测[J].物理学报,2007,56(2):713-719.
    [67]Szpiro G G. Forecasting chaotic time series with genetic algorithms [J]. Phys. Rev. E, 1997,55(3):2557-2568.
    [68]崔万照,朱长纯,保文星,等.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310.
    [69]Ye M Y, Wang X D. Chaotic time series prediction using least squares support vector machines[J]. Chinese Physics,2004,13(4):454-458.
    [70]Chua L O, Wu C W, Huang A, et al. A universal circuit for studying and generating chaos Part I+II [J]. IEEETrans. CircuitsSyst,1993,40(10):732-761.
    [71]Lacorata G, Paladin G. Predictability time from the seismic signal in an earthquake model[J]. Journal of Physics A:Mathematical and General,1993,26 (14):3463-3471.
    [72]殷光伟,郑丕谔.基于小波与混沌集成的中国股票市场预测[J].系统工程学报,2005,20(2):180-184.
    [73]Atmanspacher H, Scheingraber H, Voges W. Global scaling properties of a chaotic attractor reconstructed from experimental data[J]. Phys Rev A,1988,37(4):1314-1322.
    [74]Meng Q F, Peng Y H. A new local linear prediction model for chaotic time scries [J]. Physics Letters A,2007,370(5-6):465-470.
    [75]Pecora L M, Moniz L, Nichols J, et al. A Unified Approach to Attractor Reconstruc-tion[M]. Heidelberg, Berlin:Springer,2009.
    [76]Bowley S A L, Burnett-Hurst A R. Likelihood and poverty- A study in the economic conditions of working-class households in Northampton,Warrington Stanley, and read-ing[M]. London:Bell Repring. New York:Carland,1980.
    [77]Deming W E, Stephan F F. On a least squares adjustment of a sampled frequency table when the expected marginal totals are known [J]. Ann Math Statist 11,427-444.
    [78]Deming W E. Statistical adjustment of data[M]. New York:Wiley,1943.
    [79]Chen J, Shao J. Nearest neighbor imputation for survey data[J]. Journal of Offical Statistics,2000,16(2):113-131.
    [80]Rao J N K, Changrude P D. Bayesian optimization in sampling finite populations [J]. Journal of the American Statistical Association,1972,67(338):439-443.
    [81]Dempster A P, Laird N M, Rubin D B. Maximum likelihood form incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society.1977, B39:1-38.
    [82]Rubin D B. Inference and missing data[J]. Mathematics and Physical Sciences,1976, 63(3):581-592.
    [83]Rubin D B. Statistical analysis with missing values R J A Little[M]. Hoboken:Wiley. 2002.
    [84]Bennis S, Berrada F, Kang N. Improving single-variable and multivariable techniques for estimating missing hydrological data[J]. Journal of Hydrology,1997,191(1-4):87-105.
    [85]Elshorbagy A, Simonovicb S P, Panuc U S. Estimation of missing streamflow data using principles of chaos theory[J]. Journal of Hydrology,2002,255(1-4):123-133.
    [86]Elshorbagy A, Simonovic S P, Panu U S. Noise reduction in chaotic hydrologic time series:facts and doubts[J]. Journal of Hydrology,2002,256(3-4):147-165.
    [87]Tresp V, Hofmann R. Nonlinear Time-Series Prediction with Missing and Noisy Data[J]. Neural Computation Volker Tresp,1998,10(3):731-747.
    [88]Goodwin R M, Chaotic economic dynamics[M]. Oxford:Clarendon Press:New York :Oxford University Press,1990.
    [89]Gleditsch K S. Expanded Trade and GDP Data[J]. Journal of Conflict Resolution,2002, 46(5):714-724.
    [90]Silva S D. Chaotic Exchange Rate Dynamics Redux[J]. Open Economies Review,2001, 12(3):281-304.
    [91]Arifovic J, Gencay R. Statistical properties of genetic learning in a model of exchange rate[J]. Journal of Economic Dynamics and Control,2000,24(5-7):981-1005.
    [92]Bask M. Dimensions and Lyapunov exponents from exchange rate series[J]. Chaos, Solitons and Fractals,1996,7(12):2199-2214.
    [93]Osler C L. Stop-loss orders and price cascades in currency markets [J]. Journal of In-ternational Money and Finance,2005,24(2):219-241.
    [94]Lane D. From Chaotic to State-led Capitalism [J]. New Political Economy,2008,13(2): 177-184.
    [95]Kyrtsou C, Labys W C. Evidence for chaotic dependence between US inflation and commodity prices [J]. Journal of Macroeconomics,2006,28(1):256-268.
    [96]Silva S D. Chaotic Exchange Rate Dynamics Redux[J]. Open Economies Review,2001, 12(3):281-304.
    [97]Lee Y C. Evolution,Learning and Cognition[M]. Singapore:World Scientific Press, 1988.
    [98]Kostclich E J, Yorke J A. Noise reduction in dynamical systems[J]. Phys. Rev. A,1988, 38(3):1649-1652.
    [99]Savitzky A, Golay M J E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures [J]. Analytical Chemistry.1964,36(8):1627-1639.
    [100]Wold S. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems,1987,2(1-3):37-52.
    [101]Glen W G, Dunn W J III, Scott D R. Principal components analysis and partial least squares regression [J]. Tetrahedron Computer Methodology,1989,2(6):349-376.
    [102]Lu J, Lu J H, Xie J, et al. Reconstruction of the Lorenz and Chen systems with noisy observations [J]. Computers and Mathematics with Applications,2003,46(8-9):1427-1434.
    [103]Shen H B. Chou K C. Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition [J]. Biochemical and Biophysical Research Communications,2005,337(3):752-756.
    [104]Salamov A A, Solovyev V V. Prediction of Protein Secondary Structure by Combining Nearest-neighbor Algorithms and Multiple Sequence Alignments [J]. Journal of Molec-ular Biology,1995,247(1):11-15.
    [105]Namajunas A, Pyragas K, Tamasevicius A. An electronic analog of the Mackey-Glass system [J]. Physics Letters A,1995,201(1):42-46.
    [106]Muller S J, Larson R G, Shaqfeh E S G. A purely elastic transition in Taylor-Couette flow[J]. Rheologica Acta,1989,28(6):499-503.
    [107]Small M, Zhang J, Xu X. Transforming Time Series into Complex Networks[M]. Hei-delberg:Springer Berlin,2009.
    [108]Aurell E., Crisanti A, Paladin G, et al. Predictability in the Large-anextension of the Concept of Lyapunov Exponent [J]. Journal of Physics. A, Mathematical and General, 1997.30(1):1-26.
    [109]Ziehmann C, Smith L A, Kurths J. Localized Lyapunov exponents and the prediction of predictability [J]. Physics Letters A,2000,271(4):237-251.
    [110]Ding R, Li J. Nonlinear finite-time Lyapunov exponent and predictability [J]. Physics Letters A,2007,364(5):396-400.
    [111]Maasoumi E, Racine J. Entropy and predictability of stock market returns[J]. Journal of Econometrics,2002,107(1-2):291-312.
    [112]Majda A, Kleeman R, Cai D. A Mathematical Framework for Quantifying Predictabil-ity Through Relative Entropy[J]. Methods and Applications of Analysis,2002,9(3): 425-444.
    [113]Molgedey L, Ebeling W. Local order, entropy and predictability of financial time se-ries [J]. The European Physical Journal B,2000,15(4):733-737.
    [114]Bialek W, Nemenman I, Tishby N Predictability Complexity and Learning[J]. Neural Computation,2001,13(11):2409-2463.
    [115]Abarbanel H D I, Brown R, Kadtke J B. Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra[J]. Phys Rev A,1990,41(4): 1782-1807.
    [116]Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Phys Rev Lett,1990,64:1196-1199.
    [117]Pyragas K. Continuous control of chaos by self-controlling feedback[J]. Physics Letters A,1992,170(6):421-428.
    [118]Matias M, Guemez J. Stabilization of chaos by proportional pulses in the system vari-ables[J]. Phys. Rev. Lett.,1994,72:1455-1458.
    [119]Guan Z H, Chen G R, Ueta T. On impulsive control of a periodically forced chaotic pendulum system[J]. IEEE Transactions on Automatic Control,2000,45(9):1724-1727.
    [120]Hammad A A, Jonckheere E A. Taming chaos:a numerical experiment using low-order LTI filters[J]. IEEE transactions on circuits and systems 1, Fundamental theory and applications,1995,42(2):111-115.
    [121]温香彩.混沌系统的RBF神经网络控制设计[J].控制与决策,1998,13(3):272-276.
    [122]Kim K B, Park J B, Choi Y H, et al. Control of chaotic dynamical systems using radial basis function network approximators[J]. Information Sciences,2000,130(1-4): 165-183.
    [123]李冬梅,王正欧.混沌系统的神经网络预测控制[J].控制与决策,2002,17(6):912-915.
    [124]任海鹏,刘丁.混沌的模糊神经网络逆系统控制[J].物理学报,2002,51(5):982-987.
    [125]Garcia C E, Prett D M, Moran Manfred. Model predictive control:Theory and practicc-A survey[J]. Automatica,1989.25(3):335-348.
    [126]Eduardo C, Carlos B. Model predictive control[M]. London:Springer,1999.
    [127]Moran M, Lee J H. Model predictive control:past, present and future[J]. Computers and Chemical Engineering,1999,23(4-5):667-682.
    [128]Nicosia S, Tomei P. Model reference adaptive control algorithms for industrial robots [J]. Automatica,1984,20(5):635-644.
    [129]Chen Y C, Teng C C.A model reference control structure using a fuzzy neural net-work[J]. Fuzzy Sets and Systems,1995,73(3):291-312.
    [130]Cottenceau B, Hardouin L, Boimond J L. et al. Model reference control for timed event graphs in dioids[J]. Automatica,2001,37(9):1451-1458.
    [131]Landau I D. Adaptive control:the model reference approach [M]. New York:Marcel Dekker,1979.
    [132]Abdullah A, Zribi M. Model reference control of LPV systems [J]. Journal of the Franklin Institute,2009,346(9):854-871.
    [133]Liu Y T, Chang K M, Li W Z. Model reference adaptive control for a piezo-positioning system [J]. Precision Engineering,2010,34(1):62-69.
    [134]Sontag E D. Some New Directions in Control Theory Inspired by Systems Biology [J]. IEE Proceedings on Systems Biology,2004,1(1):9-18.
    [135]Chow S N, Li Y F. Model reference control for SIRS models [J]. Discrete Contin Dyn Syst,2009,24(3):675-697.
    [136]Holt C C, Modigliani F, JF Muth. Planning Production Inventories and Work Forcc[M]. Englewood Cliffs:HA Simon-Prentice-Hall,1960.
    [137]Holt C C. Linear decision rules for economic stabilization and growth[J]. Quarterly Journal of Economics,1962,76:20-45.
    [138]Livesey D A. Optimizing short-term economic policy [J]. Economic Journal,1971,81: 525-546.
    [139]Rustem B, Wieland V, Zakovic S. A continuous min-max problem and its application to inflation targeting in:Zaccour G[M]. Boston:Decision and Control in Management Science, Essays in Honor of Alan Haurie. Kluwer,2001.
    [140]Feinstein C. Capitalism and Economic Growth[M]. Cambridge:Cambridge University Press,1967.
    [141]Ishiyama K, Saiki Y. Unstable periodic orbits and chaotic economic growth[J]. Chaos, Solitons and Fractals,2005,26(1):33-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700