notch-1基因在胶质瘤中的作用及对Akt-mTOR通路的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Notch信号转导系统在肿瘤发生发展中起重要作用,本实验室前期的研究发现notch-1基因在胶质瘤中表达明显增高,与胶质瘤的发生密切相关,但是Notch-1影响胶质瘤哪些生物学行为及其调控机制仍不清楚。本研究构建了表达Notch-1胞内段NICD(Notch-1的活化形式)的慢病毒,并利用本实验室前期构建好的Notch-1 RNA干扰慢病毒,感染人神经胶质瘤U251细胞,研究Notch-1表达下调和活化对U251胶质瘤细胞增殖、细胞周期、细胞凋亡、侵袭和血管发生的影响及可能的机制。
     本研究共分为四部分:
     第一部分:notch-1基因胞内段NICD的克隆和慢病毒包装
     采用长片段克隆的方法,从胶质瘤U251细胞中提取RNA,经逆转录获得人Notch-1胞内段NICD的cDNA,PCR扩增后将其连接入TA克隆载体pCR-XL-TOPO质粒,测序正确后,经酶切、连接,构建pNL-NICD-IRES2-EGFP慢病毒表达质粒,再和辅助包装质粒Helper和VSVG共转染293T细胞,超滤离心浓缩后,获得滴度为2.0E+8 TU/ml的慢病毒。该病毒感染U251胶质瘤细胞后,荧光显微镜观察感染效率,RT-PCR和Western-blot检测NICD的表达,结果表明NICD的mRNA和蛋白表达量较对照组分别增加约1.6和1.4倍(P < 0.05),说明notch-1基因胞内段NICD克隆成功,并能在细胞内稳定高效表达。
     第二部分:Notch-1对胶质瘤细胞增殖、细胞周期和凋亡的影响及机制研究
     用notch-1基因RNA干扰或高表达NICD的慢病毒分别感染U251胶质瘤细胞后,用MTT检测细胞增殖、流式细胞术检测细胞周期、Annexin-V法和AO-EB染色检测细胞凋亡、Western-blot法检测周期相关蛋白cyclin D1、CDK-4、P27和凋亡相关蛋白Bcl-2、MCL-1、PARP-1、caspase-3、caspase-9的变化。结果表明:阻断Notch-1能抑制U251细胞的生长,细胞阻滞于G1期(P < 0.05),S期细胞减少(P < 0.05),细胞凋亡增加;过表达NICD的细胞则相反,细胞未见明显凋亡。阻断Notch-1后,U251细胞的cyclin D1、CDK-4、Bcl-2、MCL-1、PARP-1蛋白的表达受到抑制(P < 0.05),P27、caspase-3、caspase-9蛋白的表达上调(P < 0.05),而在过表达NICD的U251细胞其结果则相反。
     第三部分:Notch-1对胶质瘤侵袭和血管发生的影响及机制研究
     利用基质胶包被的Transwell小室检测U251细胞侵袭能力,内皮细胞小管形成实验观察瘤细胞培养上清对血管形成的影响,同时用Western-blot法检测瘤细胞侵袭相关蛋白MMP-2、MMP-3、MMP-7的表达,RT-PCR和ELASA法检测VEGF的表达,结果显示:阻断Notch-1可抑制U251细胞的侵袭能力和MMP-2、MMP-3的表达,过表达NICD促进肿瘤侵袭能力和侵袭相关蛋白MMP-2、MMP-7的表达;虽然血管发生和VEGF的表达未受影响,但是阻断Notch-1能抑制U87细胞VEGFR-2的表达。
     第四部分:Notch-1对Akt-mTOR通路调控的研究
     采用Western-blot法检测Notch-1干扰和NICD过表达的U251细胞中Akt-mTOR通路的主要蛋白T-Akt、p-Akt、p-mTOR、p-70S6K、p-4EBP1的表达情况,结果显示:阻断Notch-1能抑制p-Akt、p-mTOR、p-70S6K的表达,过表达NICD的结果则相反。
     结论
     阻断Notch-1能抑制胶质瘤生长,促进细胞凋亡和周期阻滞,降低胶质瘤的侵袭能力;促增殖的cyclin D1、CDK-4蛋白和抗凋亡的Bcl-2、MCL-1、PARP-1蛋白表达受到抑制,而抑制增殖的P27蛋白和促凋亡的caspase-3、caspase-9蛋白表达上调;并能抑制Akt-mTOR通路的p-Akt、p-mTOR、p-70S6K蛋白的表达。因此,Notch-1可能通过调控Akt-mTOR信号及其下游靶点来影响胶质瘤的存活、增殖和侵袭能力。
Notch signaling system plays an important role in the tumorigenesis and developments. Previous studies in our laboratory have found that notch-1 gene expression was significantly higher and involved in the glioma-genesis. However, which kind of the biological behavior of glioma is regulated by Notch-1 and the mechanism is still not clear. In this study, we constructed lentivirus to express Notch-1 intracellular domain NICD (active form of Notch-1), and in the previous works we have build notch-1 gene RNA interference lentivirus. We used the two lentivirus to infection human glioma U251 cells, observed the effects of Notch-1 on glioma cell proliferation, apoptosis, invasion, angiogenesis and researched the mechanism.
     The research including four parts:
     Part I: cloning of notch-1 gene intracellular domain NICD and lentiviral packaging
     Using a long fragment cloning method, we extracted the mRNA from human U251 glioma cells and then reverse transcribed it into cDNA which contain notch-1 gene intracellular domain NICD, amplificated it by polymerase chain reaction (PCR) and linked with TA cloning vector pCR-XL-TOPO. After sequenced, the correct sequence of NICD was digested and recombined with pNL-IRES2-EGFP lentiviral plasmid. The lentivirus were generated from 293T cells which co-transfection of pNL-NICD-IRES2-EGFP plasmid, packaging plasmids Helper and VSVG. Through ultrafiltration and centrifuge method, we got 2.00E+8 TU/ml of high-titer lentivirus. U251 glioma cells were infected with the lentivirus and transfection effeciency were observed by fluorescence microscope. The expression of NICD mRNA and protein were analyzed by RT-PCR and Western-blot. The results showed an increase about 1.6 times of mRNA and 1.4 times of protein in infected NICD-lentiviral U251 glioma cells compared with control. All these proved that we have succeed in cloning the segment of NICD and expressing it effectently in U251 glioma cells.
     Part II: Effects of Notch-1 on glioma proliferation, cell cycle, apoptosis and their mechanisms
     U251 glioma cells were infected with Notch-1 RNA interference or over-expression NICD lentivirus. The cell proliferation was assayed with MTT, cell cycle was determined by flow cytometry, apoptosis was checked by Annexin-V labeling and AO/EB staining, The expression of cell cycle-related proteins cyclin D1, CDK-4, P27 and apoptosis-related proteins Bcl-2, MCL-1, PARP-1, caspase-3, caspase-9 were examined by Western-blot. It was found that down-regulation of Notch-1 expression inhibited U251 glioma cell growth, cells were blocked in G1-phase (P< 0.05) and S-phase cells were decreased (P<0.05), apoptotic cells were increased, over-expression of Notch-1 have the contrary results. Down-regulation of Notch-1 expression inhibited cyclin D1, CDK-4, Bcl-2, MCL-1, PARP-1 and increased P27, caspase-3, caspase-9 protein expression in U251 glioma cells, whereas we got the contrary results in U251 glioma cells over-expressed NICD.
     Part III: Effects of Notch-1 on glioma cell invasion, angiogenesis and their mechanisms
     The effects of Notch-1 gene on U251 glioma cell invasion were examined with matrigel coated transwell chambers, angiogenesis of tumor cell supernatant were measured through endothelial cell tube formation examine. The invasion-related protein MMP-2, MMP-3 and MMP-7 were analyzed by Western-blot, VEGF expression was detected with RT-PCR and ELASA. Results showed that down-regulation of Notch-1 expression inhibited U251 glioma cells invasion and MMP-2, MMP-3 expression, over-expression of NICD promotes U251 glioma cells invasion and invasion-related protein MMP-2 and MMP-7 expression, but there is no change in angiogenesis and VEGF expression. However, Results indicated VEGFR-2 expression was decreased in Notch-1 down-regulated U87 glioma cells.
     Part IV: Effects of Notch-1 on Akt-mTOR signaling pathway
     We observed the effects of notch-1 gene down-regulation and over-expression on the T-Akt, p-Akt, p-mTOR, p-70S6K and p-4EBP1 in U251 glioma cells using Western-blot analysis, which are the major components of Akt-mTOR signaling. Results showed that down-regulation of Notch-1 expression inhibited p-Akt, p-mTOR and p-70S6K expression. Whereas we got the contrary results in U251 glioma cells over-expressed NICD.
     Conclusion
     Down-regulation of Notch-1 expression inhibites U251 glioma cell proliferation, results in cell cycle arrest, promotes cell apoptosis and reduces tumor cell invasion. The expression of proliferation accelerating proteins cyclin D1, CDK-4 and anti-apoptosis protein Bcl-2, MCL-1, PARP-1 were inhibited, while the expression of proliferation inhibiting protein P27 and pro-apoptosis proteins caspase-3, caspase-9 were up-regulated. The Akt-mTOR pathway composition including p-Akt, p-mTOR, p-70S6K were inhibited. So Notch-1 probably promotes glioma cell survival, proliferation and invasion through regulating Akt-mTOR signaling and its downstream targets.
引文
[1] Li Y, Baker NE. The roles of cis-inactivation by Notch ligands and of neuralized during eye and bristle patterning in Drosophila. BMC Dev Biol. 2004. 4: 5.
    [2] Adam J, Myat A, Le RI, et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development. 1998. 125(23): 4645-54.
    [3] Milner LA, Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood. 1999. 93(8): 2431-48.
    [4] Katoh M, Katoh M. Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Int J Oncol. 2007. 31(2): 461-6.
    [5] Kimura K, Satoh K, Kanno A, et al. Activation of Notch signaling in tumorigenesis of experimental pancreatic cancer induced by dimethylbenzanthracene in mice. Cancer Sci. 2007. 98(2): 155-62.
    [6]王春华,郑志竑,杨卫忠,陈春美. Notch1和Hes1、Hes5在星形细胞瘤中的表达及其相关性研究.福建医科大学学报. 2009. (03): 207-210.
    [7] Kanamori M, Kawaguchi T, Nigro JM, et al. Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg. 2007. 106(3): 417-27.
    [8] Purow BW, Haque RM, Noel MW, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005. 65(6): 2353-63.
    [9] Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia. 2006. 8(12): 1072-82.
    [10] Santos L, Leon-Galvan MF, Marino-Marmolejo EN. [Notch signaling pathway and new strategies in cancer treatment]. Salud Publica Mex. 2006. 48(2): 155-65.
    [11] Jang MS, Zlobin A, Kast WM, Miele L. Notch signaling as a target in multimodality cancer therapy. Curr Opin Mol Ther. 2000. 2(1): 55-65.
    [12] Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 2006. 66(5): 2778-84.
    [13] Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood. 2006. 107(6): 2223-33.
    [14] Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003. 194(3): 237-55.
    [15] Lasky JL, Wu H. Notch signaling, brain development, and human disease. Pediatr Res. 2005. 57(5 Pt 2): 104R-109R.
    [16] Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999. 284(5415): 770-6.
    [17] Rebay I, Fehon RG, Artavanis-Tsakonas S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell. 1993. 74(2): 319-29.
    [18] Ladi E, Nichols JT, Ge W, et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol. 2005. 170(6): 983-92.
    [19] Brou C, Logeat F, Gupta N, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000. 5(2): 207-16.
    [20] Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998. 393(6683): 382-6.
    [21] Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003. 194(3): 237-55.
    [22] Wu L, Griffin JD. Modulation of Notch signaling by mastermind-like (MAML) transcriptional co-activators and their involvement in tumorigenesis. Semin Cancer Biol. 2004. 14(5): 348-56.
    [23] Hsieh JJ, Zhou S, Chen L, Young DB, Hayward SD. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A. 1999. 96(1): 23-8.
    [24]张燕,张明芳,林玲,郑志竑.人notch1-shRNA慢病毒表达载体的构建与鉴定.福建医科大学学报. 2009. (03): 211-216.
    [25] Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 2004. 64(21): 7787-93.
    [26] Purow BW, Haque RM, Noel MW, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005. 65(6): 2353-63.
    [27]杨永凯,杨卫忠,石松生,王春华,陈春美,李军涛. DAPT抑制人胶质瘤细胞增殖的体内外实验研究.福建医药杂志. 2009. (01): 83-85.
    [28] Eshkoor S, Ismail P, Rahman S, Mirinargesi M, Oshkour S. Increased protein expression of p16 and cyclin D1 in squamous cell carcinoma tissues. Biosci Trends. 2009. 3(3): 105-9.
    [29] Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007. 9(2): 218-24.
    [30] Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell. 2009. 5(3): 320-31.
    [31] Lee J, Kim SS. The function of p27 KIP1 during tumor development. Exp Mol Med. 2009. 41(11): 765-71.
    [32] Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006. 66(15): 7445-52.
    [33] Liu WH, Hsiao HW, Tsou WI, Lai MZ. Notch inhibits apoptosis by direct interference with XIAP ubiquitination and degradation. EMBO J. 2007. 26(6): 1660-9.
    [34] Yang X, Klein R, Tian X, Cheng HT, Kopan R, Shen J. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 2004. 269(1): 81-94.
    [35] Purow BW, Haque RM, Noel MW, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 2005. 65(6): 2353-63.
    [36] Okuyama R, Nguyen BC, Talora C, et al. High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell. 2004. 6(4): 551-62.
    [37]黄胜辉,黄志勇. PARP-1:一个肿瘤治疗的新靶点.世界华人消化杂志. 2006. (09): 841-847.
    [38] Murata-Ohsawa M, Tohda S, Sakano S, Nara N. The Notch ligand, Delta-1, partially inhibits GM-CSF-induced differentiation and apoptosis along with reducing the cleavage of PARP in U937 cells. Int J Mol Med. 2004. 13(3): 419-23.
    [39] Curran S, Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer. 2000. 36(13 Spec No): 1621-30.
    [40] John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res. 2001. 7(1): 14-23.
    [41] Stetler-Stevenson WG. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am. 2001. 10(2): 383-92, x.
    [42] Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrixmetalloproteinase-9 in pancreatic cancer cells. Cancer Res. 2006. 66(5): 2778-84.
    [43] Bin HB, Adhami VM, Asim M, et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res. 2009. 15(2): 452-9.
    [44] Delbosc S, Glorian M, Le PAS, Bereziat G, Andreani M, Limon I. The benefit of docosahexanoic acid on the migration of vascular smooth muscle cells is partially dependent on Notch regulation of MMP-2/-9. Am J Pathol. 2008. 172(5): 1430-40.
    [45]潘旭波,纪祥瑞,姜蕾,王威,徐振光.β-catenin、MMP-7蛋白在不同级别胶质瘤组织中的表达及临床意义.实用癌症杂志. 2007. 22(2): 164-166.
    [46] Sawey ET, Johnson JA, Crawford HC. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci U S A. 2007. 104(49): 19327-32.
    [47] Bin HB, Adhami VM, Asim M, et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res. 2009. 15(2): 452-9.
    [48] Qi L, Robinson WA, Brady BM, Glode LM. Migration and invasion of human prostate cancer cells is related to expression of VEGF and its receptors. Anticancer Res. 2003. 23(5A): 3917-22.
    [49] Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 2006. 66(5): 2778-84.
    [50] Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004. 25(4): 581-611.
    [51] Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005. 69 Suppl 3: 4-10.
    [52] Xie K, Wei D, Shi Q, Huang S. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev. 2004. 15(5): 297-324.
    [53] Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005. 65(3): 671-80.
    [54] Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev. 2001. 108(1-2): 161-4.
    [55] Weber DS. A novel mechanism of vascular smooth muscle cell regulation by Notch: platelet-derived growth factor receptor-beta expression. Circ Res. 2008. 102(12): 1448-50.
    [56] Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development. 1995. 121(5): 1533-45.
    [57] Gale NW, Dominguez MG, Noguera I, et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A. 2004. 101(45): 15949-54.
    [58] Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer. 2007. 7(5): 327-31.
    [59] Sainson RC, Harris AL. Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis. Trends Mol Med. 2007. 13(9): 389-95.
    [60] Li JL, Harris AL. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci. 2009. 14: 3094-110.
    [61] Williams CK, Li JL, Murga M, Harris AL, Tosato G. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood. 2006. 107(3): 931-9.
    [62] Harrington LS, Sainson RC, Williams CK, et al. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res. 2008. 75(2): 144-54.
    [63] Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res. 2002. 64(3): 372-83.
    [64] Purow BW, Sundaresan TK, Burdick MJ, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008. 29(5): 918-25.
    [65] Yuan ZQ, Sun M, Feldman RI, et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000. 19(19): 2324-30.
    [66] Yuan ZQ, Sun M, Feldman RI, et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene. 2000. 19(19): 2324-30.
    [67] Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 2001. 61(18): 6674-8.
    [68] Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol Res. 2004. 50(6): 545-9.
    [69] Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005. 37(1): 19-24.
    [70] Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol. 2005. 17(2): 158-66.
    [71] Viglietto G, Motti ML, Bruni P, et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med. 2002. 8(10): 1136-44.
    [72] Ouyang W, Luo W, Zhang D, et al. PI-3K/Akt pathway-dependent cyclin D1 expression is responsible for arsenite-induced human keratinocyte transformation. Environ Health Perspect. 2008. 116(1): 1-6.
    [73] Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem. 2000. 275(15): 10761-6.
    [74] Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998. 282(5392): 1318-21.
    [75] Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene. 2005. 24(44): 6719-28.
    [76] Fan QW, Knight ZA, Goldenberg DD, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell. 2006. 9(5): 341-9.
    [77] Stommel JM, Kimmelman AC, Ying H, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007. 318(5848): 287-90.
    [78] Yang J, Liao D, Wang Z, Liu F, Wu G. Mammalian Target of Rapamycin Signaling Pathway Contributes to Glioma Progression and Patients' Prognosis. J Surg Res. 2009 .
    [79] Georgakis GV, Li Y, Rassidakis GZ, Medeiros LJ, Mills GB, Younes A. Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br J Haematol. 2006. 132(4): 503-11.
    [80] He YY, Council SE, Feng L, Chignell CF. UVA-induced cell cycle progression is mediated by a disintegrin and metalloprotease/epidermal growth factor receptor/AKT/Cyclin D1 pathways in keratinocytes. Cancer Res. 2008. 68(10): 3752-8.
    [81] Mukherji A, Janbandhu VC, Kumar V. GSK-3beta-dependent destabilization of cyclin D1 mediates replicational stress-induced arrest of cell cycle. FEBS Lett. 2008. 582(7): 1111-6.
    [82]郑杰. mTOR信号途径与肿瘤.生命科学. 2006. (03): 261-265.
    [83] Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun. 2003. 310(4): 1124-32.
    [84] Purow BW, Sundaresan TK, Burdick MJ, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008. 29(5): 918-25.
    [85] Wang Z, Li Y, Banerjee S, et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem. 2010 .
    [86] Ikezoe T, Nishioka C, Bandobashi K, et al. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res. 2007. 31(5): 673-82.
    [87] O'Gorman DM, McKenna SL, McGahon AJ, Cotter TG. Inhibition of PI3-kinase sensitises HL60 human leukaemia cells to both chemotherapeutic drug- and Fas-induced apoptosis by a JNK independent pathway. Leuk Res. 2001. 25(9): 801-11.
    [88] Calzavara E, Chiaramonte R, Cesana D, Basile A, Sherbet GV, Comi P. Reciprocal regulation of Notch and PI3K/Akt signalling in T-ALL cells in vitro. J Cell Biochem. 2008. 103(5): 1405-12.
    [89] Gutierrez A, Look AT. NOTCH and PI3K-AKT pathways intertwined. Cancer Cell. 2007. 12(5): 411-3.
    [90] Nair P, Somasundaram K, Krishna S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J Virol. 2003. 77(12): 7106-12.
    [91] Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI. Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood. 2008. 111(4): 2220-9.
    [1] Lefranc F, Sadeghi N, Camby I, Metens T, Dewitte O, Kiss R. Present and potential future issues in glioblastoma treatment. Expert Rev Anticancer Ther. 2006. 6(5): 719-32.
    [2] Wang Z, Li Y, Banerjee S, Sarkar FH. Exploitation of the Notch signaling pathway as a novel target for cancer therapy. Anticancer Res. 2008. 28(6A): 3621-30.
    [3] Kojika S, Griffin JD. Notch receptors and hematopoiesis. Exp Hematol. 2001. 29(9): 1041-52.
    [4] Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004. 131(5): 965-73.
    [5] Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000. 228(2): 151-65.
    [6] Miele L, Miao H, Nickoloff BJ. NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets. 2006. 6(4): 313-23.
    [7] Wilkins SE, Hyvarinen J, Chicher J, et al. Differences in hydroxylation and binding of Notch and HIF-1alpha demonstrate substrate selectivity for factor inhibiting HIF-1 (FIH-1). Int J Biochem Cell Biol. 2009. 41(7): 1563-71.
    [8]易海波,石松生,杨卫忠,陈春美. Notch-1基因在人脑胶质瘤中的表达及其意义.肿瘤防治研究. 2006. (10): 701-703.
    [9] Stockhausen MT, Sjolund J, Manetopoulos C, Axelson H. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer. 2005. 92(4): 751-9.
    [10] Hatakeyama J, Sakamoto S, Kageyama R. Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Dev Neurosci. 2006. 28(1-2): 92-101.
    [11] Grynfeld A, Pahlman S, Axelson H. Induced neuroblastoma cell differentiation, associated with transient HES-1 activity and reduced HASH-1 expression, is inhibited by Notch1. Int J Cancer. 2000. 88(3): 401-10.
    [12] Cuevas IC, Slocum AL, Jun P, et al. Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res. 2005. 65(12): 5070-5.
    [13]姜昕,周建华,邓征浩等. Notch1,Jagged1和VEGF蛋白在非小细胞肺癌的表达及其意义.中南大学学报(医学版). 2007. 32(6): 1031-1036.
    [14] Graziani I, Eliasz S, De Marco MA, et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res. 2008. 68(23): 9678-85.
    [15] Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci U S A. 1995. 92(14): 6414-8.
    [16] Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002. 1(5): 466-76.
    [17]于春泳,魏学忠,薛洪利,尹昌林,吕胜青,杨辉.人脑胶质瘤干细胞增殖和分化过程中NOTCH-1信号通路的调控.中国组织工程研究与临床康复. 2009. (10): 1853-1858.
    [18] Fan X, Khaki L, Zhu TS, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010. 28(1): 5-16.
    [19] Dufraine J, Funahashi Y, Kitajewski J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene. 2008. 27(38): 5132-7.
    [20] Sainson RC, Harris AL. Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis. Trends Mol Med. 2007. 13(9): 389-95.
    [21] Noseda M, Chang L, McLean G, et al. Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol. 2004. 24(20): 8813-22.
    [22] Liu ZJ, Shirakawa T, Li Y, et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003. 23(1): 14-25.
    [23] Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 2005. 65(19): 8690-7.
    [24] Hainaud P, Contreres JO, Villemain A, et al. The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res. 2006. 66(17): 8501-10.
    [25] Limbourg A, Ploom M, Elligsen D, et al. Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res. 2007. 100(3): 363-71.
    [26] Hainaud P, Contreres JO, Villemain A, et al. The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res. 2006. 66(17): 8501-10.
    [27] Liu ZJ, Shirakawa T, Li Y, et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications formodulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003. 23(1): 14-25.
    [28] Takeshita K, Satoh M, Ii M, et al. Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res. 2007. 100(1): 70-8.
    [29] Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A. 2002. 99(12): 8219-24.
    [30] Chin MT, Maemura K, Fukumoto S, et al. Cardiovascular basic helix loop helix factor 1, a novel transcriptional repressor expressed preferentially in the developing and adult cardiovascular system. J Biol Chem. 2000. 275(9): 6381-7.
    [31] Harrington LS, Sainson RC, Williams CK, et al. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res. 2008. 75(2): 144-54.
    [32] Williams CK, Li JL, Murga M, Harris AL, Tosato G. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood. 2006. 107(3): 931-9.
    [33] Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC. The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J Biol Chem. 2001. 276(9): 6169-76.
    [34] Holderfield MT, Henderson AAM, Kokubo H, Chin MT, Johnson RL, Hughes CC. HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem Biophys Res Commun. 2006. 346(3): 637-48.
    [35] Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res. 2002. 64(3): 372-83.
    [36] Nair P, Somasundaram K, Krishna S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J Virol. 2003. 77(12): 7106-12.
    [37] Sade H, Krishna S, Sarin A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J Biol Chem. 2004. 279(4): 2937-44.
    [38] Qiao L, Wong BC. Role of Notch signaling in colorectal cancer. Carcinogenesis. 2009. 30(12): 1979-86.
    [39] Meng RD, Shelton CC, Li YM, et al. gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009. 69(2): 573-82.
    [40] Shin DM, Shaffer DJ, Wang H, Roopenian DC, 3rd MHC. NOTCH is part of the transcriptional network regulating cell growth and survival in mouse plasmacytomas. Cancer Res. 2008. 68(22): 9202-11.
    [41] Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006. 20(15): 2096-109.
    [42] Palomero T, Lim WK, Odom DT, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006. 103(48): 18261-6.
    [43] Alves-Guerra MC, Ronchini C, Capobianco AJ. Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res. 2007. 67(18): 8690-8.
    [44]武晓楠.表皮生长因子受体基因在多种肿瘤中的突变情况及临床意义.中国全科医学. 2008. (13): 1197-1201.
    [45] Xia W, Wei Y, Du Y, et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog. 2009. 48(7): 610-7.
    [46] Bolenz C, Shariat SF, Karakiewicz PI, et al. Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU Int. 2010 .
    [47] Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol. 2006. 41(6): 339-85.
    [48] Krejci A, Bernard F, Housden BE, Collins S, Bray SJ. Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci Signal. 2009. 2(55): ra1.
    [49] Dai J, Ma D, Zang S, et al. Cross-talk between Notch and EGFR signaling in human breast cancer cells. Cancer Invest. 2009. 27(5): 533-40.
    [50] Purow BW, Sundaresan TK, Burdick MJ, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis. 2008. 29(5): 918-25.
    [51] Protzer CE, Wech I, Nagel AC. Hairless induces cell death by downregulation of EGFR signalling activity. J Cell Sci. 2008. 121(Pt 19): 3167-76.
    [52] Liu ZJ, Xiao M, Balint K, et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res. 2006. 66(8): 4182-90.
    [53] Liu ZJ, Xiao M, Balint K, et al. Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J. 2006. 20(7): 1009-11.
    [54] Kang DE, Yoon IS, Repetto E, et al. Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signaling receptors. Selectivity of PS2 in platelet-derived growth factor signaling. J Biol Chem. 2005. 280(36): 31537-47.
    [55] Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB. Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest. 2008. 118(11): 3660-70.
    [56] Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 2006. 66(5): 2778-84.
    [57] Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003. 22(42): 6598-608.
    [58] Sade H, Krishna S, Sarin A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J Biol Chem. 2004. 279(4): 2937-44.
    [59] Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004. 131(5): 965-73.
    [60] Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 2006. 66(5): 2778-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700