干扰与竞争条件下丛枝菌根菌和数种作物的互作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根菌(Arbuscular mycorrhizal fungi, AM)广泛存在于农业系统中,其可与80%的维管植物共生形成内生菌根,提高宿主植物对营养元素和水分的吸收,增加植物产量和抗逆性,进而影响系统中植物群落的组成和演替。本论文在甘肃省庆阳黄土高原于2004年和2005年连续两年研究了传统耕作、免耕、传统耕作+秸杆覆盖和免耕+秸杆覆盖等耕作方式对丛枝菌根菌的影响。在此基础上,以小麦(Triticum aestivum)和野生型(A17)蒺藜苜蓿(Medicago truncatula var. Jemalong)为轮作作物,在温室条件下模拟了黄土高原耕作方式下,土壤干扰和秸秆覆盖对根内球囊霉(Glomus intraradices)和珍珠巨孢囊霉(Gigaspora margarita)等两种丛枝菌根菌和蒺藜苜蓿互作的影响;并以野生型(A17)和突变体(dmi1)蒺藜苜蓿为竞争组合,采用同位素32P标记,进一步研究了丛枝菌根菌在植物竞争中的作用机理。主要结果如下:
     1、田间条件下,丛枝菌根菌与玉米(Zea mays)、冬小麦、大豆(Glycine max)等三种轮作作物在苗期均建立了共生关系,但丛枝菌根菌对3种作物的侵染率均较低,分别为玉米11%~30%,冬小麦8%~31%,大豆3%~30%。耕作方式对丛枝菌根菌侵染率的影响因作物、年份和生长阶段而异。与传统耕作相比,免耕和耕作+秸秆覆盖对3种作物菌根菌侵染率平均提高了10%~15%。3种作物在盛花(结荚)期的菌根菌侵染率均高于苗期,2005年的菌根菌侵染率总体高于2004年。耕作方式对作物产量、地上生物量和作物P吸收未产生显著影响,但三者变化趋势较为一致。
     2、温室内模拟黄土高原耕作方式,土壤干扰和秸秆覆盖未影响丛枝菌根菌对蒺藜苜蓿的侵染率,亦未影响菌丝室(hyphal compartment, HCs)和根室(root hyphal compartment, RHCs)土壤中的丛枝菌根菌的菌丝长度。根内球囊霉和珍珠巨孢囊霉单独或混合接种,在A17出苗4周后的侵染率分别达到70%、30%和60%,混合接种效应介于单独接种效应之间。7周时,A17单独接种的侵染率均为60%,混合接种的侵染率为25%,混合接种效应表现为对侵入位点的竞争。土壤干扰通过对丛枝菌根菌的作用而影响A17的P吸收和生物量,未接种处理未对干扰表现出任何响应。干扰显著降低了接种丛枝菌根菌A17的P含量和生物量。两种丛枝菌根菌单独接种或混合接种表现出不同的效应,混合接种和珍珠巨孢囊霉使4周龄A17地上部分组织P含量分别降低37.64%和69.67%;但未影响接种根内球囊霉A17地上组织P含量,在7周龄时,干扰使接种根内球囊霉的A17地上组织P含量降低了30.29%,但未影响其他接种处理A17的地上组织P含量。秸秆覆盖仅提高了干扰条件下HCs土壤接种根内球囊霉和RHC土壤混合接种的菌丝长度,或降低了未干扰条件下RHCs土壤菌丝长度(P<0.05),但未对丛枝菌根菌和A17互作产生显著影响。土壤干扰、秸秆覆盖和丛枝菌根菌接种亦影响了土壤水稳性团聚体,但因土壤团聚体颗粒直径而异,土壤干扰降低了1~2 mm和0.25~0.5mm直径土壤团聚体,秸秆覆盖提高了1~2 mm和0.25~0.5 mm直径土壤团聚体,丛枝菌根菌仅提高了直径>2 mm土壤团聚体形成(P<0.05)。
     3、筛选出了对丛枝菌根菌生长正效应的野生型蒺藜苜蓿A17和无反应型蒺藜苜蓿突变体dmil,并用于不同基因型蒺藜苜蓿生长竞争试验。A17对dmi1的竞争优势主要是通过其与丛枝菌根菌建立共生体实现,A17中通过丛枝菌根菌吸收的32P含量为dmi1的100~200倍。在不接种丛枝菌根菌的条件下,A17和dmi1对P的吸收和生物量基本相同。接种丛枝菌根菌后,提高了A17在A17+dmi1和A17+17组合中的竞争能力,尤其是在低P水平下,A17的P含量和生物量可达dmi1的1~2倍。丛枝菌根菌-植物组合对竞争反应存在多样性。A17在接种根内球囊霉后,其在不同竞争组合中的侵染率较一致,不施P处理下约为75%,施P处理下约为40%;但接种珍珠巨孢囊霉后,其在A17+A17中的侵染率高于在A17+dmi1中的侵染率。dmi1在dmi1+dmi1组合中,仅个别植株检测到共生体结构,且侵染率极低(<2%),但在A17+dmi1中,个别植株侵染率可高达15%。
Arbuscular mycorrhizal (AM) fungi widely exist in agricultural ecosystems and can form symbiosis with approximately 80% of vascular plants. The symbiosis usually enhances plant mineral nutrient uptake, improves water stress tolerance and disease resistance. It plays an important role in agricultural production, vegetation components and succession. A two-year field survey was undertaken in 2004 and 2005 to investigate the effects of various tillage systems on AM fungi infection in the Loess Plateau of Gansu China. These were conventional tillage (CT), no tillage (NT), conventional tillage with stubble retention (TS) and no tillage with stubble retention (NTS). The rotation crops were maize (Zea mays), winter wheat (Triticum aestivum) and soybean(Glycine max). To further understand the effect of soil disturbance and residue application on the interactions of plant and AM fungi, a greenhouse experiment was conducted using wheat and a wild variety (A17) of medic (Medicago truncatula var. Jemalong) to simulate a single rotation of wheat and medic. Soils were disturbed or non-disturbed to simulate tillage or no tillage, with or without application of residue to simulate stubble retention. The two AM fungi used in the trial were Glomus intraradices and Gigaspora margarita. The role of AM fungi in medic growth competition was also studied by using the wild (A17) and mutant (dmil) variety of medic as competition combinations.32P labelled soil was employed to measure the direct P uptake by AM fungi. The results were as the follows:
     1. AM colonisation of the crops was well established at seedling stage and varied with agricultural practices and growth stage. All crops had higher AM colonisation at the flowering/podding stage than that of the seedling stage. Percentage of root colonisation was 11%-30% for maize,8%-31% for winter wheat and 3%-30% for soybean. In general, NT and TS increased AM colonisation of the three crops by 10%-15% compared with CT and NTS. There was no effect of residue application or tillage treatment on grain yield, biomass and P uptake of the three crops in either year, however the trends were similar for grain yield, biomass and P uptake under different agricultural practices.
     2. In the greenhouse, the two stage experiment was successful in simulating the wheat/medic rotation. Soil disturbance and residue application did not affect AM colonisation in medic nor did it affect hyphal length density in hyphal compartments (HCs) and root hyphal compartments (RHCs). Four weeks after seedling emergence, AM colonies in the medic were well established from the inoculation. The mean colonisation rate was 70%,30% and 60%, by G intraradices, Gi. margarita and mixtures of both species respectively. Percentages of AM colonisation from mixed inoculation was in between inoculation of a single species, however the infection rate by single inoculation of G. intraradices and Gi. margarita was 60%, whereas the rate by mixed inoculation was 25% 7 weeks after emergence. Plants with AM fungi showed an advantage in competition to infection site and growth space in roots. Non mycorrhizal medic did not show any response to soil disturbance, but medic with AM treatment was significantly affected by soil disturbance, which suggests that the effect of soil disturbance on medic was via its effects on AM fungi. Soil disturbance significantly decreased medic P uptake and biomass. Compared with the undisturbed treatment, soil disturbance decreased P uptake of medic inoculated with the mix of the two AM fungi by 37.64% or with Gi. margarita by 69.67% while it had no effect on the G intraradices inoculation. Soil disturbance only decrease P uptake of medic colonized by G intraracides by 30.29% compared to the undisturbed treatment at 7 weeks after emergence. Residue application had little effect on the interactions of medic and AM fungi, it only increased hyphal length density in HCs or RHCs in disturbed and undisturbed treatment. The effects of treatments on size distribution of water stable aggregates was an increased number of particles>2 mm in all inoculated treatments compared with NM treatments. Soil disturbance decreased the number of particles at size of 1-2 mm and 0.25-5 mm where as residue application increased numbers of particles of 1-2 mm and 0.25-0.5 mm.
     3. Medic plants of wild type A17 and mutant dimil were chosen as a positive and non response plant to AM fungi in the growth competition experiment. The results showed that A17 had an advantage compared to dmil in P absorbance and that the P extracted via AM fungi was transferred into biomass of A 17 at both A17+A17 and A17+dmil combinations. The biomass of A17 was 1-2 times greater than dim1 and the 32P uptake by A17 was about 100-200 times to dmi1. There is function diversity among plant-AM fungi combination in competition situations. The symbiosis of A17 and AM fungi was well established in the range of 40%-80%. The colonisation of A17 was lower at high P than that in the low P treatment. A 17 also had higher AM colonisation in A17+A17 than in A 17+dmil. The dmi1 showed different competition strategy to AM colonisation, it had higher AM colonisation at A17+dmi1 (15%) than in dmi1+dmi1(2%).
引文
1.艾为党,张俊伶,李隆,李晓林.三叶草体内磷通过菌丝桥向黑麦草的传递研究.应用生态学报,1999,10(5):615-618.
    2.安琼,包玉英,闫伟.内蒙古中西部草原主要植物的丛枝菌根及其结构类型研究.生物多样性,2004,12:501-508.
    3.蔡晓布,彭岳林,冯固.西藏高原草地植物AM真菌多样性及其环境影响因子研究.土壤学报,2005:42(4):642-651.
    4.陈欣,唐建军.红壤坡地杂草群落VA菌根真菌的宿主物种调查.生物多样性,2001,9:122~128.
    5.冯固,杨茂秋,白灯莎.盐胁迫下VA菌根真菌对无芒雀麦体内矿质元素含量及组成的影响。草业学报,1998,7(3):21-28.
    6.冯固,张玉林,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,2001,15:99-102.
    7.盖京萍,冯固,李晓林.我国北方农田土壤中AM真菌的生物多样性.生物多样性,2004,12:435-440.
    8.贺学礼,李斌.VA菌根真菌与植物相互选择性的研究.西北植物学报,1999,19(3):471-475.
    9.李登武,王冬梅,余仲东.AM真菌与植物共生的生理生化效应研究进展.西北植物学报,2002,22:1255-1262.
    10.李海燕,刘润进,束怀瑞.丛枝菌根真菌提高植物抗病性的作用机制.菌物系统,2001,20:435-439.
    11.刘润进,陈应龙.菌根学,2007,北京,科学出版社1-325.
    12.林先贵,郝文英.不同植物对VA菌根的依赖性.植物学报,1989,31:721-725.
    13.罗彩云,沈禹颖,南志标,高崇岳,Chan Yin,樊丽琴.水土保持耕作下陇东玉米-小麦-大豆轮作系统产量、土壤易氧化有机碳动态.水土保持学报,2005,19(4):84-88.
    14.乔红权,张英,郭良栋.新疆北部地区常见植物根围的丛枝菌根真菌.菌物学报,2005,24:130~136.
    15.盛彤笙,任继周.黄土高原的土壤侵蚀与农业格局.农业经济问题.1980,7:2-7
    16.吴强盛、夏仁学.3种农业措施对柑橘丛枝菌根发育的影响.亚热带植物科学,2005 34(3):15-17.
    17.姚宇卿,王育红,吕军杰.保持耕作麦田水分动态及水土流失的研究.土壤肥料,2002(5):8-10.
    18.袁学霞,林先贵,尹睿.菌根真菌对大气CO2浓度升高的响应研究进展.应用与环境生物学报,2005,11:627-631.
    19.张俊伶,李晓林,杨志福.三叶草根间菌丝桥在氮素传递中的作用初探.核农学报,1997,11:247-253.
    20.张玉凤,冯固,李晓林.丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响.生态学报,2003,23:30-37.
    21.张美庆,王幼珊,邢礼军.环境因子和AM真菌分布的关系.菌物系统,1999,18:25-29.
    22.周文龙.接种VA菌根对高粱吸收中、微量元素的影响.热带亚热带土壤科学,1998,7:72-74.
    23. Abbott L.K., Robson A.D.The role of vesicular-arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Australian Journal of Agricultural Research,1982, 33:389-408.
    24. Abbott L.K., Robson A.D., Bore D.G. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytologist, 1984,97:437:446.
    25. Al-Karaki G, McMichael B., Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza,2004,14:263-269.
    26. Alvarez C.R., Alvarez R. Short-term effects of tillage systems on active soil microbial biomass. Biology and Fertility of Soils,2000,31:157-161.
    27. An Z.Q, Hendrix J.W., Hershman D.E., Ferriss R.S., Henson G.T. The influence of crop rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza,1993, 3:171-182.
    28. Anken T., Heuser J., Weisskopf P., Mozafar A., Sturny W. Bodenbearbeitungssysteme, Direktsaat stellt hochste Anforderungen. Report 501.1997, Swiss Federal Research Station for Agriculture Economics and Engineering, Tanikon, Switzerland.
    29. Bagayoko M., Buerkert A., Lung G, Bationo A., Romheld V. Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa:soil mineral nitrogen, mycorrhizae and nematodes. Plant and Soil,2000,218:103-116.
    30. Bailey K.L., Lazarovits G. Suppressing soil-borne disease with residue management and organic amendments. Soil Tillage Research,2003,72:169-180.
    31. Beare M.H., Hus S., Coleman D.C., Hendrix P.F. Influence of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils. Applied Soil Ecology,1997,5:211-219.
    32. Bedini S., Avio L., Argese E., Giovannetti M. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agriculture Ecosystems and Environment,2007,120:463-466.
    33. Bentivenga S.P., Hetrick B.A.D. Relationship between mycorrhizal activity, burning, and plant productivity in tallgrass prairie, Canadian Journal of Botany,1991,69:257-260.
    34. Bentivenga S.P., Hetrick B.A.D.Seasonal and temperature effects on mycorrhizal activity and dependence of cool-and warm-season tallgrass prairie grasses. Canadian Journal of Botany, 1992,70:1596-1602.
    35. Bethlenfalvay, G.J., Pacovsky, R.S. and Brown, M.S. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean:Development of the endophyte. Phytopathology, 198272:894-897
    36. Bethlenfalvay, G.J., Evans, R.A. and Lesperance, A.L. Mycorrhizal colonization of crested wheatgrass as influenced by grazing. Agronomy Journal,1985,77:233-236
    37. Bingbam M.A., Biondim M. Mycorrhizal hyphal length as a function of plant community richness and composition in restored norther Tallgrass Prairies (USA). Rangeland Ecology Management,2009,62:60-67.
    38. Blee K.A., Aderson A.J. Defence-related transcript accumulation in Phaseolus vulgaris L.colonized by the arbuscular mycorrhizal fungus Glomus intraradices. Plant Physiology, 1996,110:675-688.
    39. Boddington, C.L., Dodd, J.C. The effect of agricultural practices on the development of indigenous arbuscular myocrrhizal fungi I. Field studies in an Indonesian ultisol.Plant and Soil,2000,218:137-144.
    40. Borie F.,Redel Y., Rubio R.Interactions between crop residue application and mycorrhizal development and some soil-root interface properties and mineral acquisition by plants in an acidic soil. Biology Fert ility of Soils 2002,36:151-160.
    41. Borstler B. Renker C., Kahmen A., Buscot F. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biology and Fertility of Soils,2006,42(4):286-298.
    42. Burleigh S.H., Harrison M.J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal fungi and to phosphate nutrition. Plant Molecular Biology,1997,34:199-208
    43. Camel SB, Reyes-Solis MG, Ferrera-Cerrato R, Franson RL, Brown MS, Bethlenfalvay GJ. Growth of vesicular-arbuscular mycorrhizal mycelium through bulk soil. Soil Science Society of America Journal,1991,55,389-393.
    44. Castillo C.G., Rubio R., Rouanet J.L., Bone F., Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal progpagules in an Ultisol. Biology Fertiligy of Soils,2006,43: 83-92.
    45. Cavagnaro T.R., Smith F.A., Smith S.E., Jakobsen Ⅰ. Functional diversity in arbuscular mycorrhizas:exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell and Environment,2005,28:642-650.
    46. Cavagnaro T.R., Smith F.A., Smith S.E. Interations between arbuscular mycorrhizal fungi and a mycorrhiza-defective mutant tomato:does a noninfective fungus alter the ability of an infective fungus to colonise the roots-and vice versa? New Phytoloist,2004,164:485-491.
    47. CheliusM.K., Triplett E.W. Rapid detection of arbuscular mycorrhizae in roots and soil of an intensively managed turfgrass system by PCR amplification of small subunit rDNA. Mycorrhiza,1999,9:61-64.
    48. Corkidi L., Rowland, D.L., John N.C. Nitrogen fertilization alters the functioning of arbuscular mycorrhizae at two semiarid grasslands. Plant and Soil,2002,240:299-310.
    49. Dehne H.W. Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology,1982,72:1115-1118.
    50. Deng S.P., Tabatabai M.A. Effect of tillage and residue management on enzyme activities in soils:III Phosphatases and arylsulfatase. Biology and Fertiligy of Soils,1997,24:141-146.
    51. de Varennes A., Goss M.J. The triparite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biology and Biochemistry,2007, 39:2603-2607.
    52. Diamond, J.M. Colonization of a volcano inside a volcano. Nature,1977,270:13-14.
    53. Dodd J.C., Arias I, Koomen I, Hayman DS. The management of populations of vesicular-arbuscular mycorrhizal fungi in acid infertile soils of a savanna ecosystem.1. The effect of pre-cropping and inoculation with VAM-fungi on plant growth and nutrition in the field. Plant and Soil,1990, 122:229-240.
    54. Douds D.D., Galvez L., Franke-Snyder M, Reider C., Drinkwater L.E. Effect of compost addition and crop rotation point upon VAM fungi. Agriculture Ecosystems & Environment,1997,65: 257-266.
    55. Drijber R.A., Doran J.W., Parkhurst A.M., Lyon D.J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology and Biochemistry,
    2000,32:1419-1430.
    56. Eom Ahn-Heum, Hartnett, David C., Wilson, Gail WT.1999.The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. American Midland Naturalist,142(1):55-71.
    57. Egerton-Warburton LM and Allen EB 2000 Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10,484-496.
    58. Ehlers W., Claupein W. Approaches toward conservation tillage in Germany. In:Carter MR (ed) Conservation tillage in temperate agroecosystems. Lewis Publishers, Boca Raton, FL, USA, 1994,141-165.
    59. Evans D.G., Miller M.H. Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. Ⅰ. Causal relations. New Phytologist,1988,110: 67-74
    60. Facelli E, Facelli JM, Smith SE, McLaughlin MJ.Interactive effects of arbuscular mycorrhizal symbiosis, intraspecifi c competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytologist141,535-547.
    61. Facelli E., Facelli JM. Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia,2002,133,54-61.
    62. Facelli E, Facelli JM, Smith SE, Smith F.A. Mycorrhizal symbiosis-overview and new insights into roles of arbuscular mycorrhizas in agro-and natural ecosystems. Australian Plant Pathology,2009,38(4):339-344.
    63. Facelli E, Smith SE, Facelli JM, Christophersen HM, Andrew Smith F. Underground friends or enemies:model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytologist,2010,185 (4):1050-61.
    64. Fairchild G.L., Miller M.H. Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize.Ⅱ. Development of the effect. New Phytologist,1988,110:75-84.
    65. Fairchild GL, Miller MH. Vesicular-arbuscular mycorrhizas and the soil-disturbance-indiced reduction of nutrient absorption in maize.III. Influence of P amendments to soil. New Phytologist,1990,114:641-650.
    66. Fernanda C., Echeverfa H., Aguirrezabal L.A.N.Soil available phosphorus status determines indigenous mycorhizal colonization of field and glasshouse-grown spring wheat from Argentina. Applied Soil Ecology,2007,35:1-9.
    67. Fitter A.H. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytologist,1977,79:119-125.
    68. Fitter A.H., Garbaye J. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil.1993,159:123-132.
    69. Fitter A.H. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Globe Change Biology,2003,9:186-194.
    70. Fitter A.H. Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. Journal of Experimental Botany, 1988,39:595-603.
    71. Fitter A.H., Nichols R. The use of benomyl to control infection by vesicular-arbuscular mycorrhizal fungi. New Phytologist,1988,110:201-206.
    72. Francis, R., Read D.J. Direct transfer of carbon between plants connected by vesicular arbuscular mycorrhizal mycelium. Nature,1984,307:53-56.
    73. Franken P., Lapopin L., Meyergaue G. RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus, Gigaspora rosea. Mycologia,1997,89(2):293-297.
    74. Frenzel A., Manthey K., Perlick A.M., Meyer F., Puhler A. Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Molecular Plant-Microbe Interactions,2005,18:771-782.
    75. Frey S.D., Elliot E.T., Paustian K. Bacterial and fungal abundance and biomass in conventional and notillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry,1999,31:573-585.
    76. Fu B.J. Soil erosion and its control on the Loess Plateau of China. Soil Use Manage,1989,5: 76-82
    77. Galvez L., Jr Douds D.D., Drinkwater L.E., Wagoner P. Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant and Soil, 2001,228:299-308.
    78. Gange A.C., Brown V. K., Sinclair G. S. Vescular-arbuscular mycorrhizal fungi:a determinant of plant community structure in early succession.Function Ecology1993,7:616-622.
    79. Gange A.C., Case S.J. Incidence of microdochium patch disease in golf putting greens and relationship with arbuscular mycorrhizal fungi. Grass and Forage Science,2003,58:58-62.
    80. Gaur, R., Shani, N., Kawaljeet, K., Johri, B.N., Rossi, P., Aragno, M., Diacetylphloroglucinol-producing pseudomonads do not influence AM fungi in wheat rhizosphere. Currunt Science 2004.86,453-457.
    81. Gavito M.E., Miller M.H. Changes in mycorrhiza development in maize induced by crop management practices. Plant and Soil,1998,198:185-192.
    82. Gemma J.N., Koseke R.E., Flynn T. Mycorrhizae in Hawaiian pteridophytes:occurrence and evolutionary significances. American Journal of Botany,1992,79:843-852.
    83. Gerdemann, J.W. Vesicular arbuscular mycorrhiza and plant growth. Annual Review of Phytopathology,1968,6:397-418.
    84. Giovannetti M., Mosse B. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist,1980,84:489-500.
    85. Grace E.J., Cotsaftis O, Tester M, Smith F.A., Smith S.E. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.New Phytologist, 2009,181:938-949.
    86. Graham J H. What do root pathogens see in mycorrhizas? New Phytologist,2001,149 (3):357-359.
    87. Graham J.H., Abbott L.K. Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant and Soil,2000,220:207-218.
    88. Grigera M.S., Drijber R.A., Wienhold B.J. Redistribution of crop residues during row cultivation creates a biologically enhanced environment for soil microorganisms. Soil & Tillage Research,2007,94:550-554.
    89. Gryndler M., Larsen J., Hrselova H., Rezacova V., Gryndlerova H., Kubat J. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza,2006, 16:159-166.
    90. Guggenberger G, Frey S.D., Six J., Paustian K., Elliott E.T. Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Science Society of America Journal,1999, 63:1188-1198.
    91. Hall I.R, Scott R.S., Johnstone P.D. Effect of vesicular-arbuscular mycorrhizal on response of 'Grasslands Huia' and 'Tamar' white clovers to phosphorus. New Zealand Journal of Agricultural Researcch,1997,20:349-355.
    92. Hall I.R., Kelson A.An improved technique for the production of endomycorrhizal infested soil pellets New Zealand Journal of Agricultural Research,1981,24:221-222.
    93. Hall I.R. Effect of inoculant endomycorrhizal fungi on white clover growth in soil cores. Journal of Agriculture Science (Cambridge),1984,102:719-723.
    94. Hall I.R. Effects of endomycorrhizas on the competitive ability of white clover. New Zealand Journal of Agricultural Research,1977,21:509-515.
    95. Hall I.R., Johnstone P.D., Dolby R. Interactions between endomycorrhizas and soil nitrogen and phosphorus on the growth of ryegrass. New Phytologist,1984,97:447-453.
    96. Hamel C., Neeser C., Bannate-Cartin U, Smith D.L., Endomycorrhizal fungal species mediate 15N transfer from soybean to maize innon fumigated soil. Plant and soil,1991,138:41-47.
    97. Hanson W.C. The photometric determination of phosphorus in fertilizers using the phosphovanado-molybdate complex. Journal of Science Food Agriculture,1950,1:172-173.
    98. Harinikumar K.M., Bagyaraj D.J. Effect of crop rotation on native vesicular arbuscular mycorrhizal propatules in soil. Plant and soil,1998.110:77-80.
    99. Harnett D.C., Wilson G.W.T. Mycorrhizal influence plant community structure and diversity in tallgrass prairie. Ecology,1999,80:1187-1195.
    100.Harrier L.A. The arbuscular mycorrhizal symbiosis:a molecular review of the fungal dimension. Journal of Experimental Botany,2001,52:469-478.
    101.Harrison M.J. The arbuscular mycorrhizal symbiosis:An underground association. Trends in Plant Science,1997,2:54-60.
    102.Harrison M.J., van Buuren M.L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature,1995,378:626-629.
    103.Harrison M.J. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:361-389.
    104.Harrison M.J, Dixon R.A. Spatial patterns of expression of fl avonoid/isofl avonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. The Plant Journal,1994,6:9-20.
    105.Harrison M.J., Dewbre G.R., Liu J.Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell,2002,14:2413-2429.
    106.Hart M.M., Reader R.J. Do arbuscular mycorrhizal fungi recover from soil disturbance differently? Tropical Ecology,2004,45:97-111.
    107.Hartnett D.C., Hetrick B.A.D. Wilson G.W.T., Gibson D.J. Mycorrhizal influence on intra-and interspecific neighbour interactions among co-occurring prairie grasses. Journal of Ecology,1993,81,787-795.
    108.Hartnett D.C., Wilson G.W.T. Mycorrhizal influence plant community structure in tallgrass prairie. Ecology,1999,80:1187-1195.
    109.Hayman D.S. Mycorrhiza and crop production. Nature,1980,287:57-82
    110.Heath M.C. The root nodule-arbuscular mycorrhizae -plant pathogen relationship. Physiological and Molecular Plant Pathology,2002,60:101-102.
    111.Henrion B., Le Tacon F., Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes. New Phytologist,1992,122:289-277.
    112.Hendrix J, Guo B., An Z.Q. Divergence of mycorhizal fungal communities in crop production systems. Plant and Soil,1995,170:131-140.
    113.Hetrick B.A.D., Wilson G.W.T., Todd T.C. Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil microorganisms. Canadian Journal of Botany,1990,68:461-467.
    114.Hetrick, B.A.D., Gerschefsk K.D., Wilson GW.T. The influence of phosphorus fertilization, drought. fungus species and non-sterile soil on mycorrhizal growth responses in tallgrass prairie plants. Canadian Journal of Botany,1986,64:1199-1203.
    115.Hetrick B.A.D., Gerschefske K.D., Thompson W.G Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany, 1988,.66:1376-1380.
    116.Hetrick B.A.D., Wilson GW.T., Hartnett D.C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany,1989, 62:2680-2615.
    117.Hidebrandt U. Janetta K., Ouziad F. Arbuscular myocrrhizal colonization of hypophytes in Cenral European salt marshes. Mycorrhiza,2001,10:175-183.
    118.Hoflich G, Tauschke M., Kuhn G, Werner K., Frielinghaus M., Hohn W. Influence of long-term conservation tillage on soil and rhizosphere microorganisms. Biololgy Fertility of Soils,1999,29:81-86.
    119.Huang GB., Zhang R.Z., Li GD. Productivity and sustainability of a spring wheat-field pea rotation in a semi-arid environment under conventional and conservation tillage systems. Field Crop Research,2008,107:43-55.
    120.Hussain I., Olson K.R., Ebelhar S.A. Long-term tillage effect on soil chemical properties and organic matter fractions. Soil cience Society of America Journal 1999,63:1335-1341.
    121.Hussain I., Olson K.R., Siemens J.C., Long-term tillage effects on physical properties of eroded soil. Soil Science,1998,163:970-981.
    122.Hussey R.S.,Roncadori R.W. Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease,1982,66:9-14.
    123.Hwang S.F., Chang. K.F., Chakravarty P. Effects of vesicular-arbuscular mycorrhizal fungi on the development of Verticillium and Fusarium wilts of alfalfa. Plant Disease,1992,76: 239-243.
    124.Jakobsen J., Gazey C., Abbott L.K. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytologist,2000,149:95-103.
    125.Jakobsen I., Abbott L.K., Robson A.D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.2. Hyphal transport of P over defined distance. New Phytologist,1992a,120:509-516.
    126.Jakobsen I., Abbott L.K., Robson A.D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytologist,1992b,120:371-380.
    127.Jansa J., Mozafar A., Anken T., Ruh R., Sanders I.R., Frossard E. Diversity and structure of AMF mommunities as affected by tillage in a temperate soil. Mycorrhiza,2002,12:225-234.
    128.Jansa J., Mozafar A., Frossard E. Long distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie,2003a,23:481-488.
    129.Jansa J., Mozafar A., Kuhn G., Anken T., Ruh R., Sanders I.R., Frossard E. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications,2003b, 13:1164-1176.
    130.Jasper D.A., Abbott L.K., Robson A.D. Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytologist,1989a,112:93-99.
    131.Jasper D.A., Abbott L.K., Robson A.D. Hyphae of a vescular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytologist,1989b, 112:101-107.
    132.Jasper D.A., Abbott L.K., Robson A.D. The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytologist,1991,118: 471-476.
    133.Johnson N.C. Can Fertilization of Soil Select Less Mutualistic Mycorrhizae? Ecological Applications 1993 3(4):749-757.
    134.Johnson D., Leake J.R., Read D.J. Novel in-grown core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytologist,2001,152:555-562.
    135.Johnson D., Vanderkoornhuyse P J, Leake J.R., Gilbert L. Booth R.E. Grime J.P., Young P.W., Read D.J. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosm. New Phytologist,2003a,161:503-515.
    136.Johnson N.C., Wolf J., George W.K. Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecology Letters,2003b,6:532-540.
    137.Kabir Z., Koide R.T. Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant and Soil,2002,238: 205-215.
    138.Kabir Z., O'Halloran I.P., Fyles J.W. Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization:Hyphal density and mycorrhizal root colonisation. Plant and Soil,1997,192:285-293.
    139.Kabir Z., O'Halloran I.P., Widden P., Hamel C. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and convential tillage system. Mycorrhiza.1998,8: 53-55.
    140.Kaspar T.C., Brown H.J., Kassmeyer E.M. Corn root distribution as affected by tillage, wheel traffic, and fertilizer placement. Soil Science Society of America Journal,1991,55:1390-1394.
    141.Kay H., Leyton L. The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. New Phytologist,1981,89:599-608.
    142.Kellam M.K., Schenck N.C. The effect of a vesicular-arbuscular mycorrhizal fungus, Glomus macrocarpum, on the amount of galling produced by Meloidogyneb incognita on soybean Proc American Phytopathology Society (Abst.),1978,4:124.
    143.Killham K. Vesicular-arbuscular mycorrhizal mediation of trace and minoelement uptaken in perennial grasses:relation to livestock herbage. In:Ecological Interactions inSoil Plants,Microbes and Animals. Edited by Fitter A.H. Blackwell Scientific Publications.1985, 225-232.
    144. Klironomos J.N., Ursic M. Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biology and Fertiligy of Soils,1998,26 (3):250-253.
    145.Koide R.T., Mosse B. A history of research on arbuscular mycorrhiza. Mycorrhiza,2004,14: 145-163.
    146.Koske R.E., Gemma J.N., Flynn T. Mycorrhizae in Hawaiian angiosperms:A survey with implications for the origin of the native flora. American Journal of Botany,1992,79:853-862.
    147.Kothamasi D., Kuhad C.R., Babu C.R. Arbuscular mycorrhizae in plant survival strategies. Tropical Ecology,2001,42(1):1-13
    148.Kouno K., Tuchiya Y., Ando T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol Biochemistry,1995,27:1353-1357.
    149.Landis F.C., Fraser L.H. A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytologist,2008,177:466-479.
    150.Lekberg Y, Koide R.T. Is plant performance limited by arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist,2005,168: 189-204.
    151.Li H.Y, Zhu Y.G., Marschner P., Smith F.A., Smith S.E. Wheat response to arbuscular mycorrhizal fungi in a highly calcareous soils differ from those of clover, and change with plant development and P supply. Plant and Soil,277:221-232.
    152.Li H.Y, Smith S.E., Holloway R.E. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol ogist 2006,172:536-543.
    153.Liu GB. Soil conservation and sustainable agriculture on the Loess Plateau:chanllenges and prospects. Ambio 1999,28:663-668
    154.Liu R.J., Huang Y, Lin X.G Recent advances in the studies of Mycorrhizology. Journal of Fungal Research,2009 7(2):116-124.
    155.Lugo M. A., Maza M.E.G, Cabello M.N. Arbuscular mycorrhizal fungi in a mountain grassland II:Seasonal variation of colonization studied, along ith its relation to grazing and mebabolic.Mycologia,2003,95(3):407-415.
    156.Maherali H., Klironomos J.N., Influence of Phylogeny on fungal community assembly and ecosystem functioning. Science,2007,316:1746-1748
    157.Mader P., Edenhofer S., Boller T., Wiemken A., Niggli U. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Boillogy and Fertility of Soils,2000,31:150-156.
    158.Manns H.R., Maxwell C.D., Emery R.J.N. The effect of ground cover or initial organic carbon on soil fungi, aggregation, mosisture and organic carbon in one season with oat (Avena sativa) plots. Soil and Tillage Research,2007, doi:10.1016/j.still.2007.03.001.
    159.Marschner P., Baumann K. Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil,2003,251:279-289.
    160.McGonigle T.P., Evans D.G, Miller M.H. Effect of degree of soil disturbance on mycorrhizal colonisation and phosphorus absorption by maize in growth chamber and field experiments. New Phytologist,1990,116:629-636.
    161.McGonigle T.P., Miller M.H. Mycorrhizae, phosphorus absorption, and yield of maize in response to tillage. Soil Science Socialty of American Journal,1996,60:1856-1861.
    162.McGonigle T.P., Miller M.H., Young D. Mycorrhizae, crop growth, and crop phosphorus nutrition in maize-soybean rotation given varies tillage treatments. Plant and Soil,1999,210: 33-42
    163.McGonigle T.P., Yano K., Shinhama T. Mycorrhizal phosphorus enhancement of plants in undisturbed soil differs form phosphorus uptake stimulation by arbuscular mycorrhizae over non-mycorrhizal controls. Biol ogy and Fertility of Soils,2003,37:268-273.
    164.Medve R.J. The mycorrhizal of pioneer species in disturbed ecosystems in western Pennsylvania. American Journal of Botany,1984,71:787-794.
    165.Menge J.A.Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture. Canadian Journal of Botany,1983,61:1015-1024.
    166.Michele C. H.The root nodule-arbuscular mycorrhizae -lant pathogen relationship Physiological and Molecular Plant Pahology,2002,60:101-102.
    167.Miller R.M., Jastrow J.D. Mycorrhizal fungi influence soil structure. In:Kapulnik Y. Douds D.D. Arbuscular mycorrhizas:Physiology and Function,1990,3-16.
    168.Miller M.H. Arbuscular mycorrhizae and the phosphorus nutrition of maize:A review of Guelph studies. Canadian Journal of Plant Science.1999,80:47-52.
    169.Miller R.M., Kling M. The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant and Soil,2000,226:209-309.
    170.Mosse B. Advances in the study of vesicular-arbuscrlar mycorrhiza. Annual Review of Phytopathology,1973,11:171-196.
    171.Nadian H., Smith S.E., Alston, A.M, Murray R.S. Effects of soil compaction on phosphorus uptake and growth of Trifolium subterraneum colonized by four species of vesicular-arbuscular mycorrhizal fungi. New Phytologist,1998,140:155-165.
    172.Nan Z.B. Fungicide seed treatments of sainfoil control seed-borne and root-invading fungi. New Zealand Journal of Agricultural Research,1995,38:413-420.
    173.Nan Z.B.The grassland farming system and sustainable agricultural development in China. Grassland Science,2005,51(1):15-19.
    174.Newman E.I., Reddell P. The distribution of mycorrhizas among families of vascular plants. New Phytologist,1987,106:745-751.
    175.Newshanm K.K., Fitter A.H., Watkinson A.R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology,1995,83:991-1000.
    176.Newshaw K.K., Fitter A.H., Watkinson A.R. Root pathogenic plant and arbuscular mycorrhizal fungi detemine fecundity of asymptomatic plant in the field. Journal of Ecology, 1994,82:805-814.
    177.Ocampo, J.A. Hayman, D.S.Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. Ⅱ Crop rotations and residual effects of non-host plants. New Phytologist,1981,87:333-343.
    178.0'Connor P.J., Smith S.E., Smith F.A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist,2002,154:209-218.
    179.0'Connor P.J., Smith S.E., Smith F.A. Arbuscular mycorrhizal associations in the southern Simpson Desert. Australian Journal of Botany.,2001,49:493-499.
    180.Oehl F., Siverding E., Mader P., Dubois D., Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi.Oecology,2003,138:574-583.
    181.Oliveira A.A.R., Sanders F.E. Effect of management practices on mycorrhizal infection, growth and dry matter partitioning in field-grown bean. Pesquisa Agropecuaria Brasileira,1999,34: 1247-1254.
    182.Palma R.m., Arrigo Saubidet M.I. Conti M.E. Chemical and biochemical properties as potential indicators of disturbance. Biology and Fertiligy of Soils,2000,32:381-384.
    183.Pankhurst C.E., Hawke B.G., McDonald H.J., Kirby C.A., Buckerfiled J.c., Michelsen P., Ka OB., Gupta V., Doube B.M. Evaluation of soil biological properties as potentential bioindicators of soil health. Australian Journal of Experimental griculture,1995,35: 1015-1028.
    184.Pankhurst C.E., Kirkby C.A., Hawke B.G., Harch B.D. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biology and Fertility of Soils,2002,35: 189-196.
    185.Pankhurst C.E, McDonald H.J., Hawke B.G. Effect of tillage and stubble management on chemical and microbiological properties and the development of suppression towards cereal root disease in soils from two sites in NSW, Australia. Soil Biol Biochemistry,2002,34: 833-840.
    186.Pare T., Gregorich E.G., Nelson S.D. Mineralization of nitrogen from crop residues and N recovery by maize inoculated with vesicular-arbuscular mycorrhizal fungi. Plant and Soil, 2000,218:11-20.
    187.Phillips J.M., Hayman D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br mycol Society,1970,55:158-161.
    188.Rashid A., Ahmend N., Ayub N., Khan A.G. Effect of forest fire on number, viability and post-fire re-establishment of arbuscular mycorrhizae. Mycorrhiza,1997,7:217-220.
    189.Renker C., Heinrichs J., Kaldorf M. Combiniting nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza,2003,13(4):191-198.
    190.Roget DK. Decline in root rot (Rhizoctonia solani AG-8) in wheat in a tillage and rotation experiment at Avon, South Australia. Australian Journal Experimental Agriculture,1995, 35:1009-1013.
    191.R6ldan A., Carrasco L., Caravaca F. Stability of desccated rhizosphere soil aggregates of mycorrhizal Juniperus oxycedrus grown in a desertifiedsoil amended with a composted organic residue. Soil Biology and Biochemistry.2006,38:2722-2730.
    192.R6ldan E.M., Arredondo J.T., Huber E. Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in Central Mexico. Journal of Arid Environments.2008,72(4):546-556.
    193.Rovira A.D. Influence of crop rotation and tillage on Rhizoctonia Bare Patch of Wheat. Phytopathology,1986,76:669-673
    194.Ryan M.H., Chilvers G.A., Dumaresq D.C. Colonisation of wheat by VA-mycorrhizal fungiwas found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant and Soil,1994,160:33-40.
    195.Ryan M.H., Graham J.H. Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant and Soil,2002,244:263-271.
    196.Sattelmacher B., Reinhard S., Pomikalko A. Differences in mycorrhizal colonization of rye (Secale cereale L) grown in conventional or organic (biological-dynamic) farming system. Journal of Agronomy and Crop Science,1991,167:350-355.
    197.Schenck N.C., Perez Y. Manual for the identification of VA mycorrhizal fungi.3rd edition, 1990, Synergistic publications, Gainesville FL, USA.
    198.Schuβler A. Molecular phyologeny, taxonomy and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant and Soil,2002,244:75-83.
    199.Schweiger R.P., Bethlenfalvay G.J. Crop residue and collembolan interact to determine the growth of mycorrhizal pea plants. Biology and Fertility of Soils,2003,39:1-8.
    200.Schweiger, R.P., Jakobsen I. P uptaken by arbuscular mycorrhizal hyphae:effect of soil temperature and atmospheric CO2 enrichment. Global Change Biology.2003,9:39-49.
    201.Shi H., Shao M.G. Soil and water loss from the Loess Plateau in China. J Arid Environ,2000, 45:9-20.
    202.Simon L., Bousquet J., Levesque R.C., Lalonde M. Origin and diversifi cation of endomycorrhizal fungi and coincidence with vascular land plants. Nature,1993,363:67-69.
    203.Six J., Feller C., Denef K., Ogle S.M. Soil organic matter,biota and aggregation in temperate and trpical soils-effects of no-tillage. Agronomic.2002,22:755-775.
    204.Skipp R.A, Christensen M.J., Nan Z.B. Invasion of red clover (Trifolium pretense) roots by soil-borne fungi. New Zealand Journal of Agricultural Research,1986,29:305-313.
    205.Skoglund L.G., Brown W.M. Effects of tillage regimes and herbicides on Fusarium species associated with corn stalk rot. Canada Journal of Plant Pathology,1988,10:332-338.
    206.Smith M.D., Hartnett D.C., Rice C.W. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia,1999,121:574-582.
    207.Smith S.E., Read D.J. Mycorrhizal symbiosis,2nd edn. London,1997, UK:Academic Press.
    208.Smith S.E., Read D.J. Mycorrhizal symbiosis, Third Edition.2008, London, UK, Academic Press.
    209.Smith S.E, Dickson S., Smith F.A. Nutrient transfer in arbuscular mycorrhizas:How are fungal and plant processes integrated? Australian Journal of Plant Physiology,2001,28:683-694.
    210.Smith S.E., Jakobsen Ⅰ., Smith F.A. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist,2000,147:357-366.
    211.Smith S.E., Facelli E., Pope S., Smith F.A. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and soil,2009,10.1007/s 11104-009-9981-5.
    212.Smith S.E., Smith F.A., Jakobsen Ⅰ. Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiology,2003,133:16-20.
    213.Sorensen J.N., Larsen J., Jakobsen Ⅰ. Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant and Soil,2005,273:101-114.
    214.Staddon P.L., Fitter AH. The differential vitality of intraradical mycorrhizal structures and its
    implications. Soil Biology & Biochemistry,2001,33:129-132.
    215.Staddon P.L., Fitter A.H., Graves J.D. Effect of elevated atmospheric CO2 on mycorrhizal colonization, external hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal fungus Glomus mosseae. Global Change Biology,1999,5:347-358.
    216.Staddon P.L., Ken T., Jakobsen E. J., Grime P., Askew A. P., Fitter A.H. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biology,2003,9:186-194.
    217.Strzemska J. Occurrence and intensity of mycorrhizae in cultivated plants. In: Endomycorrhizas. Eds. FE Sanders, B Mosse and PB Tinker.537-543. Academic Press, London
    218.Su Y.Y., Guo L.D. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza,2007,17(8):689-693.
    219.Sylvia DM., Alagely A., Chellemi D., Demchenko, L.W. Arbuscular mycorrhizal fungi influence tomato competition with bahiagrass. Biology and Fertility of Soils, 2001,34:448-452.
    220.Thompson J.P., Wildermuth GB. Clonization of crop and pasture species with vesicular-arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris sorokiniana. Canadian Journal of Botany,1989,67:687-693.
    221.Thompson J.P. Decline of vesicular-arbuscular mycorrhizas in long fallow disorder of field crops and its expression in phosphorus deficiency in sunflower. Australian Journal of Agriculture Research.1987,38:847-867.
    222.Thompson J.P. Improving the mycorrhizal condition of the soil through cultural practices and effects on growth and posphorus uptake in plants. In Phosphorus Nutrition of Grain Letumes in the Semi-Arid Tropics. Eds, C Johansen, KK Lee and KLsahrawat.117-137.
    223.Tisdall J.M., Oades J.M. The effect of crop rotation stabilize aggregates of a red-brown earth. Australian Journal of Soil Resarch.1980,18:423-432.
    224.Tisdall J.M. Fungal hyphae and structureal stability of soil. Australian Journal of Soil Resarch. 1991,29:729-743.
    225.Tisdall J.M. Possible role of soil microorganisms in aggregation in soils. Plant and Soil,1993, 159:115-121.
    226.Tisdall J.M., Oades J.M. Stabilization of soil aggregates by the root systems of ryegrass. Australian Journal of Soil Research,1979,17:429-441.
    227.Tonin C., Vandenkoornhuyse P., Joner E.J. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza,2001,10(4):161-168.
    228.Trent J.D., Svejcar A.J., Bethlenfalvay GJ.Growth and nutrition of combinations of native and introduced plants and mycorrhizal fungi in a semiarid range. Agriculture, Ecosystems and Evironment,1993,45:13-23.
    229.Treseder K.K., Cross A. Global distributions of arbuscular mycorrhizal fungi. Ecosystems, 2006,9:305-316.
    230.Triplett GB., Dick W.A. No-tillage crop production:A revolution in agriculture! A supplement to Agronmic Journal of Science,2008,153-165.
    231.Unger P.W., Jones O.R. Long-term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil & Tillage Research, 1998,45:39-57.
    232.Van der Heijden, Marcel G.A., John N. Klironomos. Myccorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Natrue,1998a,396:69-72.
    233.Van der Hheijden M.GA, Boiler T., Wiemken A., Sanders I. R. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology.1998b,79:2082-2091.
    234.Vierheilig H., Coughlan A.P., Wyss U., Piche Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology 1998,64, 5004-5007.
    235.Wallace L.L. Growth, morphology and gas exchange of mycorrhizal and non-mycorrhizal Panicum coloratum L., a C4 grass species,under different clipping and fertilization regimes. Oecologia,1981,49:272-278.
    236.Walter L.E., Hartnett D.C., Hetrick A.D., Schwab A.P. Interspecific nutrient transfer in a tallgrass prairie plant community. American Journal of Botany,1996,83:180-184.
    237.Wehner j., Antunes P.M., Powell J.R., Mazukatow J. Rillig M.C. Plant pathogen protection by arbuscular mycorrhizas:A role for fungal diversity? Pedobiologia,2009, doi:10.1016/j.pedobi.2009.10.002.
    238.Wilson G.W.T, Hartnett D.C. Effect of mycorrhizae on plant growth and dynamics in experimental tallgrass prairie microcosms. American Journal of Botany,1997,84:478-482.
    239.Wilson GW.T., Hartnett D.C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany,1998,85:1732-1738.
    240.Wright D.P, Scholes J.D, Read D.J. Effect of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant, Cell and environment,1998,21: 209-221.
    241.Wright S.F., Starr J.L., Paltineanu I.C. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Science Society of America Journal,1999,63: 1825-1829.
    242.Yano K., Yamauchi A., Iijima M., Kono Y. Arbuscular mycorrhizal formation in undisturbed soil counteracts compacted soil stress for pigeon pea. Applied Soil Ecology,1998,10:95-102.
    243.Young C.C., Juang T.C., Guo H.Y The effect of inoculation with vesicular-arbuscular mycorrhizal fungi on soybean yield and mineral phosphorus utilization in subtropical-tropical soils. Plant and Soil 1986,95:245-253
    244.Zhu Y.G, Laidlaw A.S, Christie P., Hammond M.E.R. The specificity of arbuscular mycorrhizal fugi in perennial ryegrass-white clover pasture.Agriculture Ecosystems and Environment.2000,77:211-218
    245.Zhu Y.G, Smith S.E. Seed phosphorus (P) content affects growth, and uptake of wheat plants and their association with arbuscular mycorrhizal(AM)fungi. Plant and Soil,2001,231: 105-112.
    246.Zhu Y.G, Smith F.A., Smith S.E. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza, 2003,13:93-100.
    247.Zuzana S., Kurt Ⅰ., Andres W., Dirk R.The cultivation bias:different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza,2007,18(1):1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700