GFAP,S100及Ki-67在胶质瘤中的表达及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究胶质纤维酸性蛋白(Glial Fibrillary Acidic Protein, GFAP)、S100和Ki-67在人脑胶质瘤肿瘤细胞中的表达,探讨其表达程度同胶质瘤分级之间的关系及其临床意义。
     方法
     收集统计浙江大学医学院附属第一医院神经外科2009年3月至2010年3月住院并行手术治疗的32例胶质瘤患者肿瘤切除标本的病理报告及GFAP, S100及Ki-67的免疫组织化学检查结果。
     结果
     GFAP, S100和Ki-67三者在各级别的胶质瘤中均有表达。其中GFAP在各级胶质瘤细胞中的总阳性率高达96.9%;S100在高级别胶质瘤中的表达水平低于其在低级别胶质瘤中的表达水平(p<0.05);而Ki-67在高级别胶质瘤中的表达水平高于其在低级别胶质瘤中的表达水平(p<0.05)。
     结论
     GFAP, S100和Ki-67的免疫组化阳性结果均可作为胶质瘤病理诊断的重要依据。其中S100和Ki-67二者的表达水平可用于辅助判断胶质瘤的等级。而Ki-67的表达水平能较准确的反应胶质瘤肿瘤细胞的增殖水平,对判断胶质瘤患者的预后具有重要的参考价值。
Objective
     To examine the expression of GFAP, S100 and Ki-67 in human glioma, to discuss the value of GFAP, S100 and Ki-67 in histological grade and evaluate the clinical significance of them.
     Methods
     HE and immunohistochemical staining technique was used to detect the expression of GFAP, S100 and Ki-67 in 32 patients, who were operated in the 1st Affiliated Hospital of Zhejiang University, College of Medicine, from March 2009 to March 2010. The results of HE and immunohistochemical staining are collected from the patients' pathological report
     Results
     GFAP, S100 and Ki-67 express in all different grades of human glioma. The total positive rate of GFAP in all peitients is 96.9%. The expression level of S-100 was decreased with the increased grade of malignancy (p<0.05), while the expression level of Ki-67 was increased (p<0.05).
     Conclusion
     The expression of GFAP, S100 and Ki-67 is very important to the pathological diagnosis of human glioma. The expression of S100 and Ki-67 are closely related with pathologic grade of glioma. And the Ki-67's expression level correlates significantly with proliferating activity of glioma cell, which effects the peitients'prognosis.
引文
[1]Taraszewska A, Matyja E. Immunohistochemical studies in diagnosis of the uncommon cases of tumours of the central nervous system. Folia Histochem Cytobiol,2002,40(2):207-208.
    [2]Gerdes J, Lemke H, Baseh H, et al. Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki67. J Immunol,1984,133:1710-1715.
    [3]Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol,2007,114(2):97-109.
    [4]Bravo R, Frank R, Blundell. PA, et al. Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature,1987,326(6112):51-52.
    [5]Watt P, Hickson ID. Structure and function of type II DNA topoisomerase. Biochem J,1994,303(11):681-695.
    [6]刘旭文.人脑胶质瘤表皮生长因子受体的研究(综述).国外医学神经病学神经外科学分册,1995,22(6):296.
    [7]Kajiwara Y, Yamasaki F, Hama S, et al. Expression of survivin in astrocytic tumors correlation with malignant grade and prognosis. Cancer,2003,97(4):1077-1083.
    [8]Rutka Ji, Murakami M, Dirks PB, et al. Role of glial filament in cells and tumors of glial origin:a review. J Neurosurg,1997,87:420-430.
    [9]Lawrence FE, Rubin LJ. Contribution pf immunohistochemical to diagnositic problem of human cerebral tumors. J histochemcytochem,1998,26:513-523.
    [10]张锟,王雅杰,刘晓谦,等.胶质瘤GFAP、S-100、Vimentin的表达及其与肿瘤恶性程度关系的研究.中华现代临床医学杂志,2003,1(11):967-969.
    [11]Pekny M, Eliasson C, Chien CL, et al. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate folaments and an increased cell saturation density. Exp Cell Res,1998, 239:332-343.
    [12]Fiks T, Jesionek-Kupnicka D, Zakrzewski K, et al. Clinico-pathological analysis of pilocytic astrocytomas and gangliogliomas. Pol J Pathol,2001,52(1-2):47-51.
    [13]Wiesman M, Missler U, Gottmann D, et al. Plasma S-100 protein concentration in healthy adults in age-and, sex-independent. Clic Che,1998,44(5):1056-1058.
    [14]高东,王景润,张莉莉,等.脑梗死及多患梗死性痴呆患者脑脊液S-100、NSE的测定.中国急救医学,2002,22(2):67—69.
    [15]陈泽钦,陈慎仁,许海雄,等.人正常脑组织和脑胶质瘤中S-100、CD83分子的检测.中国病理生理杂志,2006,22(6):1240-1242.
    [16]Camby I, Nagy N, Lopes MB, et al. supratentorial pilocytic astrocytomas, anaplastic astrocytomas and glioblastomas are characterized by a differential expression of S100 proteins. Brain Pathal,1999,9(1):1-19.
    [17]Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech, 2003,60(6):540-551.
    [18]Wainwright MS, Craft JM, Grifin WS. Increased susceptibility of S100B transgenic mice to perinatal. Ann Neural,2004,56(1):61-67.
    [19]Heegard S, Sommer HM, Broholm H, et al. Proliferating cell nuclear antigen and Ki-67 immunohistochemistry of oligodendrogliomas with special reference to prognosis. Cancer,1995,76(10):1809-1813.
    [20]Gerdes J, Lemke H, Baseh H, et al. Cell cycle analysis of a cell proliferation associated human nuclear antigen defined by the monoclonal antibody Ki67.J Immunol,1984,133:1710-1715.
    [21]Liu M, Lawson G, Delos M, et al. Predictive value of the fraction of cancer cells inmmnolabeled for proliferating cell nuclearantigen or Ki67 in biopsies of head and neck carcinomas to identify lymph node metastasis:comparison with clinical and radiologic examinations. Head Neck,2003,25(4):280-288.
    [22]马越,于士柱,杨树源,等.联合测定hTERT和Ki-67的表达对胶质瘤分级的评价.中华肿瘤防治杂志,2007,14:1081-1084.
    [23]Onda K, davis RR, Shibuya M, et al. Correlation between the bromodeoxyruidine labeling index and the MIB--1 and Ki-67 proliferating cell indices in cerebral gliomas. Cancer,1994,74:1921.
    [24]康凯夫,杜长春,等.p53、增殖细胞核抗原、Ki-67在星形细胞瘤中的表达与分化及预后的关系.中华病理学杂志,1998,04:303.
    [25]Mckeever PE, Ross DA, Strawderman MS, et al. A comparison of the predictive power for survival in gliomas provided by MIB-1, bromodeoxyuridine and proliferating cell nuclear antigen with histopathologic and clinical parameters. J Neuropathol Exp Neurol,1997,56:798.
    [26]Fisher BJ, Naumova E, Leighton CC, et al. Ki-67:a prognostic factor for low-grade glioma. Int J Radiat OncolBiol Phys,2002,52(4):996-1001.
    [27]Pollack IF, Hamilton RL, Burnham J, et al. Impact of proliferation index on outcome in childhood malignant gliomas:results in a multi-institutional cohort. Neurosurgery,2002,50(6):1238-1244.
    [28]Drozynska E, Izycka-Swieszewska E, Njedzwiecki M, et al. A correlation of microvascular density and proliferative activity to clinical and histological characteristics in neuroblastoma. Neoplasma(Bratislava),2006,53(3):247-252.
    [29]del Carmen Mejia M, Navarro S, Pellin A, et al. Study of proliferation and apoptosis in neuroblastoma. Their relation witll other prognostic factors. Archives Of Medical Research,2002,33(5):466-472.
    [30]KramsM, Rudolph P, Harms D. Proliferation and hTERT expression in neuroblastoma. Pathology,2004,25(4):317-323.
    [31]田永吉,李桂林,高俊,等.脑胶质瘤特异性6HRE-GFAP-Baxa基因治疗系统的构建.中华神经外科杂志,2006,22(4):216-219.
    [32]Hideho Okada, Gary Kohanbash, Xinmei Zhu, et al. Immunotherapeutic Approaches for Glioma. Crit Rev Immunol.2009,29(1):1-42.
    [33]杨文发,郑骏年,柳兴明,等.基因放射性核素反义治疗肾癌的体内外实验研究.徐州医学院学报,2007,27(1):30-33.
    [34]Kleindienst A, McGinn MJ, Harvey HB. Enhanced hippoc ampal neurogenesis by intraventricular s100B infusion is associated with improved cognitive recovery after traumatic brain injury. Neurotrauma,2005,22(6):645-655.
    [1]Brem, S.S., et al., Central nervous system cancers. J Natl Compr Canc Netw,2008. 6(5):p.56-504.
    [2]Shinojima N, Tada K, Shiraishi S, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003;63:6962-70.
    [3]Belda-Iniesta C, Carpeno JC, Saenz EC, Gutierrez M, Perona R, Baron MG. Long term responseswith cetuximab therapy in glioblastoma multiforme. Cancer Biol Ther 2006 Aug;5(8):912-4.
    [4]Ramos TC, Figueredo J, Catala M, Gonzalez S, Selva JC, Cruz TM, Toledo C, Silva S, Pestano Y, Ramos M, Leonard I, Torres O, Marinello P, Perez R, Lage A. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3:report from a phase I/II trial. Cancer Biol Ther 2006 Apr;5(4):375-9.
    [5]Martin J. van den Bent, Alba A. Brandes, Roy Rampling, et al. Randomized Phase II Trial of Erlotinib Versus Temozolomide or Carmustine in Recurrent Glioblastoma: EORTC Brain Tumor Group Study 26034. J Clin Oncol 2009 Mar;27(8):1268-74.
    [6]Frederick L,Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 2000; 60:1383-7.
    [7]Fukai J, Nishio K, Itakura T, Koizumi F. Antitumor activity of cetuximab against malignant glioma cells overexpressing EGFR deletion mutant variant III. Cancer Sci 2008 Oct;99(10):2062-9.
    [8]Alba A. Brandes, Enrico Franceschi, Alicia Tosoni, et al. Epidermal Growth Factor Receptor Inhibitors in Neuro-oncology:Hopes and Disappointments. Clin Cancer Res 2008 Feb; 14(4):957-60
    [9]Schmidt NO, Westphal M, Hagel C, et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999; 84:10-18.
    [10]Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007;25:4722-4729.
    [11]Chen W, Delaloye S, SilvermanDH, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography:A pilot study. J Clin Oncol 2007;25:4714-4721.
    [12]Andrew D. Norden, Jan Drappatz, and Patrick Y. Wen. Antiangiogenic therapy in malignant gliomas. Current Opinion in Oncology 2008,20:652-661.
    [13]Ahmed Idbaih, Francois Ducray, et al. Therapeutic Application of Noncytotoxic Molecular Targeted Therapy in Gliomas:Growth Factor Receptors and Angiogenesis Inhibitors. The Oncologist 2008; 13:978-992.
    [14]Aarts F, Bleichrodt RP, Oyen WJ, Boerman OC. Intracavitary radioimmunotherapy to treat solid tumors. Cancer Biother Radiopharm 2008 Feb;23(1):92-107.
    [15]Hideho Okada, Gary Kohanbash, Xinmei Zhu, et al. Immunotherapeutic Approaches for Glioma. Crit Rev Immunol.2009; 29(1):1-42.
    [16]Zalutsky MR. Targeted radiotherapy of brain tumours. Br J Cancer 2004 Apr 19;90(8):1469-73.
    [17]Reardon DA, Akabani G, Coleman RE, et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors:Phase Ⅱ study results. J Clin Oncol 2006;24:115.
    [18]Reardon DA, Quinn JA, Akabani G, et al. Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 1311 and administered into the surgically created resection cavity of patients with malignant glioma:Phase I trial results. J Nucl Med 2006;47:912.
    [19]Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD. Clinical experience with alpha-particle emitting 211 At:treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 2008 Jan;49(1):30-8.
    [20]Riva P, Franceschi G, Frattarelli M, et al.1311 radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma-phase I and Ⅱ study. Acta Oncol 1999;38:351.
    [21]Yamamoto T, Nakai K, Matsumura A. Boron neutron capture therapy for glioblastoma. Cancer Lett 2008 Apr 18;262(2):143-52.
    [22]Gong Wu, Weilian Yang, et al. Molecular Targeting andTreatment of an Epidermal Growth Factor Receptor-Positive Glioma Using Boronated Cetuximab. Clin Cancer Res 2007; 13(4):1260-68.
    [23]Tetsuya Yamamoto, Kei Nakai, Teruyoshi Kageji, et al. Boron neutron capture therapy for newly diagnosed glioblastoma. Radiotherapy and Oncology 2009; 91: 80-94.
    [24]Ishikawa E, Tsuboi K, Yamamoto T, Muroi A, Takano S, Enomoto T, Matsumura A, Ohno T. Clinical trial of autologous formalin-fixed tumor vaccine for glioblastoma multiforme patients. Cancer Sci 2007;98:1226-33.
    [25]Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, Hashimoto N, Maruno M, Elisseeva OA, Shirakata T, Kawakami M, Oji Y, Nishida S, Ohno S, Kawase I, Hatazawa J, Nakatsuka S, Aozasa K, Morita S, Sakamoto J, Sugiyama H, Yoshimine T. Phase Ⅱ clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 2008;108:963-71.
    [26]Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811.
    [27]Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296-306.
    [28]Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001 Feb 1;61(3):842-7.
    [29]Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005Aug1;11(15):5515-25.
    [30]Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JE, Kuhl J, Demaerel P, Warmuth-Metz M, Flamen P, Van Calenbergh F, Plets C, Sorensen N, Opitz A, Van Gool SW. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 2004;91:1656-62.
    [31]Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T, Narita M, Takahashi M, Tanaka R. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses:results of a clinical phase Ⅰ/Ⅱ trial. Br J Cancer 2003 Oct 6;89(7):1172-9.
    [32]Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M, Tanaka R. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma:results of a clinical phase I/II trial. Clin Cancer Res 2005 Jun 1;11(11):4160-7.
    [33]Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 2001 Sep;50(7):337-44.
    [34]Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL, Kufe DW, Ohno T. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004 Nov;27(6):452-9.
    [35]Holladay FP, Heitz T, Chen YL, Chiga M, Wood GW. Successful treatment of a malignant rat glioma with cytotoxic T lymphocytes. Neurosurgery 1992 Sep;31(3):528-33.
    [36]Rosenberg SA. Overcoming obstacles to the effective immunotherapy of human cancer. Proc Natl Acad Sci U S A 2008 Sep 2; 105(35):12643-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700