STAT5b靶控报告基因检测IR激酶活性细胞模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 根据胰岛素受体介导的信号转导通路,构建STAT5b应答元件靶控报告基因的细胞模型,通过检测报告基因表达水平间接监测胰岛素受体(IR)激酶活性,从而为高通量地筛选出以IR激酶为靶标的药物提供新的细胞模型。
     方法 (1)转染方案的选择:通过对pEGFP-3与脂质体不同的转染比例,转染HepG2细胞表达GFP效率比较,确定最佳的转染方案。(2)转染细胞模型的建立和验证:STAT5b靶控报告基因(联合或不联合IR基因及联合或不联合STAT5b基因)对HepG2细胞或CHO细胞的转染,检测胰岛素对转染细胞STAT5b靶控报告基因表达的影响,并比较分析联合或不联合IR基因及联合或不联合STAT5b基因对细胞模型灵敏性的影响,选择最佳的细胞转染模型。(3)考察胰岛素对细胞模型的量效和时效的关系。(4)通过IR激酶抑制剂考察细胞模型的特异性。(5)通过Z′因子考察细胞模型的稳定性。(6)利用MTT法考察胰岛素对细胞增殖功能的影响。
     结果 (1)用pEGFP-C3转染HepG2细胞来确定质粒DNA与lipofectamine~(TM)2000最佳转染方案为质粒DNA(μg):lipofectamine~(TM)2000(μ1)=1:2。(2)HepG2细胞株与质粒组合的考察,结果表明转染外源性的人胰岛素受体pRC/CMV·hIR质粒可以显著提高细胞模型的灵敏度。(3)CHO细胞株与质粒组合的考察,结果表明STAT5b蛋白在诱导Luc表达中发挥着重要作用的,本实验通过共转染pBS-SK-STAT5b质粒可以达到此目的。分析比较两种细胞株的实验结果,本实验选用pSTAT5b_3-TK-LUC、pSV-μ-Gal、DRC/CMV·hIR与pBS-SK-STAT5b四种质粒共转染CHO细胞建立细胞模型。在10~(-7)mol/L胰岛
OBJECTIVE This research was designed to develop a cell system to detect IR kinase, according to the signal transduction pathway on insulin receptor, based on activity of insulin receptor kinase assayed by STAT5b targeting reporter gene. Activity of insulin receptor kinase was examined indirectly by assaying the expression level of reporter gene. The cell model utilized insulin receptor kinase as target to obtain high throughput screening of the effective drugs. METHODS (1) The optimal transfection formula was determined by comparing the expression level of GFP in HepG2 cells transfected by the different ratio of pEGFP-C3 to liposome. (2) The optimal cell model of transfection formula was screened by comparing the inductive expression level of reporter gene when HepG2 cells or CHO cells co-transfected by STAT5b targeting reporter gene (combined with IR, STAT5b gene or not) was treated by insulin and analyzed the influence of the transfection formula on the sensitivity of cell model. (3) The effect of insulin on cell model in dose and time dependent manner was examined. (4) The specificity of cell model was tested by the Tyrphostin of insulin receptor kinase. (5) The stability of cell model was examined by Z' factor. (6) The effect of insulin on the proliferation function of cells was determined by MTT method. RESULTS (1) The optimal transfection formula was the ratio of one to two of plasmid DNA (μg) to lipofectamine~(TM) 2000 (μl) by transfecting HepG2 cells. (2) The result of examining combination of HepG2 cells with plasmids indicated that
    the plasmid expressing functional human insulin receptor was indispensable. (3) The result of CHO cell model suggested that STAT5b protein was indispensable for cell model. The cell model in the experiment, cotransfected pSTAT5b3-TK-LUC, pSV-6-Gal, pRC/CMVhIR and pBS-SK-STAT5b into CHO cells, was established by comparing the result of the HepG2 cell model with the CHO cell model. The highest expression level of reporter gene in CHO cells, induced by insulin at 10'7mol/L for 12 hours, cotransfected the above-mentioned four plasmids was up to 6.10 fold. The Luc expression level inducted by insulin was dose and time dependent manner. The cell model possessing the wide range of treatment concentration and the superior sensitivity was well suited for the requirement of high throughput screening. (4) The expression of reporter gene induced by insulin was down to 84.53% after being treated with the inhibitive reagent of receptor tyrosine kinase phosphorylated, Tyrphostin AG 1024 at lOfimolfL. The induction ratio of reporter gene decreased from 6.10 fold to 1.24 fold after the cells cotransfected pMT2-wtlB expressing the PTP1B protein, preventing receptor tyrosine kinase being phoshporylated, was induced by insulin. (5) Z' factor responses the repetition and reliability of experimentation and was independent on the experimental objects. Z' factor is good range between 0.5 and 1. The Z1 factor of the cell model established in the experiment was 0.61, which indicated that the cell model was very stable. (6) The cells were treated by insulin at 1013~10"4mol/L for the different time, and then tested absorbance by MTT at 570nm. The results showed no effect of the proliferation of CHO cells. The accuracy and reliability of the cell model was fine when the cells were treated by insulin at 10'7mol/L for 12 hours.CONCLUTION After examining the multiple parameters of the cell model established, assayed by STAT5b targeting reporter gene assaying activity of IR kinase, the cell model has good stability, fine repetition, splendid specificity, superior sensitivity, short period, high automatization, high throughput, low cost and no radioactivity, and so on. Consequently, the ceil model is great valuable in
    screening anti-diabetes drugs.
引文
[1] 蒋国彦.中国历代对糖尿病的记载和贡献[M].见:邝安堃,陈家伦,侯积寿主编.糖尿病在中国[M].长沙:湖南科学技术出版社,1989,1~341.
    [2] 许曼音,陆广华,陈名道.糖尿病学[M].上海:上海科学技术出版社,2003,3~11.
    [3] The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 1997, 20: 1183~1197.
    [4] Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest, 1999, 104: 787~794.
    [5] Virkanaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanism of insulin resistance[J]. J Clin Invest, 1999, 103: 931~943.
    [6] Weyer C, Tataranni PA, Bogardus C, et al. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development[J]. Diabetes Care, 2001, 24: 89~94.
    [7] Bergenstal RM, Kendall DM, Franz MJ, et al. Management of type 2 diabetes: a systematic approach to meeting the standards of care. Ⅱ. Oral agents, insulin, and management of complications. In: DeGroot LJ, Jameson JL, eds. Endocrinology. Vol 1. 4th ed. Philadelphia: WB Saunders, 2001: 810~820.
    [8] 董艳.糖尿病的治疗新进展[J].中华医学实践杂志,2004,3(5):417~418.
    [9] 张志琪,张延妮,田振军.药物筛选模型和技术及其在中药活性成分研究中的应用[J].中国中药杂志,2003,28(10):907~910.
    [10] 邹汉法,汪海林.生物色谱技术分离、鉴定和筛选中药活性成分[J].世界科学技术.中药现代化,2000,2(2):9~13.
    [11] 陈泽乃.受体技术与新药开发[J].中国药学杂志,1994,29(6):362~365.
    [12] 汪海林,邹汉法.分子生物色谱用于中药活性成分筛选及质量控制方法的研究[J].色谱,1999,17(2):123~127.
    [13] 王春梅,乔延江.绌胞模型发展现状及应用于中药研究的探讨[J].世界科学技术:中药现代化,2004,6(3):29~32.
    [14] He L C, Yang G D, Geng X D. Enzymatic and Chromatographic Characteristics of the Cell Membrane Immobilized on Silica Surface[J]. Chinese Science Bulletin, 1999, 44 (9): 826~831.
    [15] 杜喜平,田瑞华,刘士义,等.探讨基因芯片在中药现代化研究中的应用[J].药学进展,2001,25(6):330~334.
    [16] Xiumin WU,Outi Kauppi,Hard Siitari.高通量药物筛选在新药开发中的发展趋势[J].中成药 1999,21(5):271~272.
    [17] 秦路平主编.生物活性成分的高通量筛选[J].第二军医大学出版社,上海:第二军医大学出版社,2002,3~13.
    [18] Walke DW, Han C, Shaw J, et al. In vivo drug target discovery: identifying the best targets from the genome[J]. Curt Opin Bioteehnol, 2001, 12(6): 626-631.
    [19] 陈国强,徐娅蓓,郭萌.药物靶标和创新药物:机遇与挑战[J].国外医学:生理病理科学与临床分册,2004,24(3):205~207.
    [20] 黄文林,朱孝峰.信号转导[M].北京:人民卫生出版社,2005,151~165.
    [21] J. Lee, P. F. Pilch. The insulin receptor: structure, function, and signaling[J]. Am J Physiol Cell Physiology, 1994, 266(2): C319~C334.
    [22] Coghlan MP, Siddle K. Phorbol esters induce insulin receptor phosphorylation in transfected fibroblasts without affecting tyrosine kinase activity[J]. Biochem Biophys Res Commun, 1993, 193(1): 371~377.
    [23] Timothy Hoey, Ulrike Schindler. STAT structure and function in signaling[J]. Curr Opin Genet Dev, 1998, 8(5): 582~587.
    [24] ShuChiun Sung, TingJia Fan, ChihMing Chou, et al. Genomic structure, expression and characterization of a STAT5 homologue from pufferfish (Tetraodon fluviatilis)[J], Eur J Biochem, 2003, 270: 239~252.
    [25] Miranda Buitenhuis, Belinda Baltus, Jan-Willem J. Lammers, et al. Signal transducer and activator of transcription 5a (STAT5a) is required for eosinophil differentiation of human cord blood-derived CD34~+ cells[J]. Blood, 2003;101: 134~142.
    [26] Seidel HM, Lawrence HM, Peter L, et al. Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity[J]. Proc. Natl. Acad. Sci, 1995, 92: 3041~3045.
    [27] ChunFai Lai, Juergen Ripperger, Karen K. Morella, et al. STAT3 and STAT5B Are Targets of Two Different Signal Pathways Activated by Hematopoietin Receptors and Control Transcription via Separate Cytokine Response Elements[J]. JBC, 1995, 270(40): 23454~23257.
    [28] Lothar Hennighausen, Gertraud W. Robinson, Kay-Uwe Wagner, et al. Prolactin Signaling in Mammary Gland Development[J]. JBC, 1997, 272(12): 7567~7569.
    [29] Erik A, Nelson, Sarah R. Walker, et al. Isolation of Unique STAT5 Targets by Chromatin Immunoprecipitation-based Gene Identification[J]. JBC, 2004, 279(52): 54724~54730.
    [30] M. F. White. The insulin signaling system and the IRS proteins[J]. Diabetologia, 1997, 40(S2): S2~S17.
    [31] White MF, Kahn CR. The Insulin signaling system[J]. J Biol Chem, 1994, 269(1): 1~4.
    [32] 刘瑞,白怀,刘秉文.胰岛素受体信号传递[J].生理科学进展,2001,32(3):254~256.
    [33] Skolnik EY, Batzer A, Li N, et al. The function of GRB2 in linking the insulin receptor to Ras signaling pathways[J]. Science, 1993, 260(5116): 1953~1955.
    [34] 刘秉文,陈俊杰主编.医学分子生物学[第二版].北京:中国协和医科大学出版社,2005,174~178.
    [35] R Dhand, I Hiles, G Panayotou, et al. PI 3-Kinase is a dual specificity enzyme: autoregnlation by an intrinsic protein-serine kinase activity[J]. EMBO J, 1994, 13(3): 522~533.
    [36] Lisa M. Ballou, Michael E. Cross, Siqi Huang, et al. Differential regulation of the phosphatidylinositol 3-kinase/Akt and p70S6 kinase pathways by the a_(1A)-adrenergic receptor in rat-1 fibroblasts[J]. J Biol Chem, 2000, 275(7): 4803~4809.
    [37] 王志珍,粱栋材.胰岛素分子结构与功能关系的复杂性[J].生物化学杂志,1985,1(1):9~21.
    [38] 岳国华,朱尚权.胰岛素受体结构与功能研究概况[J].生物化学与生物物理进展,1992,19(1):1~5.
    [39] 邓华聪,葛倩,刘金波,等.2型糖尿病患者胰岛素受体酪氨酸激酶活性变化机制的探讨[J].中华内分泌代谢杂志,2006,22(1):30~33.
    [40] Ziegelhofer A, Bumdgaard H, Ravigerva, et al. Diabetes- and semi-starvation-induced changes in metabolism and regulation of Na, K-ATPase in rat heart[J]. Diabetes Nutr Metab, 2003, 16 (4): 222~231.
    [41] Pekiner BD, Das EN, Nebioghcs, et al. Determination of Ca~(2+)-ATPase activity in streptozotocin-induced diabetic rat liver[J]. Diabetes Nutr Metab, 2002, 15(2): 116~120.
    [42] Yun Li, Vincent Woo, Ratna Bose. Platelet hyperactivity and abnormal Ca~(2+) homeostasis in diabetes mellitus[J]. Am J Physiol Heart Circ Physiol, 2001, 280(4): H1480~1489.
    [43] M Hoenig, Sharp GW. Glucose induces insulin release and a rise in cytosolic calcium concentration in a transplantable rat insulinoma[J]. Endocrinology, 1986, 119: 2502~2507.
    [44] H Ishii, F Umeda, T Hashimoto, et al. Changes in phosphoinositide turnover, Ca~(2+) mobilization, and protein phosphorylation in platelets from NIDDM patients[J]. 1990, 39(12): 1561~1568.
    [45] Levy J. Abnormal cell calcium homeostasis in type 2 diabetes mellitus[J]. Endocrine, 1999, 10(1): 1~6.
    [46] MazzantiL, Rabini RA, Faloia E, et al. Altered cellular Ca~(2+) and Na~+ transport in diabetes mellitus[J]. Diabetes, 1990, 39(7): 850~854.
    [47] Shiraishi S, Yanmamoto R, Yanagita, et al. Down-regulation of cell surface insulin receptors by sarco(endo)plasmic reticulum Ca~(2+)-ATPase inhibitor in adrenal chromaffin cells[J]. Brain Res, 2001, 898(1): 152~157.
    [48] Dorothy Sears Worrall, Jerrold M. Olefsky. The Effects of Intracellular Calcium Depletion on Insulin Signaling in 3T3-L1 Adipocytes[J]. Molecular Endocrinology, 2001, 16 (2): 378~389.
    [49] Yiqing Song, JoAnn E. Manson, Julie E. Buring, et al. Dietary Magnesium Intake in Relation to Plasma Insulin Levels and Risk of Type 2 Diabetes in Women[J]. Diabetes Care, 2004, 27: 59~65.
    [50] De Valk HW. Magnesium in diabetes mellitus[J]. Neth J Med, 1999, 54(4): 139~146.
    [51] Martha Rodriguez-Moran, Fernando Guerrero-Romero. Oral Magnesium Supplementation Improves Insulin Sensitivity and Metabolic Control in Type 2 Diabetic Subjects[J]. Diabetes Care, 2003, 26: 1147~1152.
    [52] Kanwal K. Gambhir, Juanita A. Archer, Laurenda Carter. Insulin Radioreceptor Assay for Human Erythrocytes[J]. CLIN. CHEM, 1977, 23(9): 1590~1595.
    [53] KK Gambhir, JA Archer, CJ Bradley. Characteristics of human erythrocyte insulin receptors[J]. Diabetes, 1978, 27(7): 701~708.
    [54] Hagino H, Shii K, Yokono K, et al. Enzyme-linked immunosorbent assay method for human autophosphoryiated insulin receptor. Applicability to insulin-resistant states[J]. Diabetes, 1994, 43(2): 274~280.
    [55] Kamps ME Generation and use of anti-phosphotyrosine antibodies for immuoblotting[J]. Methods Enzymol, 1991, 201: 101~110.
    [56] Ilkka A. Hemmila, Pertti Hurskainen. Novel detection strategies for drug discovery[J]. Drug Discovery today, 2002, 7(18): 150~156.
    [57] Alice Y. Ting, Kristin H. Kain, Richard L, et al. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells[J]. PNAS, 2001, 98(26): 15003~15008.
    [58] Wouters, Bastiaens PI. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells[J]. Curt Biol, 1999, 9(19): 1127~1130.
    [59] Yolanda Romsicki, Mark Reece, Jacques-Yves Gauthier, et al. Protein Tyrosine phosphatase-lB Dephosphorylation of the Insulin Receptor Occurs in a Perinuclear Endosome Compartment in Human Embryonic Kidney 293 Cells[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279(13): 12868~12875.
    [60] Invitrogen Corporation. Immunoassays Fluorescence Polarization Technical Resource Guide. CHAPTER 3 Immunoassays, 2004, 3: 1~16.
    [61] Osman Nidai Ozes, Hakan Akca, Lindsey D. Mayo, et al. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1[J]. PNAS, 2001,98(8):4640~4645.
    [62] Yi Z, Luo M, Mandarino LJ, et al. Quantification of Phosphorylation of Insulin Receptor Substrate-1 by HPLC-ESI-MS/MS[J]. J Am Soc Mass Spectrom, 2006, 17(4):562~567.
    [63] Gino M. Salituro, Fernando Pelaez, Bei B. Zhang. Discovery of a Small Molecule Insulin Receptor Activator[J]. The Endocrine Society, 2001, 56: 107~126.
    [64] Biazzo-Ashnault D. E, Park Y-W, Cummings R. T, et al. Detection of Insulin Receptor Tyrosine Kinase Activity Using Time-Resolved Fluorescence Energy Transfer Technology[J]. Analytical Biochemistry, 2001, 291(1): 155~158.
    [65] Kolb A. J, Kaplita P. V, Hayes D. J, et al. Tyrosine kinase assays adapted to homogeneous time-resolved fluorescence[J]. Drug Discovery Today, 1998, 3(7): 333~342.
    [66] Park Y-W, Cummings R. T, Wu L, et al. Homogeneous Proximity Tyrosine Kinase Assays: Scintillation Proximity Assay versus Homogeneous Time-Resolved Fluorescence[J]. Analytical Biochemistry, 1999, 269(1): 94~104.
    [67] Matthew A. Sills, Donna Weiss, Quynhchi Pham, et al. Comparison of Assay Technologies for a Tyrosine Kinase Assay Generates Different Results in High Throughput Screening[J]. Journal of Biomolecular Screening, 2002, 7(3): 191~214.
    [68] Beveridge M, Park Yw, Hermes J, Marenghi A, et al. Detection of p56(1ck) kinase activity using scintillation proximity assay in 384-well format and imaging proximity assay in 384- and 1536-well format[J]. J Biomol Screen, 2000, 5(4): 205~12.
    [69] 田凤华.中国糖尿病现状及初步分析[J].中华流行病学杂志,1998,19(6):361~362
    [70] 向红丁,刘蓉.中国2型糖尿病危险因素分析[J].医师进修杂志,2001,24(12):21~23.
    [71] Thomas Meyer, Lisa Hendry, Andreas Begitt, et al. Single Residue Modulates Tyrosine Dephosphorylation, Oligomerization, and Nuclear Accumulation of Stat Transcription Factors[J]. JBC, 2004, 279(18): 18998~19007.
    [72] Jason HK, Lawrence SA, Yong-Jie Zhou, et al. Tyrosine 813 Is a Site of JAK2 Autophosphorylation Critical for Activation of JAK2 by SH2-Bβ[J]. Moluecular and Cellular Biology, 2004, 24(10): 4557~4570.
    [73] Jian-Xin Lin, Judy Mietz, William SM, et al. Cloning of Human Stat5B[J]. JBC, 1996, 271(18): 10738~10744.
    [74] Sawka-Verhelle D., Filloux C. Identification of STAT5B as asubstrate of the insulin receptor[J], Eur. J. Biochem, 1997, 250: 411~417.
    [75] Guoyang Luo, Li-yuan, Yu-Lee. Transcriptional Inhibition by Stat5[J]. JBC, 1997, 272(43): 26841~26849.
    [76] Christian Sillaber, Franck Gesbert, David A. Frank, et al. STATS activation contributes to growth and viability in Bcr/Abl-transformed cells[J], Blood, 2000, 95(6): 2118~2125.
    [77] Chen J, Sadowski H. B, Kohanski R. A, et al. Stats is a physiological substrate of the insulin receptor[J]. Proc. Natl. Acad. Sci. USA, 1997, 94: 2295~2300.
    [78] Anna Krook, Jonathan PW, Stephen PD, et al. Two Naturally Occurring Insulin Receptor Tyrosine Kinase Domain Mutants Provide Evidence That Phosphoinositide 3-Kinase Activation Alone Is Not Sufficient for the Mediation of Insulin's Metabolic and Mitogenic Effects[J]. JBC, 1997, 272(48): 30208~30214.
    [79] Anna Krook, Jonathan PW, Stephen PD, et al. Two Naturally Occurring Insulin Receptor Tyrosine Kinase Domain Mutants Provide Evidence That Phosphoinositide 3-Kinase Activation Alone Is Not Sufficient for the Mediation of Insulin's Metabolic and Mitogenic Effects[J]. JBC, 1997, 272(48): 30208~30214.
    [80] Faulds MH, Pettersson K, Gustafsson JA, et al. Cross-Talk Between ERs and Signal Transducer and Activator of Transcription 5 Is E2 Dependent and Involves Two Functionally Separate Mechanisms[J]. Mol Endocrinol, 2001, 15(11): 1929~1940.
    [81] Biola A, Lefebvre P, Perrin-Wolff M, et al.). Interleukin-2 Inhibits Glucocorticoid Receptor Transcriptional Activity through a Mechanism Involving STAT5 (Signal Transducer and Activator of Transcription 5) but Not AP-1 [J]. Mol Endocrinol, 2001, 15(7): 1062~1076
    [82] Sadowski CL, Choi TS, Le M, et al. Insulin Induction of SOCS-2 and SOCS-3 mRNA Expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5[J]. J. Biol. Chem., 2001, 276(23): 20703~20710.
    [83] Doppler W, Windegger M, Soratroi C, et al. Expression Level-Dependent Contribution of Glucocorticoid Receptor Domains for Functional Interaction with STAT5[J]. Mol. Cell. Biol. 2001, 21(9): 3266~3279.
    [84] Wyszomierski SL, Rosen JM. Cooperative Effects of STAT5 (Signal Transducer and Activator of Transcription 5) and C/EBP β (CCAAT/Enhancer-Binding Protein-β) on β-Casein Gene Transcription Are Mediated by the Glucocorticoid Receptor[J]. Mol Endocrinol, 2001, 15(2): 228~240.
    [85] Sibylle Geymayer, Wolfgang Doppler. Activation of NF-kB p50/p65 is regulated in the developing mammary gland and inhibits STAT5-mediated b-casein gene expression[J]. FASEB, 2000, 14: 1159~1170.
    [86] Wyszomierski SL, Yeh J, Rosen JM. Glucocorticoid Receptor/Signal Transducer and Activator of Transcription 5 (STAT5) Interactions Enhance STAT5 Activation by Prolonging STAT5 DNA Binding and Tyrosine Phosphorylation[J]. Mol Endocrinol, 13(2): 330~343.
    [87] Chida D, Wakao H, Yoshimura A, et al. Transcriptional Regulation of theβ-Casein Gene by Cytokines: Cross-Talk between STAT5 and Other Signaling Molecules[J]. Mol Endocrinol, 1998, 12: 1792~1806.
    [88] Masanori Kanzaki, Patricia L. Morris. Lactogenic Hormone-lnducible Phosphorylation and Gamma-Activated Site-Binding Activities of Stat5b in Primary Rat Leydig Cells and MA-10 Mouse Leydig Tumor Cells[J]. Endocrinology, 1998, 139(4): 1872~1882.
    [89] Stoecklin E, Wissler M, Moriggl R, et al. Specific DNA binding of Stat5, but not of glucocorticoid receptor is required for their functional cooperation in the regulation of gene transcription[J]. Mol. Cell. Biol., 1997, 17(11): 6708~6716.
    [90] Carsol JL, Gingras S, Simard J. Synergistic Action of Prolactin (PRL) and Androgen on PRL-inducible Protein Gene Expression in Human Breast Cancer Cells: A Unique Model for Functional Cooperation between Signal Transducer and Activator of Transcription-5 and Androgen Receptor[J]. Mol Endocrinol, 2002, 16(7): 1696~1710.
    [91] Yulong Han, Diane Watling, Neil C Rogers, et al. JAK2 and STAT5, but not JAK1 and STAT1, Are Required for Prolactin-lnduced β-Lactoglobulin Transcription[J]. Molecular Endocrinology, 1997, 11(8):1180~1188.
    [92] Iavnilovitch E, Groner B, Barash I. Overexpression and Forced Activation of Stat5 in Mammary Gland of Transgenic Mice Promotes Cellular Proliferation, Enhances Differentiation, and Delays Postlactational Apoptosis[J]. Mol Cancer, 2002, 1: 32~47.
    [93] Hiroshi Wakao, Michael Schmitt-Ney, Bernd Groner. Mammary Gland-specific Nuclear is Present in Lactating Rodent and Bovine Mammary Tissue and Composed of a Single Polypeptide of 89kDa[J]. JBC, 1992, 267(23): 16365~16370.
    [94] Timothy JJW, Daniel Sliva, Peter EL, et al. Mediation of Growth Hormone-dependent Transcriptional Activation by Mammary Gland Factor/Stat 5[J]. JBC, 1995, 270(16):9448~9453.
    [95] Pfitzner E, Jahne R, Wissler M, et al. p300/CREB-Binding Protein Enhances the Prolactin-Mediated Transcriptional Induction through Direct Interaction with the Transactivation Domain of Stat5, but Does Not Participate in the Stat5-Mediated Suppression of the Glucocorticoid Response[J]. Mol Endocrinol, 1998, 12(10): 1582~1593.
    [96] Lord JD, McIntosh BC, Greenberg PD, et al. The IL-2 Receptor Promotes Lymphocyte Proliferation and Induction of the c-myc, bcl-2, and bcl-x Genes Through the transactivation Domain of Stat5[J]. J Immunol, 2000, 164: 2533~2541.
    [97] Bergad PL, Towle HC, Berry SA. Yin-yang 1 and Glucocorticoid Receptor Participate in the Stat5-mediated Growth Hormone Response of the Serine Protease Inhibitor 2.1 Gene[J]. J. Biol. Chem., 2000, 275(11): 8114-8120.
    [98] Cella N, Groner B, Hynes NE. Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells[J]. Mol Cell Biol, 1998, 18(4): 1783~1792.
    [99] Albano CR, Lisa RE, William EB, et at. Green Fluorescent Protein as a Real Time Quantitative Reporter of Heterologous Protein Production[J]. Biotechnol. Prog, 1998, 14(2): 351~354.
    [100] Guoyang Luo, Li-yuan, Yu-Lee. Stat5b Inhibits NFκB-Mediated Signaling[J]. Molecular Endocrinology, 2000, 14(1): 114~123.
    [101] 许治良,高虹,欧阳克清,等.G蛋白偶联受体的功能测定和高通量药物筛选[J].中国药理学通报,2003,19(12):1330~1336.
    [102] 谢洁琼,吕秋军,温利青,等.基于报告基因和PPARγ信号通路的药物筛选模型的建立[J].中国药理学通报,2005,21(4):504~507.
    [103] 刘卫京,吕秋军,温利青,等.基于STAT3转录调节的筛药模型的建立[J].中国药理学通报,2002,18(1):103~106.
    [104] 陈振花,吕秋军,温利青,等.基于报告基因和干扰素2a信号通路的药物筛选模型的建立.中国药理学通报,2005,21(2):209~212.
    [105] 王玲巧,吕秋军,牛建昭,等.基于雌激素应答元件转录调节的药物筛选模型的建立[J].中国中药杂志,2003,28(6):536~540.
    [106] 黄梅,戎煜,宁红秀,等.基于JAK/STAT信号通路的高通量药物筛选细胞模型的建立[J].药学学报,2004,39(3):164~167.
    [107] 晏菊芳,阳勇,彭旭东,等.运用荧光素酶报告基因建立PPARγ1的转录激活系统[J].四川大学学报(自然科学版),2002,39:133~137.
    [108] Frederique Verdier, Raquel Rabionet, Fabrice Gouilleux, et al. A Sequence of the CIS Gene Promoter Interacts Preferentially with Two Associated STAT5A Dimers: a Distinct Biochemical Difference between STAT5A and STAT5B[J]. Molecular And Cellular Biology, 1998, 18(10): 5852~5860.
    [109] Alexander VK, Elena BK, Shannon LW, et al. Differential Effects of Prolactin and src/abl Kinases on the Nuclear Translocation of STAT5B and STAT5A[J]. JBC, 1999, 274(32): 22484~22492.
    [110] Susan John, Uwe Vinkemeier, Elisabetta Soldaini, et al. The Significance of Tetramerization in Promoter Recruitment by Stat5[J]. Molecular and Cellular Biology, 1999, 19(3): 1910~1918.
    [111] Christine Boucheron, Stephanie Dumon, Susana Constantino Rosa Santos, et al. A Single Amino Acid in the DNA Binding Regions of STAT5A and STAT5B Confers Distinct DNA Binding Specificities[J]. JBC, 1998, 273(51): 33936~33941.
    [112] Judith Lechner, Thomas Welte, Jurgen KT, et al. Promoter-dependent Synergy between Glucocorticoid Receptor and Stat5 in the Activation of β-Casein Gene Transcription[J]. JBC, 1997, 272(3): 20954~20960.
    [113] Guck TO, Kelley RH, Matthew NP, et al. Binding of STAT5a and STAT5b to a Single Element Resembling a g-Interferon-Activated Sequence Mediates the Growth Hormone Induction of the Mouse Acid-Labile Subunit Promoter in Liver Cells[J]. Molecular Endocrinology, 1998, 12(5): 675~687.
    [114] Chang-Chi Lin, Chih-Ming Chou, Ya-Li Hsu, et al. Characterization of Two Mosquito STATs, AaSTAT and CtSTAT[J]. JBC, 2004, 279(5): 3308~3317.
    [115] Elisabetta Soldaini, Susan John, Stefano Moro, et al. DNA Binding Site Selection of Dimeric and Tetrameric Stat5 Proteins Reveals a Large Repertoire of Divergent Tetrameric Stat5a Binding Sites[J]. Molecular and Cellular Biology, 2000, 20(1): 389~401.
    [116] Georg BE, Patrick Reichenbach, Ulrike Schindleri, et al. DNA Binding Specificity of Different STATProteins[J]. JBC, 2001, 276(9): 6675~6688.
    [117] James Herrington, Liangyou Rui, Guoyang Luoi, et al. A Functional DNA Binding Domain Is Required for Growth Hormone-induced Nuclear Accumulation of Stat5B[J]. JBC, 1999, 274(8): 5138~5145.
    [118] Kenneth RL, Andrew JF, Franza BR, et al. Protein Tyrosine Phosphatase 1B Antagonizes Signalling by Oncoprotein Tyrosine Kinase p210 bcr-abl In Vivo[J]. Molecular and Cellular Biology, 1998, 18(5): 2965~2975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700