DNA甲基化与油菜杂种优势关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂种优势利用是作物增产的一个重要途径。自20世纪30年代杂种优势在玉米中应用获得高产以来,其在农作物生产中得到广泛的应用并取得了显著的增产效果。然而一个世纪以来关于作物杂种优势产生机制仍不清楚。至20世纪80年,人们开始从分子水平来探讨作物杂种优势的分子机理,证实了基因表达与杂种优势存在关系。而作物基因组DNA甲基化修饰是调节基因表达的一种重要途径,因而本研究从检测油菜基因组DNA甲基化状态来探索油菜杂种优势产生的分子基础。主要研究结果如下:
     1、全基因组DNA甲基化状态检测
     本实验共选用了10对MSAP选择扩增引物组合,对45个杂交组合(包括22个甘蓝型油菜与白菜型油菜种间杂种和23个甘甘、白白种内杂种)及其8个亲本材料的苗期的叶片和蕾进行了全基因组甲基化分析,共检测出252个可清晰记录条带,其中177条带具有多态性,平均每对引物检测到17.7条多态性位点。
     2、甲基化组织特异性分析
     对亲本及其杂种在苗期和蕾期5'-CCGG位点甲基化状态的对比分析表明,苗期的甲基化水平均高于其在蕾期的甲基化水平。亲本的甲基化含量在苗期均显著高于其杂交后代,但在蕾期差异不显著(p=0.49)。
     苗期和蕾期DNA甲基化的改变表现为去甲基化和超甲基化,其中去甲基化为主要变化形式,除甘蓝型油菜种内杂种外,其它材料间的去甲基化比例均大于超甲基化。白菜亲本甲基化位点变化比例最高,平均为48%。
     对45份杂交后代和8个亲本材料从苗期到蕾期甲基化变化的主成分分析表明,三类杂交后代及其两类亲本主要聚成三类,第一类为甘蓝型油菜亲本及其种内杂种后代,第二类为白菜型亲本及其种内杂交后代,第三类为甘蓝型油菜与白菜型油菜的种间正反交杂交后代。基因组结构和材料的异质性对苗期到蕾期甲基化的变化都有影响,但基因组结构的影响大于材料的异质性对其的影响。
     3、亲本与杂种甲基化状态比较
     杂种与其亲本比较主要存在4种条带类型,A类为杂种与双亲的甲基化带型相同(P1=PI=F1);B类为杂种的甲基化类型与母本相同(P1=F1≠P2);C类为杂种的甲基化类型与父本相同(P2=F1≠P1),A,B,C三种带型符合孟德尔遗传规律;D类为杂种与双亲皆不相同,即杂交后代出现甲基化新带型(F1≠P1,P2)。杂种具有与两亲本或亲本之一相同的甲基化带型(A,B,C类带型)占总的甲基化的比例约占67.9%。在D类带型中,杂种在苗期去甲基化的比例总是大于超甲基化,而蕾期种间杂种出现去甲基化的比例大于超甲基化,种内杂种出现超甲基化的比例大于去甲基化。
     4、农艺性状分析
     本研究对包括株高、第一次分枝高度、主花序长度、主花序有效荚果数、全株有效荚果数、每荚果粒数、第一次分枝数目等7个杂种优势相关农艺性状指标进行了测定,结果显示,杂种后代在株高、主花序长度、主花序有效荚果数以及产量上都高于对照和亲本的均值,7类农艺性状的都有较强的中亲优势,其中,株高、第一次分枝高度、主花序长度、主花序有效荚果数、全株有效荚果数等5个农艺性状都为正向中亲优势,但每荚果粒数、第一次分枝数具有负向中亲优势。亲本与杂种、年度间、不同基因组结构(甘蓝型油菜与白菜型油菜种间杂种、甘蓝型油菜种内杂种、白菜型油菜种内杂种)方差分析的结果表明,株高、第一次分枝高度、主花序荚果数、全株荚果数和每荚果粒数等5个农艺性状在0.01水平上存在显著差异。主花序荚果在年度间差异不显著,分枝数在年度间达到极显著异,但亲本与杂种间以及不同基因组结构间差异不显著。
     5、与杂种优势相关的甲基化位点分析
     对株高、主花序长度、主花序有效荚果数、生物重等4个性状的中亲优势与甲基化带型(六种带型:P1=P1=F1、P1=F1≠P2、P2=F1≠P1、去甲基化,超甲基化,其它类型)作单因素方差分析,筛选与杂种优势相关甲基化位点。对筛选位点进行甲基化带型效应值的多重比较发现,六种甲基化变化带型都与杂种优势有关。
Utilization of heterosis has been to an important approach to increase crop yields since it was successfully used to improve seed yield in corn in the 1930s.However,the mechanisms of heterosis have remained poorly understood so far.Since 1980s,the evidences from molecular studies proved the possibility to reveal its mechanism.For example,the differential gene expression was detected between hybrid and parent.DNA methylation is considered to regulate the gene expression.In this study,the relationship of DNA methylation with heterosis was investigated.Main results were as follows.
     1.DNA methylation status on the whole genome
     Ten MSAP amplification primer combinations were used for the methylation analysis among crosses of B.napus with B.rapa,23 intraspecific crosses,together with 8 parental accessions in Brassica.Totally,177 polymorphic loci were detected from 252 clear recorded bands.
     2.Tissue Specificity of DNA methylation
     It was found that the methylation level in seedling was higher than bud among 53 materials,and that parents exhibited high ratio of alternations of DNA methylation than hybrids at the seedling stage,but not significantly differed each other at the bud stage(p=0.49)
     Alternations of DNA methylation,hypomethylation and hypermethlation,were found from seedling to bud.The proporation of hypomethylation was higher than hypermethylation,except for the intraspecific hybrids of B.napus.
     The principle component analysis for the methylation alternation from seedling to bud revealed three groups.One group contained the B.napus parents and their intraspecific hybrids,while another one contained the B.rapa parents and their intraspecific hybrids.The third group was composed of the interspecific hybrids or B.napus and B.rapa.
     3.Differential methylation patterns among hybrids and parents
     Four types of methylation patterns were detected among the tested accessions,the common band patterns in the hybrid and its both parents refered as A type(P1=P2=F1),the common band patterns in the hybrids and its female parents refered as type B(P1=F1≠P2),the common band patterns in the hybrids and its male parents refered as type C(P2=F1≠P1),the new band refered as type D,in which it differ between hybrid and parents(F1≠P1,P2).About 67.9%of band patterns belonged to the classification of type A,B and C.Among band patterns of D type,the degree of hypomethylation among all the accessions tested was higher than that of hypermethlation in seedling,while the degree of hypomethylation among the interspecific hybrids was higher than hypermethlation and the degree of hypomethylation among the interapecific hybrids was lower than hypermethlation.
     4.Analysis on agronomic traits
     Seven agronomic traits related to heterosis,containing plant height,height of primary branch,length of main inflorescence,number of effective pods of the main inflorescence,number of effective pods per plant, number of seeds per pod and the number of primary branches,were tested in this study.Hybrids were better than relative parental accessions in the plant height,the length of main inflorescence,the number of effective pods of the main inflorescence and the yields.ANOVA analysis showed significant differents between parents and hybrids for plant height,height of primary branch,number of effective pods of the main inflorescence,number of effective pods per plant and number of seed per pod(p=0.01).
     5.Relationships of DNA methylated with heterosis
     The loci significally relative to heterosis were selected by ANOVA analysis for plant height,length of main inflorescence,number of effective pods of the main inflorescence and biomass.All of methylation patterns in F1(P1=P1=F1,P1=F1≠P2,P2=F1≠P1,hypomethylation,hypermethlation and other patterns) were related to heterosis by calculating the effects of band patterns.
引文
[1]U N.Genome analysis in Brassica with special reference to the experimental formation of B.napus and peculiar mode of fertilization[J].Jpn J Bot,1935,7:389-452.
    [2]刘后利主编.油菜遗传育种学[M].北京:中国农业大学出版社,2000.
    [3]Snowdon R J,K(o|¨)hler W,Friedrich T,Friedt W.Fishing for physical genome information-Brassica cytogenetics past,resent and future,p.1:116-119.In:Proc 11~(th) intern.Rapeseed Congr.Copenhagen,Denmark.6-10 July 2003.
    [4]Snowdon R J.Cytogeneties and genome analysis in Brassica crops.Chromosome Research,2007,15:85-95.
    [5]R(o|¨)bbelen.G Beitr(a|¨)ge zur analyse des Brassica-Genoms[J].Chromosoma,1960,11:205-228.
    [6]Venkateswarlu J,Kamala T.Pachytene chromosome complements and genome analysis in Brassica[J].Ind.Bot Soc,1971,50:442-449.
    [7]Song K M,Osborn T C,Williams P H.Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) I.Genone evolution of diploid and amphidiploid species[J].Theor Appl Genet,1988,75:784-794.
    [8]Olssong,Hagberg A.Investigation on haploid rape[J].Hereditas,1955,41:227-237.
    [9]Attia T,R(O|¨)bbelen G.Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors[J].Can J Genet Cytol,1986,28:323-329.
    [10]Harrison G E,Heslop-Harrison J S.Centrometrie repetitive DNA sequences in the genus Brassica[J].Theor Appl Genet,1995,90:157-165.
    [11]Snowdon R J,Kohler W,Kohler A.Genornic in situ hybridization in Brassica amphidiploids and interspecific hybrids [J].Theor Appl Genet,1997,95:1320-1324.
    [12]Ulrike B,Heiko C.Evaluation B-genome intergration in Brassica napus with GISH.Proceeding of the 10~(th)international Rapeseed Congress,Canberra,Australia.Becker.1999.
    [13]李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.基因组原位杂交辨别芸薹属异源四倍体AA,BB,CC基因组研究[J].中国油料作物学报,2002,24(1):10-14.
    [14]Snowdon R.J,Friedrich T,Friedt W,K(o|¨)hler W.Identifying the chromosomes of A-and C-genome diploid Brassica species B.rapa(syn.campestris) and B.oleracea in their amphidiploid B.napus[J].Theor Appl Genet,2002,104:533-538.
    [15]Palmer J D.Intraspecific variation and multicircularity in Brassica mitochondrial DNA[J].Genetics,1988,118:341-351.
    [16]Truco M J,Hu J,Sadowski J,Quiros C F.Inter-genomic and intra-genomic homology of Brassica genomes:implications for their origin and evolution[J].Theor Appl Genet,1996,93:1225-1233.
    [17]Quiros C F,Ocnoa O,Douches D S.Exploring the role of X=7 species in Brassica evolution:hybridization with B.nigra and B.oleracea.J.Hered,1988,79:351-358.
    [18]孙逢吉.芸薹属之杂种优势[J].中华农学会报,1943,175:35-58.
    [19]Denford K E,Vaughan J G.A comparative study of centain seed isoenzymes in the ten chromosome complex of Brassica campestris and its allies[J].Ann Bot,1977,141:411-418.
    [20]Song K M,Osborn T C,Williams P H.Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs).I.Genome evolution of diploid and amphidiploid species[J].Theor Appl Genet,1988a,75:784-794.
    [21]Song K M,Osbom T C,Williams P H.Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs).2.Prelimary analysis of subspecifie within B.rapa(syn.Campestrisis) and B.oleracea[J].Theor Appl Genet,1988b,76:593-600.
    [22]赵坚义,Becker H C.同工酶分子标记研究中国和欧洲栽培油菜的遗传差异.作物学报,1998,24(2):213-220.
    [23]朱莉,李汝刚,伍晓明,伍宁丰,范云六,钱秀珍.我国部分白菜型油菜RAPD的研究[J].生物多样性,1998,6:99-104.
    [24]Nagahara U.Genomic analysis in Brassica with special reference to the experimental formation ofB.napus and peculiar mode of fertilization[J].Japan J Bot,1935,7:389-452.
    [25]Song et al.Rapid genome change in sybthetic polyploids of Brassica and its implication for polyploidy evolution[J].PANS,1995,92:7719-7723.
    [26]Qian W,meng J,Li M,Frauen M,Sass O,Noack J,Jung C.Introgression of genomie components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B.napus L.),with emphasis on evolution of Chinese rapeseed[J].Theor Appl Genet,2006,113:49-54.
    [27]Diers B W,McVctty P B,Osborn T C.Relationship between heterosis and genetic distance based on restriction fragment length polymorphisms markers in oilseed rape(Brassica napus L.)[J].Crop Sci,1996,36(1):79-83.
    [28]孟金陵,Sharp A,Bowman C.用RFLP标记分析甘蓝型油菜的遗传多样性[J].遗传学报,1996,23:293-306.
    [29]Ma C,Kimura Y,Fujimoto H,Sakai T,lmamura J,Fu T.Genetic diversity of Chinese and Japanese rapeseed(Brassica napus L.) varieties deteeted by RAPD markers[J].Breeding science,2000,50:257-265.
    [30]Qian,et al.Genetic effects on biomass yield in interspecific hybrids between Brassica B.napus and B.rapa[J].Euphytica,2003,134:9-15.
    [31]Qian,et al.Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome[J].Theor Appl Genet,2005,110:1187-1194.
    [32]Li,et al.Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome A~r from B.rapa and C~c from Brassica carinata[J].Crop Science,2006,46:234-242.
    [33]张天真主编.作物育种学总论Ⅰ版[M].北京:中国农业出版社,2003,144.
    [34]Yang J H,Chen N,Gao Y P.Molecular basis of heterosis in hybrid rice and hybrid maize revealed by mRNA amplication[J].International Rice Reserch Notes,1996,21:1-12.
    [35]Sernyk R L,Stefansson B R.Heterosis in summer rape(Brassica napus L.).Can J Plant Sci,1983,63:407-413.
    [36]Grant L,Beversdorf W D.Heterosis and combining ability eslimates in spring-planted oilseed rape(Brassica napus L.)[J].Can J Genet Cylol,1985,27:472-478,
    [37]傅廷栋.杂交油菜的育种与利用[M].武汉:湖北科学技术出版社,1995.
    [38]傅廷栋.油菜品种改良的现状与展望[M].华中农业大学学报,2004,34:1-6.
    [39]傅廷栋主编.杂交油菜的育种与利用[M].武汉:湖北科学技术出版社,2000.
    [40]Lefort-buson M,Dattee Y,Guillot-Lemoine B.Heterosis and genetic dance in Rapeseed(Brassica napus L.)[J].Agronomie,1982,2(4):315-322.
    [41]Shiga T.Natane no Hinsyu seitai In:"Nogyo-Gijutu Taikei,Natane".1975,67-69.
    [42]Srivastava K,Rai B.Expression of heterosis for yield and its attributes in rapeseed(Brassica napus)[J].Indian Journal of Agricluture sciences,1993,63(4):243-245.
    [43]Kozumplik V,Pejic I,Senior L,Pavlina R.Use of molecular markers for QTL detection in segregation maize populations derived from exotic germplasm[J].Maydica,1996,41(3):211-217.
    [44]Gumber R K,Sarvjeet S.Heterosis and inbreeding depression in pigeopea crosses involving genotypes of different growth habit[J].International Chickpea and Pigeonpea Newsletter,1996,3:67-69.
    [45]马朝芝,刘后利.甘蓝型优质新品系的配合力分析[J].华中农业大学学报,1994,13:553-559.
    [46]李卫华,曹连莆,艾尼瓦尔,莫庸,慕自新.不同蛋白质含量小麦品种籽粒蛋白质及其组分含量的配合力和杂种优势研究[J].作物学报,2001,27:1007-1012.
    [47]翟虎渠,曹树青,唐运来,张荣铣,盛生兰,龚红兵,杨图南.籼型杂交水稻光合性状的配合力及遗传力分析[J].作物学报,2002,28:154-160.
    [48]张向群.玉米自交系两种配合力在杂种一代的表现[J].作物学报,1987,13(2):135-142.
    [49]何光华,袁祚廉,郑家奎,谢戎,杨正林,黄建国,邵启明,袁玲.水稻籽粒蛋白质、游离氨基酸含量的配合力与杂种优势分析[J].作物学报,1996,22:192-196.
    [50]吴景锋.我国主要玉米杂交种种质基础评述[J].中国农业科学,1983,16(2):1-8.
    [51]曾三省.中国玉米杂交种的种质基础[J].中国农业科学,1990,23(4):1-9.
    [52]王懿波,王振华.中国玉米主要种质杂种优势群的划分及其改良利用[J].华北农学报,1998,3(1):74-80.
    [53]李明顺,张世煌,李新海,等.根据产量特殊配合力分析玉米自交系杂种优势群[J].中国农业科学,2002,35(6):600-605.
    [54]Zheng K,Qian H,Shen B,et al.RFLP based phylogenetic analysis of wild compatihility varieties in Oryza sativa L[J].Theor Appl Genet,1994,88:65-69.
    [55]Qian W,meng J,Li M,Frauen M,Sass O,Noack J,Jung C.Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed(B.napus L.),with emphasis on evolution of Chinese rapeseed[J].Theor Appl Genet,2006,113:49-54.
    [56]Diers B W,McVetty P B,Osbom T C.Relationship between heterosis and genetic distance based on restriction fragment length polymorphisms markers in oilseed rape(Brassica napus L.)[J].Crop Sci,1996,36(1):79-83.
    [57]孟金陵,Sharp A,Bowman C.用RFLP标记分析甘蓝型油菜的遗传多样性[J].遗传学报,1996,23:293-306.
    [58]Ma C,KimuraY,Fujimoto H,Sakai T,Lmamura J,Fu T.Genetic diversity of Chinese and Japanese rapeseed(Brassica napus L.) varieties detected by RAPD markers[J].Breeding science,2000,50:257-265.
    [59]李竞雄主编.中国大百科全书:生物学卷:遗传学分册[M].北京:中国大百科全书出版社,1983,230-234.
    [60]Bauman L F.Evidence of non-allelic gene action in determing yield era height and kernel row number in corn[J].Agron.J,1959,57:531-534.
    [61]Sprague G E,Russel W A,Penny L H,et al.Effect of epistasis on grain yield on maize[J].Crop Sci,1962,2:205-208.
    [62]Castro G M,Gardner C O,Linguist J H.Cumulative gene effects and the mature of heterosis in maize[J].Crop Sci,1968,8:97-101.
    [63]Xiao J,Li J,Yuan L,Tanksley S D.Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J].Genetics,1995,140:745-754.
    [64]Hull F H.Recurrent selection and overdominance.In:Gowen J W.,(ed),Heterosis[M].Iowa State.Univ.Press,1952,pp:451-473.
    [65]Jinks J L.Biometrical genetics of heterosis.In:Frankel R.,(ed),Heterosis-reappraisal of theory and practice[M].New York:Springer Berlin Heidelberg,1983.
    [66]Stuber C W,Lincoln S E,WolffD W,Helentjaris T,Lander E S.Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J].Genetics,1992,132:823-839.
    [67]Li B,Wu R.Genetic causes ofheterosis in juvenile aspen:a quantitative comparison across intra-and inter-specific hybrids[J].Theor Appl Genet,1996,93:380-390.
    [68]De Vicente M C.QTL analysis of transgressive segregation in an interspecific tomato cross[J].Genetics,1993,134:585-596.
    [69]Thomas C M,Zabeau M,Jones D A.Homologous relationships of rice,wheat and maize chromosomes[J].Molecular and General Genetics,1994,241:483-490.
    [70]Hua J,et al.Sing-locus heterotic effected and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J].PANS,2003,100:2574-2579.
    [71]Yu S B,Li J X,Xu C G,Tan Y F,Gao Y J,Li X H,Zhang Q F,Saghai Maroof M A.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J].Proc Natl Acad Sci USA,1997,94:9226-9231.
    [72]Li J X,Yu S B,Tan Y F,Gao Y J,Li X H,Zhang Q F.Analysis quantitative trait loci for yield using a vegetatively replicated F_2 population from a cross between the parents of an elite rice hybrid[J].Theor Appl Genet,2000,101:248-254.
    [73]Li Z K,Pinson S R M,Park W D,Paterson A H,Stanse T W.Epistasis for three grain yield components in rice(Oryza Sativa)[J].Genetics,1997,145:453-465.
    [74]Hua J,Xing Y,Wu W,Xu C,Sun X,Yu S,Zhang Q.Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J].Proc Natl Acad Sci USA, 2003,100:2574-2579.
    [75]王得元,殷秋妙,李颖等.作物杂种优势的分子生物学研究进展[J].西北农业大学学报,1999,27(1).
    [76]Wright S.Evolution and genetics of populations[M].Chicago:Univ of Chicago Press,1968.
    [77]胡建广,杨金水,陈金婷.作物杂种优势的遗传学基础[J].遗传,1999,21:47-50.
    [78]杨金水.杂种优势机理探讨:作物雄性不育及杂种优势研究进展(1)[J].北京,中国农业出版社,1996,1-12.
    [79]傅廷栋主编.刘后利科学论文选集[M].北京:北京农业大学出版社,1994:45-62.
    [80]易斌,陈伟,马朝芝.甘蓝型油菜产量及相关性状的QTL分析[J].作物学报,2006,32(5):676-682.
    [81]张书芬,傅廷栋,朱家成.甘蓝型油菜产量及其构成因素的QTL定位与分析[J].作物学报,2006,32(8):1135-1142.
    [82]Li Y Y,Shen J X,Wang T H,et al.QTL analysis of yield-related traits and their association with functional markers in Brassica napus L.[J].Australian Journal of Agricultural Research,2007,58(8):759-766.
    [83]Zhang X M,Ye S H,Bao G L,et al.Advance on the developmental genetics of quantity trait in crop[J].Acta Agrieulturae Zhejiangensis,2003,15(4):268-272.
    [84]Ding X H.Advances in map-based cloning for crop quantitative trait loci[J].Journal of Plant Genetic Resources,2005,6(4):464-468.
    [85]Ao Y,Zhu M X,Xu C W,et al.Advances in researches on application of Bayesian methods to QTL mapping[J].Hereditas,2007,29(6):668-674.
    [86]Russo V E A,Martienssen R A,Riggs A D.Epigenetics mechanisms,of gene regulation[M].NY:Cold Spring Harbor Laboratory Press,1996.
    [87]Fraga M F,Ballestar E,Paz M F,et al.Epigenetie differences arise during the lifetime of monozygotic twins[J].Proceedings of the National Academy of Science of the United States of America,2005,102(30):10604-10609.
    [88]Adams R L P,Burdon R H.Molecular Biology of DNA Methylation[M].NewYork,Berlin,Heidelberg tokyo:springer_verlag,1985.
    [89]Marjori A M,James A.Birchler January.RNAi-mediated pathways in the nucleus[J].Nature Reviews Genetics,2005,6(01):24-35.
    [90]Akashi H,Taira K.PolⅣ is a matchmaker of small RNAs meeting with chromatin[J].Heredity,2007,98:125-127.
    [91]Marjori M,Tatsuo K,Bruno H,Lucia D.Target of RNA-directed DNA methylation[J].Science Direct current opinion in plant biology,2007,10:512-519.
    [92]Finnegan E J,Kovae K A.Plant DNA meltransferases[J].Plant Mol Biol,2000a,43:189-201.
    [93]Vabyushin B F,Kirnos M D.DNA methylation in Plants[J].Gene,1988,74:117-121.
    [94]Buryanow Y I,Shevehuk E S.Isolation and identification by sequence homology of a putative cytosine methyltransferase of mouse cells[J].J Mol Biol,1988,203:971.
    [95]Bestor T H,Laudano A,Mattaliano R,et al.Cloing and sequencing of a cDNA encoding DNA methyltransferase of mouse cells[J].J Mol Biol,1988,203:971.
    [96]Finnegan E J,Dennis E S.Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana[J].Nucl Acids Res,1993,21:2383.
    [97]Goger R K,Kovae K A,Dennes E S,et al.Multiple DNA methyltranferase genes in Arabidopsis thaliana[J].Plant Mol Biol,1999,41:269-278.
    [98]Ronemus M J,Galbiati M,Ticknor C,et al.Demethylation induced developmental Plieotropy in Arabidopsis thaliana [J].Science,1996,273(2):654-657.
    [99]Pradhan S,Cummings M,Roberts R J,et al.Isolation,characterization and baculovirus-mediated Expression of the cDNA encoding cytosine DNA methyltrasnsferase from Pisum sarivum[J].Nuel.Acids Res,1998,26:1214-1222.
    [100]Olhoft P M.Cloning and characterization of the s-methylcytosine methyltransferase gene in maize Plants and tissue cultures[M].St Paul,MN,Phd thesis,University of mennesota,1998.
    [101]Bmaeehia G,Primo A,Giorgetti L,et al.Carrot DNA-methyltransferase is encoded by two Classes of genes with differing patterns of expression[J].Plant J,1998,13:317-329.
    [102]Bestor T H,Verdine G L.DNA methyltansferase[J].Curr Opin Cell Biol,1994,6:380.
    [103]Liu Y,Oakeley E J,Sun L,et al.Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA Replication foci[J].Nuel.Acids Res,1998,26:1038.
    [104]Bestor T H.Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain[J].EMBO J,1992,11:2611.
    [105]Henikoff R,Comai L.A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis[J].Genetics,1998,147:307.
    [106]Genger R K,Kovac K A,Dennes E S,et al.Multiple DNA methyltransferase genes in Arabidopsis.thaliana[J].Plant Mol Biol,1999,41:269-278.
    [107]Schultz E R,Henikoff J G,et al.Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences[J].Nuel Acids Res,1998,26:1628-1635.
    [108]Cao X,Spriger N M,Muszynski M C,et al.Conserved plant genes with similarity to mammalian de novo methyltransferase[J].Proc Natl Acad Sci USA,2000,97:4979.
    [109]Kakutani T,Kyoko M,Richard E J,et al.Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddmlmutation of Arabidopsis thaliana[J].Genetics,1999,151:838.
    [110]Wanger I,CaPesius L.Determination of 5-methylCytosine from Plant DNA by high Performance liquid chromatography[J].Biochmica and Biophysica Acta,1981,654:52-56.
    [111]Leutwiler.L S,Hough-Evans B R,Meyerowitz E M.The DNA of Arabidopsis thaliana[J].Mol Gener Genet,1984,194:15-23.
    [112]Messegure R,Ganal M W,Steffens J C,et al.Charaeterization of the level,target sites and intheritance of cytosine methylation in tomato nuclear DNA[J].Plantt Mol Biol,1991,16:753-770.
    [113]Finnegan E J,Genger R K,Pcacock W J,et al.DNA methythylation in plants[J].Ann Rev Plant Physlol.Plant Mol Biol,1998b,49:223-247.
    [114]Xiong L Z,Xu C G,Saghai Maroof M A.Patterns of cytosine methylation in an elite rice hybrid and its parental lines detected by a methylation-sensitive amplification polymorphism technique[J].Molecular General Genetics,1999,261:439-446.
    [115]陆光远,伍晓明,陈碧云,高桂珍,许鲲,李响枝.油菜种子萌发过程中DNA甲基化的MSAP分析[J].科学通报,2005,50:24.
    [116]Lund G,Messing J,Viotti A.Endosperm specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea may[J].Mol Gen Genet,1995,246(6):716-722.
    [117]Dhar M S,Pethe V V,Gupta V S,et al.Predominance and tissue specificity of adenine methylation in rice[J].Theor Appl Genet,1990,80(3):402-408.
    [118]Kuo K C,McCune R A,Gehrke C W,et al.Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA[J].Nucleic Acids Res,1980,8:4763-4776.
    [119]Fraga M F,Uriol E,Borja D L,et al.High-performance capillary electrophoretic method for the quantification of 5-methyl 2-deoxycytidine in genomic DNA:application to plant,animal and human cancer tissues[J].Electrophoresis,2002,23:1677-1681.
    [120]Wu J,Issa J,Hermen J,et al.Expression of an exogenous eukaryotic DNA methyl transferase gene induces transformation of NIN3T3 ceils[J].Proc Natl Acad Sci USA,1993,90(19):8891-8895.
    [121]Oakeley E J,Podesta A,Jost J P.Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation[J].Proc Natl Acad Sci USA,1997,94:11721-11725.
    [122]Oakeley E J,Schmitt F,Jost J P.Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction [J].Biotechniques,1999,27:744.
    [123]黄琼晓,金帆,黄荷凤.DNA甲基化的研究方法学[J].国外医学遗传学分册,2004,27(6):354-358.
    [124]Herman J G,Graff J R,Myohanen S,et al.Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands[J].Proc Natl Acad Sci USA,1996,93(18):9821-9826.
    [125]Xiong Z,Laird P W.COBRA:a sensitive and quantitative DNA methylation assay[J].Nucleic Acids Res,1997,25:2532-2534.
    [126]Costello J F,Fruhwald M C,Smiraglia D J,et al.Aberrant CpG-island methylation has non-random and tumour-type-specific patterns[J].Nat Genet,2000,24(2):132-138.
    [127]Hatada I,Hayashizaki Y,Hirotsune S,et al.A genomic scanning method for higher organisms using restriction sites as landmarks[J].Proe Natl Acad Sci USA,1991,88:9523-9527.
    [128]Shiraishi M,Sekiguchi A,Oates A J,et al.Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation[J].Ana Biochem,2004,329(1):1-10.
    [129]Yegnasubramanian S,Lin X,Haffner M C,et al.Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes(COMPARE-MS) for the rapid,sensitive and quantitative detection of DNA methylation[J].Nucleic Acids Res,2006,34(3):19.
    [130]Messer W,Nover-Weidner M.Timing and targeting:the biological function of dam methylation in E.coli[J].Cell,1988,54:735-737.
    [131]Noyer-Weidner M,Trautner T A.Methylation of DNA in prokaryotes.In:JP Jost and H P Saluz(Eds.) DNA Methylation:molecular biology and biological significance[J].Birkhouser Verlag,Basel,1993,PP:39-108.
    [132]Matzke M A,Mette M F,Mazke A J M.Transgene silencing by the host Genome defense:Implification for the evolution of epigenetic control mechanisms in plants and vertebrates[J].Plant Mol Biol,2000,43:401-415.
    [133]Finnegan E J,Peacock W J,Dennis E.DNA methylation,a key regulation of Plant development and other Processes[J].Cur Opion in Genet and Develop,2000b,1:217-223.
    [134]Ronemus M J,Galbiati M,Ticknor C,et al.Demethylation-indueed developmental Plieotropy in Arabidopsis[J].Science,1996,273(2):654-657.
    [135]Jacobsen S E,Sakai H,FIImegan E J,et al.Eetopic hyermethylation of flower-specific genes in Arabidopsis[J].Current Biology,2000,10:179-186.
    [136]Jacobsen S E,Meyerowltz E M.Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis[J].Science,1997,277:1100-1103.
    [137]Xiao W Y,Custard K D,Brown R C,et al.DNA methylation is critical for Arabi-dopsis embryogenesis and seed viability[J].Plant Cell,2006,18:805-814.
    [138]Adams S,Vinkenoog R,Spielman M,et al.Parent-of-origin effects on seed developpment in A rabidopsis thaliana require DNA methylation[J].Development,2000,27:2493-2502.
    [139]Finnegan E J,Genger R K,Kovac K,et al.DNA methylation and the promotion of flowering by vernalization[J].Proc Natl Acad Sci USA,1998a,95:5824-5829.
    [140]Burn J E,Bagnall D J,Metzger J D,et al.DNA methylation,vemalization,and the initiation of flowering[J].Proc Natl Acad Sci USA,1993,90:287-291.
    [141]Sherman J D,Talbert L E.Vernalization-induced changes of the DNA methylation pattern in winter wheat[J].Genome,2002,45:253-260.
    [142]Fu X,Kohli A,Twyman R M,et al.Alternative silencing effect involve distinct types of non-Spreading cytosine methylation at athree-gene,single-copy transgenic locus in rice[J].Mol Gener Genet,2000,263:106-118.
    [143]Shah G H,Jose L M J,Antonio G J.Mitotic stability of infection-induced resistance to Plum Pox Potyvirus with transgene silencing and DNA methylation[J].Mol Plant Microb Interaclions,1999,12(2):103-111.
    [144]Louise J A,Thomas C L,Andrew M.De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus[J].Euro Mol Biol Organi Jour,1998,17(21):6385-6393.
    [145]Bochardt A,Hodal L,Palmgren G,et al.DNA methylation is involved in maintenance of an Unusual expression pattern of an iutroduced gene[J].Plant Physiol,1992,99:409-414.
    [146]Jullien P E,Kinoshita T,Ohad N,et al.Maintenance of DNA Methylation during the Arabidopsis Life Cycle Is Essential for Parental Imprinting[J].Plant Cell,2006,18:1360-1372.
    [147]Alleman M,Doctor J.(?)enomic imprinting in plants:observations and evolutionary implications[J].Plant Moleculur Biology,2000,43:147-161.
    [148]Kooter J M,Matzke M A,Meyer P.Listening to the silent genes:transgene silencing,gene regulation and pathogen control[J].Trends Plant Sci,1999,4:1360-1385.
    [149]Dalmay T,Hamilton A,Baulcombe D C.Potato virus X amplicons in Arabidopsis mediate Genetic and epigenetie gene silencing[J].Plant Cell,2000,12:369-379.
    [150]Jacobsen S E,Sakai H,Finnegan E J,Cao X,Meyerowitz E M.Ectopic hypermethylation of flower-specific genes in Arabidopsis[J].Current Biology,2000,10:179-186.
    [151]Kawasaki H,Taira K.Induction of DNA methylation and gene silencing by short interfering RNAs in human cells[J].Nature,2004,431:211-217.
    [152]Hepburn P A,Margison G P,Tisdale M J.Enzymatic methylation of cytosine in DNA is prevented by adjacent methylguanine residues[J].Journal of Biological Chemistry,1991,266:7985-987.
    [153]Tsaftaris A S,Kafka M.Mechanisms of heterosisin crop plants[J].Journal of Crop Production,1998,1:95-111.
    [154]Tsaftaris A S,Kafka M,Polido A.Epigenetic changes in maize DNA and heterosis[J].Science,1996,273:654-657.
    [155]Xiong L Z,Yang G P,Xu C G.Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross[J].Molecular Breeding,1998,4:129-136.
    [156]Zhao Y,Yu S,Xing C,Fan S,Song M.DNA methylation in cotton hybrids and their parents[J].Mol Biol(Mosk),2008,42(2):195-205.
    [157]H uang Y,Zhang L D,Zhang J W,et al.Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs[J].Plant Mol Biol,DOI 10.1007/s11103-006-9040-z.
    [158]Bjornsson HT,Sigurdsson M I.Intra-individual change over time in DNA methylation with familial clustering[J].JAMA,2008,299:2877-2883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700