SOCS2调控大鼠室管膜前下区神经干细胞发育分化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经干细胞(Neural stem cells, NSCs)是指中枢神经系统(Central nervous system, CNS)存在的具有自我更新自我增殖能力和多种分化潜能的特殊细胞群。NSCs广泛存在于哺乳动物的中枢神经系统,其中侧脑室附近的室管膜前下区(Anterior subventricular zone, SVZa)被认为是哺乳动物神经系统中NSCs最为集中的部位之一。研究发现SVZa的神经干细胞产生后,逐渐向嗅球(Olfactory bulb, OB)迁移,在从SVZa迁移到OB的过程中形成一条高度局限的迁移通道――喙侧迁移流(Rostral migratory stream, RMS),位于迁移流中的神经干细胞保持增殖状态和神经干细胞特征而不进一步分化,在迁移到嗅球后才进一步分化成熟。SVZa神经干细胞的增殖、分化以及在喙侧迁移流通道迁移的过程中,不但受到遗传因素的影响,而且受到多种细胞因子(环境因素)的调控作用。
     细胞因子是一类由细胞分泌的调节细胞生长、增殖及分化的多肽小分子,对中枢神经系统中的各种生物效应具有广泛多样的调节作用。细胞因子通过其受体和受体介导的细胞因子信号转导途径发挥生物学效应。CNS中研究较多的细胞因子有生长激素(Grouth hormone, GH)、促红细胞生成素(erythropoietin, EPO)、胰岛素(insulin)、IGF-1 (insulin-like growth factor)等等。细胞因子的效应又受多种因子的调节,包括SOCS家族。SOCS (suppressors of cytokine signaling,细胞因子信号抑制因子)是近年来发现的一类可被多种细胞因子诱导产生,对细胞因子信号通路具有负反馈调节作用的蛋白分子,参与多种细胞因子、生长因子和激素的信号调节。SOCS蛋白最初被认为是JAK/STAT信号通路的负调节因子,受多种细胞因子诱导表达并对这些因子有负反馈调节作用。SOCS家族有CIS和SOCS1-7共8个成员,分别在不同的组织表达并被不同的细胞因子诱导,调控不同的JAK/STAT途径。SOCS2是SOCS家族的成员之一,研究发现,SOCS2 mRNA在动物胚胎和成年的许多组织都有表达,且在发育和成年的动物神经系统中均有表达。最初发现SOCS2是GH信号的负性调节因子,后来发现胰岛素与SOCS2也有密切关系。最新研究表明SOCS2是一种潜在的神经分化调控因子,能促进NSC向神经元而非胶质细胞方向分化,对神经元的功能具有重要作用,但其作用机制不
Neural stem cells (NSCs) exist widely in the mammalian central nervous system and posses the capability of self-renewing, self-duplication, and the potentiality of differentiating into various neural cells. It is believed that the anterior subventricular zone (SVZa) which neighbouring the Lateral ventricle (LV) is one of the main areas where NSCs localized. The SVZa NSCs migrate continuously from SVZa to olfactory bulb (OB) and form a highly limited migratory pathway which is called rostral migratory stream (RMS). The SVZa NSCs can keep proliferation and progenitor states all along the RMS and no further differentiation can be seen until arriving at OB. The proliferation, migration and differentiation of SVZa NSCs are regulated not only by hereditary factor but also by kinds of cytokines (environmental factor).
     Cytokines are secreted polypeptides that take part in the regulation of cell growth, differentiation and proliferation through their receptors and receptor mediating cytokine signal transduction pathways and have multiple effects on the biological processes of CNS. Among them, growth hormone (GH), erythropoietin (EPO), insulin and IGF-1(insulin-like growth factor) have been studied more in CNS. The effects of cytokines are also regulated by various factors mainly by the suppressor of cytokine signaling (SOCS) family. SOCS proteins discovered recently can be induced by a wide range of cytokines including growth factors and hormone. They work as negative feedback regulators of cytokine signal pathways. SOCS proteins were primarily known as negative regulators of Janus-activated kinase (JAK) / signal transducers and activators of transcription (STAT) signaling pathway. There are eight known members of the SOCS gene family (CIS and SOCS1-7) which are expressed in different tissues and induced by different groups of cytokines and regulate different JAK/STAT pathways. As a member of SOCS family, researchers show that SOCS2 mRNA is expressed in many tissues of embryonic and adult animals, especially in nervous system. SOCS2 was primarily known as a negative regulator of GH signaling which was found closely associated with insulin later. Recent studies showed that SOCS2
引文
1. Gage FH. Mammalian neural stem cells [J]. Science, 2000; 287(5457): 1433-1438.
    2. Kippin TE, Cain SW, Masum Z, et al. Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain [J]. J Neurosci, 2004; 24(11): 2832-2836.
    3. Spradling A, Drummond BD, Kai T. Stem cells find their niche [J]. Nature ,2001 ,414 (6859) :98-104.
    4. Pencea V, Bingaman KD, Freedman LJ, et al. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain [J]. Exp Neurol. 2001, 172(1): 1-16.
    5. Galli R , Gritti A , Bonfanti L, et al. Neural stem cells: an overview [J]. Circ Res. 2003, 92 (6): 598-608.
    6. Bedard A, Levesque M, Berrier PJ, et al. The rostral migratory stream in adult sguirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of antiapoptotic protein Bcl-2 [J]. Eur J Neurosci. 2002, 16(10): 1917-1924.
    7. Temple S. The development of neural stem cell [J]. Nature, 2001, 414(6859):112-117.
    8. Ennington JB, Yang Z, Conover JC. Neural stem cells and the regulation of adult neurogenesis [J]. Reprod Biol Endocrinol, 2003; 1(1): 99.
    9. Acekova E, Orendacova J, Martoncikova M, et al. NADPH-diaphorase positivity in the rostral migratory stream of the developing rat [J]. Brain Res Dev Brain Res, 2003; 146(1-2): 131-134.
    10. Menezes JR, Marins M, Alves JA, et al. Cell migration in the postnatal subventricular zone [J]. Braz J Med Biol Res , 2002 , 35(12) : 1411-1421.
    11. Bullock AN, Debreczeni JE, Edwards AM, et al. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase [J]. Proc Natl Acad Sci U S A. 2006 May 4.
    12. Metcalf D, Gmenhalgh CJ, Viney E, et a1. Gigantism in mice lacking suppressor of cytokine signaling-2 [J]. Nature, 2000, 405(6790):1069-1073.
    13. Wang L, Zhang Z, Zhang R, et al. Erythropoietin up-regulates SOCS2 in neuronal progenitor cells derived from SVZ of adult rat [J]. Neuroreport, 2004, 15(8):1225-1229.
    14. Rosell DR , Akama KT , Nacher J , et al. Differential expression of suppressors of cytokine signaling-1 , -2 , and -3 in the rat hippocampus after seizure: implications for neuromodulation by gp130 cytokines [J]. Neuroscience, 2003, 122:349-58.
    15. Cynthia LS, Choi TS, Maithao L. Insulin Induction of SOCS-2 and SOCS-3 mRNA Expression inC2C12 Skeletal Muscle Cells Is Mediated by Stat5 [J]. The journal of biological chemistry, 2001, 276, 20703-20710.
    16. Turnley AM, Faux CH, Rietze RL, et al. Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling [J]. Nat Neurosci, 2002, 5(11):1155-1162.
    17. Solecki DJ, Liu X, Tomoda T, et al. Activated notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation [J]. Neuron, 2001, 31(4): 557-568.
    18. Barry JD. Development. Wiring the brain with insulin [J]. Science, 2003 300:440-1
    19. Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain [J]. Trends Endocrinol Metab, 2005, 16: 59-65.
    20. Gelling RW, Morton GJ, Morrison CD, et al. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes [J]. Cell Metab, 2006, 3: 67-73.
    21. Jonas E, Knox RJ, Smith TC, et al. Regulation by insulin of a unique neuronal Ca2C pool and of neuropeptide secretion [J]. Nature, 1997, 385: 343-346.
    22. Wan Q, Xiong ZG, Man HY, et al. Recruitment of functional GABA (A) receptors to postsynaptic domains by insulin [J]. Nature, 1997, 388: 686-690.
    23. Aizenman Y, Weichsel ME, de Vellis. Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development, Proc. Natl. Acad. Sci. USA 1986, 83, 2263-2266.
    24. Aizenman Y, de Vellis J. Brain neurons develop in a serum and glial-free environment: effects of transferrin, insulin, insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation [J]. Brain Res, 1987, 406, 32-42.
    24. Masters BA, Shemer J, Judkins JH, et al. Insulin receptors and insulin action in dissociated brain cells [J]. Brain Res. 1987, 417, 247-256.
    25. Puro DG, Agardh E. Insulin mediated regulation of neuronal maturation [J]. Science, 1984, 225, 1170–1172.
    26. Yasukawa H., Sasaki A., Yoshimura A. et al. Negative regulation of cytokine signaling pathways [J]. Annu Rev Immunol , 2000, 18:143-164.
    27. Starr R, Wilson TA, Viney EM, et al. A family of cytokine-inducible inhibitors of signaling [J]. Nature, 1997, 387, 917-921.
    28. Lopaczynski W. Differential regulation of signaling pathways for insulin and insulin-like growth factor I [J]. Acta Biochim Pol, 1999, 46, 51-60.
    29. Metcalf D, Greenhalgh CJ, Viney E, et al. Gigantism in mice lacking suppressor of cytokine signalling-2 [J]. Nature, 2000, 405, 1069-1073.
    30. Doetsch F, Scharff C. Challenges for brain repair: insights from adult neurogenesis in birds and mammals [J]. Brain Behav Evol, 2001, 58 (5):306-322.
    31. Nguyen-Ba-Charvet KT, Picard-Riera N, Tessier-Lavigne M, et al. Multiple roles for slits in the control of cell migration in the rostral migratory stream [J]. J Neurosci, 2004, 24(6): 1497-1506.
    32. Yang H, Mujtaba T, Venkatraman G, et al. Region-specific differentiation of neural tube-derived neuronal restricted progenitor cells after heterotopic transplantation [J]. PNAS, 2000, 97(24): 13366-13371.
    33. Polizzotto MN, Bartlett PF, Turnley AM. Expression of “suppressor of cytokine signalling” (SOCS) genes in the developing and adult mouse central nervous system. J Comp Neurol, 2000, 423:348-358.
    34. Ransome MI, Turnley AM. Analysis of neuronal subpopulations in mice over-expressing suppressor of cytokine signaling-2 [J]. Neuroscience, 2005, 132(3):673-687.
    35. Turnley AM. Role of SOCS2 in growth hormone actions [J]. TRENDS in Endocrinology and Metabolism, 2005, 16(2):53-58.
    36. Speeht LA, Pickel VM, JohTH, et a1. Light—microscopicimmunocytochemical localization of tyrosine hydroxylase in prenatal rat brain.1I.Late ontogeny [J].J Comp Neurol, 1981, 199(2): 255-276.
    37. Prakash N, Wurst W. Development of dopaminergic neurons in the mammalian brain. Cell. Mol. Life Sci. 2006, 63,187-206.
    38. Betarbet R, Zigova T, Bakay RA, et al. Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone [J]. Int J DevNeurosci. 1996, 14(7-8): 921-30.
    39. Michaylira CZ, Ramocki NM, Simmons JG, et al. Haplotype insufficiency for suppressor of cytokine signaling-2 enhances intestinal growth and promotes polyp formation in growth hormone-transgenic mice [J]. Endocrinology, 2006, 147(4):1632-41.
    40. Jessica H, Prudence MS, Kate S, et al. Socs2 and Elf5 Mediate Prolactin-Induced Mammary Gland Development [J]. Molecular Endocrinology. 2006, 20 (5): 1177-1187.
    1. Cynthia LS, Choi TS, Maithao L. Insulin Induction of SOCS-2 and SOCS-3 Mrna Expression inC2C12 Skeletal Muscle Cells Is Mediated by Stat5 [J]. The journal of biological chemistry, 2001, 276, 20703-20710.
    2. Barry JD. Development. Wiring the brain with insulin [J]. Science, 2003 300:440-1.
    3. Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain [J]. Trends Endocrinol Metab. 2005, 16: 59-65.
    4. Gelling RW, Morton GJ, Morrison CD, et al. Schwartz MW Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes [J]. Cell Metab, 2006, 3: 67-73.
    5. Jonas E, Knox RJ, Smith TC, et al. Regulation by insulin of a unique neuronal Ca2C pool and of neuropeptide secretion [J]. Nature, 1997, 385: 343-346.
    6. Lopaczynski, W. Differential regulation of signaling pathways for insulin and insulin-like growth factor I [J]. Acta Biochim Pol. 1999;46(1):51-60.
    7. Metcalf D, Greenhalgh CJ, Viney E, et al. Gigantism in mice lacking suppressor of cytokine signalling-2 [J]. Nature, 2000, 405, 1069-1073.
    8. Daryakiryushko, VB, Elisabeth B. Regulators of Neurite Outgrowth: Role of Cell Adhesion Molecules [J]. Ann. N.Y. Acad. Sci. 2004, 1014: 140–154.
    9. Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration [J]. Mol Neurobiol, 2006, 33(2):155-80.
    10. In AK, Su AP, Young JK et, al. Effects of Mechanical Stimuli and Microfiber-Based Substrate on Neurite Outgrowth and guidance [J]. Journal of Bioscience and Bioengingeering 2006, 101, 2120-126.
    11. Stephen D S. Neuronal growth promoting and inhibitory cues in neuroprotection and neuroregeneration [J]. Ann. N.Y. Acad. Sci, 2005, 1053: 376-385.
    12. Habib AA, Gulcher JR, Hognason T et al. The OMgp gene, a second growth supp ressor within the NF1 gene [J]. Oncogene, 1998, 16:1525-1531.
    13. Jorge Santos Da Silva, Carlos G. Dotti. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis [J]. Nature Reviews Neurosience, 2002, 3694-704.
    14. Nikolic M. The role of Rho GTPases and associated kinases in regulating neuriteoutgrowth [J]. Int J Biochem Cell Biol, 2002, 34:731-745.
    15. Ramakers GJ. Rho proteins, mental retardation and the cellular basis of cognition [J].Trends Neurosci, 2002, 25(4): 191-199.
    16. Yona G, Claire EW, Hannah JS, et al. SOCS2 Induces Neurite Outgrowth by Regulation of Epidermal Growth Factor Receptor Activation [J]. J Biol Chem, 2004, 279, 16349-16355.
    17. Gasparini L, Netzer WJ, Greengard P et al. Does insulin dysfunction play a role in Alzheimer’s disease [J]? Trends Pharmacal Sci, 2002, 23: 288-293.
    18. Snyder EY, Kim SV. Insulin: Is it a nerve survival factor [J]? Brain Res. 1980, 196: 565–574.
    19. Wan Q, Xiong ZG, Man HY, et al. Recruitment of functional GABA (A) receptors to postsynaptic domains by insulin [J]. Nature, 1997, 388: 686-690.
    20. Schechter R, Yanovitch T, Abboud M, et, al. Effects of brain endogenous insulin on neurofilament and MAPK in fetal rat neuron cell cultures [J], Brain Res, 1998, 808, 270–278.
    21. Recio PE, Lang FF, Ishii, DN, Insulin and insulin-like growth factor 2 permit nerve growth factor binding and the neurite formation response in cultured human neuroblastoma cells [J], Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 2562–2566.
    22. Kenner KA, Heidenreich KA. Insulin and insulin-like growth factors stimulate in vivo receptor autophosphorylation and tyrosine phosphorylation of a 70K substrate in cultured fetal chick neurons [J]. Endocrinology, 1991, 129, 301–311.
    23. Aizenman Y, Vellis J. Brain neurons develop in a serum and glial-free environment: effects of transferrin, insulin, insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation [J], Brain Res. 1987, 406, 32–42.
    24. William AB. The source of cerebral insulin [J]. Eur J Pharmacol, 2004, 490: 5-12.
    25. H¨okfelt T, Broberger C, Xu ZQ. et al. Neuropeptides-An overview [J]. Neuropharmacology, 2000, 39: 1337-1356.
    26. Stockhorst U, de Fries D, Steingrueber HJ, et al. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans [J]. Physiol Behav, 2004, 83: 47-54.
    27. Zhao WQ, Dou JT, Liu QW, et al. Evidence for locally produced insulin in the adult ratbrain as a neuroactive peptide [M]. In Nov. 2002. Orlando, FL, 32nd SFN meeting.
    28. Schechter R, Whitmire J, Whee GS, et, al. Immunohistochemical and in situ hybridization study of an insulin-like substance in fetal neuron cell cultures [J], Brain Res. 1994, 636, 9-27.
    29. Schechter R, Beju D, Gaffney T,et, al. Whetsell, Preproinsulin I and II mRNA and insulin electron microscopic immunoreaction are present within the rat fetal nervous system [J], Brain Res. 1996, 736, 16-27.
    30. Ulifson EJ, Sim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes [J]. Science, 2002, 296: 1118-1120.
    31. Schechter R, Abboud M. Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures [J]. Developmental Brain Research 2001, 127, 41-49.
    32. Schechter R. Brain endogenous insulin effects on neurite growth within fetal rat neuron cell cultures [J]. Developmental Brain Research, 1999, 116, 159–167.
    33. Gerozissis K, Rouch C, Lemierre S, et al. A potential role of central insulin in learning and memory related to feeding [J]. Cell. Mol. Neurobiol, 2001, 21: 389-40.
    34. Endo, TA, Masuhara M, Yokouchi M, et, al. A new protein containing an SH2 domain that inhibits JAK kinases [J]. Nature, 1997, 387(6636):921-924.
    35. Naka T,Narazaki M, Hirata M, et al. Structure and function of a new STAT-induced STAT inhibitor[J]. Nature, 1997, 387: 924.
    36. Greenhalgh CJ, Hilton DJ. Negative regulation of cytokine signaling [J]. J Leukoc Biol, 2001, 70: 348-356.
    37. Yona G, Claire EW, Hannah JS, et al. SOCS2 Induces Neurite Outgrowth by Regulation of Epidermal Growth Factor Receptor Activation [J]. J Biol Chem, 2004, 279:16349-16355.
    38. Ransome MI, Turnley AM. Analysis of neuronal subpopulations in mice over-expressing suppressor of cytokine signaling-2 [J]. Neuroscience, 2005, 132:673-687.
    39. Sawka-Verhelle, D, Tartare-Deckert, S, Decaux, JF, et al. STAT 5B, activated by Insulin in a JAK-Independent Fashion, Plays a Role in Glucokinase gene transcription [J]. Endocrinology, 2000, 141, 1977–1988.
    40. Yasukawa H., Sasaki A., Yoshimura A. et, al. Negative regulation of cytokine signaling pathways [J]. Annu Rev Immunol, 2000, 18:143-164.
    41. Starr R, Wilson TA, Viney EM, et al. A family of cytokine-inducible inhibitors of signaling [J]. Nature, 1997, 387, 917-921.
    42. Sadowski CL, Choi TS, Le M, et al. Insulin Induction of SOCS-2 and SOCS-3 mRNA Expression inC2C12 Skeletal Muscle Cells Is Mediated by Stat5 [J]. J Biol Chem 2001; 276: 20703-20710.
    43. Shinji Fukuda, Tetsuya Taga1. Cell fate determination regulated by a transcriptional signal network in the developing mouse brain [J]. Anatomical Science International, 2005, 80, 12-18.
    44. Carmen ZM, James GS, Nicole MR et al. Suppressor of cytokine signaling-2 limits intestinal growth and enterotrophic actions of IGF-I in vivo [J]. Am J Physiol Gastrointest Liver Physiol, 2006, March 30.
    45. Wang L, Zhang Z, Zhang R, Hafner, et al. Erythropoietin up-regulates SOCS2 inneuronal progenitor cells derived from SVZ of adult rat [J]. Neuroreport, 2004, 15(8):1225-1229.
    46. Turnley AM. Role of SOCS2 in growth hormone actions [J]. TRENDS in Endocrinology and Metabolism 2005, 16, 53-58.
    47. Christopher JG, Elizabeth RB, Mattias L, et al. SOCS2 negatively regulates growth hormone action in vitro and in vivo [J]. The Journal of Clinical Investigation, 2005, 115.
    48. Ransome MI, Goldshmit Y, Bartlett PF, et al. Comparative analysis of CNS populations in knockout mice with altered growth hormone responsiveness [J]. Eur J Neurosci, 2004, 19:2069-2079.
    1. Yoshimura A , Ohkubo T , Kiguchi T , et a1. A novel cytokine-inducible gene CIS encodes anSH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietinreceptors[J].EMBO J , 1995 , 14:2816-2826.
    2. Starr R , Willson TA , Viney EM , et al. A family of cytokine-inducible inhibitors of signaling[J]. Nature, 1997, 387:917-921.
    3. Naka T , Narazaki M , Hirata M , et al. Structure and function of a new STAT-induced STAT inhibitor[J]. Nature , 1997 , 387:924-929.
    4. Endo TA , Masuhara M , Yokouchi M , et al. A new protein containing an SH2 domain that inhibits JAK kinases[J]. Nature , 1997 , 387:921-924.
    5. Hilton DJ , Richardson RT , Alexander WS , et al. Twenty proteins containing a C-terminal SOCS box form five structural classes[J]. PNAS , 1998 , 95:114-119.
    6. Bullock AN, Debreczeni JE, Edwards AM, et al. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase[J]. Proc Natl Acad Sci U S A. 2006 May 4.
    7. Danielle LK, Douglas JH. SOCS: physiological suppressors of cytokine signaling[J]. Journal of Cell Science 2000, 113, 2813-2819.
    8. Eva Biener, Sarah Maurice, Yael Sandowski,et al. Recombinant human CIS2 (SOCS2) protein: subcloning,expression, purification, and characterization[J]. Protein Expression and Purification 25 (2002) 305–312.
    9. Polizzotto MN , Bartlett PF , Turnley AM. Expression of “suppressor of cytokine signalling” (SOCS) genes in the developing and adult mouse central nervous system[J]. J.Comp Neurol, 2000 , 423:348-358.
    10. Rosell DR , Akama KT , Nacher J , et al. Differential expression of suppressors of cytokine signaling-1 , -2 , and -3 in the rat hippocampus after seizure: implications for neuromodulation by gp130 cytokines[J]. Neuroscience , 2003 , 122:349-358.
    11. Kasagi Y , Tokita R , Nakata T , et al. Human growth hormone induces SOCS3 and CIS mRNA increase in the hypothalamic neurons of hypophysectomized rats[J]. Endocr J , 2004, 51:145-154.
    12. Yoshikawa H , Matsubara K , Qian GS , et a1.SOCS-1 a negative regulator of the JAK/STAT pathway ,is silenced by methylation in human hepatocellular carcinoma and shows growth suppression activity[J]. Nat Genet , 2001 , 28:29-35.
    13. Jennifer LS , Jeri AL , Anne HC. Interferon-gamma produced by encephalitogenic cells induces suppressorsof cytokine signaling in primary murine astrocytes[J]. J Neuroimmunol, 2004 , 151:195-200.
    14. Turnley AM , Starr R , Bartlett PF. Failure of sensory neurons to express class I MHC is due to differential SOCS-1 expression[J]. J Neuroimmunol , 2002 , 123:35-40.
    15. Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system[J]. Nat Rev Immunol , 2002 , 2:410-416.
    16. Metcalf D , Gmenhalgh CJ , Viney E , et a1. Gigantism in mice lacking suppressor of cytokine signaling-2[J]. Nature , 2000 , 405:1069-1073.
    17. Jessica H, Prudence MS, Kate S, et al. Socs2 and Elf5 Mediate Prolactin-Induced Mammary Gland Development[J]. Molecular Endocrinology. 2006, 20 (5): 1177-1187.
    18. Turnley AM , Faux CH , Rietze RL , et al. Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling[J]. Nat Neurosci , 2002 , 5:1155-1162.
    19. Ransome MI , Goldshmit Y , Bartlett PF , et al. Comparative analysis of CNS populations in knockout mice with altered growth hormone responsiveness[J]. Eur J Neurosci , 2004 , 19:2069-2079.
    20. Ransome MI , Turnley AM. Analysis of neuronal subpopulations in mice over-expressing suppressor of cytokine signaling-2[J]. Neuroscience , 2005 , 132:673-687.
    21. Wang L , Zhang Z , Zhang R , Hafner MS , et al. Erythropoietin up-regulates SOCS2 in neuronal progenitor cells derived from SVZ of adult rat[J]. Neuroreport , 2004 , 15:1225-1229.
    22. Yona G , Claire EW , Hannah JS , et al. SOCS2 Induces Neurite Outgrowth by Regulation of Epidermal Growth Factor Receptor Activation[J]. J Biol Chem , 2004 , 279:16349-16355.
    23. Turnley AM. Role of SOCS2 in growth hormone actions[J]. Trends Endocrinol Metab, 2005 , 16:53-58.
    24. Turnley AM.Growth hormone and SOCS2 regulation of neuronal differentiation: possible role in mental function[J]. Pediatr Endocrinol Rev. 2005 Mar;2(3):366-71.
    25. Lias CF , Aschkenasi C , Lee C , et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area[J]. Neuron, 1999 , 23:775-786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700