金纳米粒子和碳纳米管对骨髓基质细胞成骨及成脂方向分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米材料所具有的特殊物理性质,引起了人们的重视,科学家开始把它应用到疾病的防御、诊断和治疗等生物医学领域,特别是医学中的组织重建中。由于自身组织和器官是纳米级的,纳米材料的生物模拟特性和特殊的物理性质使之在进行组织重建时刺激细胞的生长,引导组织修复。尽管这是一个新的领域,但是已有很多科学家设计合成出了生物模拟材料包裹细胞(如干细胞、软骨细胞、骨细胞等)并应用于组织工程。然而,纳米材料的超小粒径使其能通过多种途径进入人体,如骨髓。当纳米粒子进入骨髓后,骨代谢平衡和骨组织功能是否会受到影响还需要我们进行深入的研究。因此,本文以骨髓基质细胞和成骨细胞为模型,采用四甲基偶氮唑蓝法、碱性磷酸酶比活性和油红O染色及定量测定等方法在细胞水平研究了金纳米粒子(Au NPs)和碳纳米管(CNTs)对小鼠骨髓基质细胞增殖、成骨、成脂分化和成骨细胞增殖及横向分化的影响,并用免疫印迹(Western blot)和实时定量聚合酶链式反应(Q-PCR)等方法对骨髓基质细胞成骨和成脂分化过程中相关重要蛋白和基因进行了研究。
     研究结果表明:
     1.细胞水平上金纳米粒子可以促进小鼠骨髓基质细胞、原代骨细胞向成骨方向分化,抑制其向成脂及横向成脂分化;
     2.细胞水平上碳纳米管可以抑制小鼠骨髓基质细胞、原代骨细胞成骨成脂及横向成脂分化;
     3.金纳米粒子上调成骨分化相关基因(Runx2、BMP-2、OCN、ALP等)的表达,下调成脂分化相关基因(PPARγ2、E/CBPα、E/CBPβ和E/CBPδ)的表达;
     4.碳纳米管下调成骨成脂分化相关基因的表达;
     5.金纳米粒子上调小鼠骨髓基质细胞、原代骨细胞成骨分化过程中Runx2和BMP-2蛋白的表达。
     综合上述结果,金纳米粒子在促进成骨分化的同时抑制了成脂及成脂横向分化,而碳纳米管抑制了骨髓基质细胞成骨成脂的分化和原代成骨细胞成骨及横向成脂的分化。
Recently, due to the unique physical properies, nanomaterials have evoked a great amount of attention for improving diease prevention, diagnosis, treatment, and especially, tissue engineering. Since nature tissues or organs are nometer in dimension, the biomimetic features and excellent physiochemical properties of nanomaterials play a key role in stimulating cell growth as well as guide tissue regeneration. Even though it was a field in its infancy, currently, numerous researchers fabricate nanomaterials scaffolds encapsulating cells (such as stem cells, chondrocytes and osteoblasts, etc.) for tissue engineering applications.However, due to the ultra-small size, nanomaterials enter the body through variety ways, such as bone marrow. Whether the balance of bone metabolism and bone tissue function would be affected when nanoparticles entered bone marrow, still required further study. By using models of primary mouse bone marrow stromal cells (MSCs) and osteoblasts (OB) and methods of MTT, ALP activity assay, red O stain and assay, we study the effect of gold nanoparticle (Au NPs) and carbon nanotubes (CNTs) on osteogenic and adipogenic differentiation of MSCs and on adipogenic trans-differentiation of osteoblasts. Then we study the expression of osteogenic and adipogenic differentiation related genes by using western blot and real-time PCR.
     And the results show that:
     1.At cell level, Au NPs can promote osteogenic differentiation and inhibite adipogenic differentiation and adipogenic trans-differentiation of MSCs and OB;
     2. At cell level, CNTs can inhibit osteogenic and adipogenic differentiaiton of MSCs;
     3.Au NPs up-regulated the expression of osteogenic differentiation related genes (such as Runx2, BMP-2, OCN, ALP, etc.) and down-regulated the expression of adipogenic differentiation related genes (such as PPARγ2, E/CBPα, E/CBPβ和E/CBPδ);
     4.CNTs down-regulated the expression of osteogenic and adipogenic differentiation genes of MSCs;
     5.Au NPs up-regulated the expression of Runx2 and BMP-2 proteins, and down-regulated the expression of PPARy2 of MSCs.
     In conclusion, Au NPs promoted the osteogenic differentiation and inhibited the adipogenic and trans-differentiation. While, CNTs inhibited the osteogenic and adipogenic differentiation of MSCs.
引文
[1]Zhang L J, Webster T J. Nanotechnology and nanomaterials:Promises for improved tissue regeneration[J]. NanoToday,2009,4:66-80.
    [2]谭镜明,谈智勇,吴勘.纳米技术产业化进展[J].广州化工,2006,34(3):17-19.
    [3]Webster T J, Ergun C, Doremus R H, et al. Enhanced functions of osteoclast-like cell on nanophase ceramics[J]. Biomaterials,2001,22(11):1327-1333.
    [4]Gutwein L G, Webster T J. Increased viable osteoblast density in the presence of nnophase compared to conventional alumina and titania particles[J]. Biomaterials,2004,25(18):4175-4183.
    [5]Thapa A, Miller D C, Wenster T J, et al. Nano-structured polymers enhance bladder smooth muscle cell function[J]. Biomaterials,2003,24(17):2915-2926.
    [6]石士考,霍庆.无机粉末发光材料合成的新方法[J].无机盐工业,1999,31(3):20-23.
    [7]Ong C K, Fang H C, Yang Z, etal. Magnetic relaxation in Zn-Sn-doped barium ferite nanoparticales for recording[J]. J Magn Magn Mater,2000,213(3):413-417.
    [8]袁志好,张立德.掺锌TiO2纳米粉的结构相变及发光性质[J].高等学校化学学报,1999,20(7):1-7.
    [9]石士考,刘行仁.发光体YAG的软化学方法合成[J].化学通报,1998,4:39-40.
    [10]陈达,孙日圣,魏坤,等.沉淀法制备均—纳米Y203:Eu3+粉末的研究[J].江西化工,1999,4:8-10.
    [11]李沅英,戴德昌,蔡少华.Y202S:Eu3+荧光体的微波热效应合成和发光性能[J].中国稀土学报,1996,14(1):16-19.
    [12]李强,高濂,严东生.纳米Y203:Eu3+粉体的表面包膜处理[J].无机材料学报,1999,14(1):150-154.
    [13]Anderson F G, Dennis W M, Imbusch G F. Transient luminescence lines hapes for mnionsin ZnS nanocrystals[J]. J. Lumin,2000,90(1-2):27-32.
    [14]Bonafos C, Garrido B, Lopez M, etal. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO2[J]. Nucl Instrum Methods Phys Res Sect B,1999, 147(1-4):373-377.
    [15]Tanakn M, Jifa Oi, Masumoto Y. Comparison of energy levels of Mn2+ in nanosized-and bulk-ZnS crystals[J]. J lumin,2000,87-89:472-474.
    [16]Sun J Q, Hao E C, Sun Y P, etal. Multilayeras semblies of collcidal ZnS doped with silver and pllyelectrolytes based on electrostatic interostatic interaction[J]. Thin Solid Films,1998,327-329:528-531.
    [17]Bol A A, Meijerink A. Doped semiconductor nanoparticles-a new class of luminescent materials[J]. J Lumin,2000,87-89:315-318.
    [18]Ijima S. Helical microtubules of graphitic carbon[J]. Nature,1993,363:603-605.
    [19]范守善.碳纳米管及其相关的一维纳米材料[J].材料导报,1999,13(4):2-4.
    [20]Gleiter H. Nanostructured materials:basic concepts and microstructure[J]. Acta Materialia,2000, 48(1):1-29.
    [21]Suryanarayana C, Koch C C. Nanocrystalline materials-current research and duture directions[J]. Hyperfine Interac,2000,130(1-4):5-44.
    [22]谢济仁,邵刚勤,易忠来,等.纳米材料应用[J].武汉理工大学学报,2004,26(2):17-20.
    [23]邵刚勤,吴伯麟,魏明坤,等.超细晶粒WC硬质合金的研制动态[J].武汉工业大学学报,1999,21(6):18-201.
    [24]Berger S, Porat R, Rosen R. Nanocrystal line materials a study of WC-based hard metals [J]. Prog Mater Sci,1997,42:311-320.
    [25]Echenik A, PiermariniG J, Danforth S C. Fabrication of transparent siliconNitride from nanosize particles[J]. J Am Ceram Soc,1992,75 (12):3283-3288.
    [26]Koshida N, Kojima A, Migita T, et al Multifunctional properties of nanocrystalline porous silicon as a quantum confined[J]. Material. Mater s Sci Eng C,2002,19:285-289.
    [27]Taiis S T, Verschueren A R M, Dekker C. Room temperature transistor based on a single carbon nanotube[J]. Nature,2000,393(6680):49-52.
    [28]Kycia J B, Chen J, Therrien R, et al Effects of diddipation on a surperconducting single electron transistor[J]. Phys Rev Lett, 2001,87(1):017002(1-4).
    [29]Haruyama J, Takesue I, Hasegawa T, et al Coulomb blockade related to a localization effect in a single tunnel junction/carbon-nanotube system[J]. Phys Rev B,2001,63(7):073406(1-4).
    [30]Postma H W C, Teepen T, Yao Z, et al Carbon nanotube single electron transistorsat room temperature[J]. Science,2001,293(6):76-791.
    [31]Achtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors[J]. Science, 2001,294(4):1317-1320.
    [32]Araki S, Sano M, Li S X, et al. Which spin valve for next giant magnetoresistance head generation?[J]. J Appl Phys,2000,87 (9):5377-5382.
    [33]Inomata K, Giant Magnetoresistance and its sensor applications[J].J Electroceram,1998,2(4): 283-293.
    [34]Rupp J, Birringer R. Enhanced specific heat capacity (Cp) measurements (150-300K)of nanometer-sized crystalline materials[J]. Phys Rev B,1987,35 (15):7887-7890.
    [35]Turi T, Erb U. Thermal expansion and heat capacity of porosity free nanocrystalline materials[J]. Mate Sci Eng A,1995,204:34-38.
    [36]Langer R, Vacanti J P, Tissue engineering[J]. Science,1993,260(5110):920-926.
    [37]Webster T J. Advancesin chemical engineering. New York:AcademicPress,2001,125-166.
    [38]Vasita R, Katti D S. Nanofibers and their applications in tissue engineering[J]. Int J Nanomed,2006,1: 15-30.
    [39]Degasne I, Basl M F, Demais V, et al. Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces[J]. Calciled Tissue Int,1999,64:499-507.
    [40]Webster T J, Ergun C, Doremus R H, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics[J]. J Biomed Mater Res,2000,51:475-483.
    [41]Webster T J, Schadler L S, Siegel R W, et al. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin[J]. Tissue Eng,2001,7(3):291-301.
    [42]Kikuchi M,Itoh S,Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo[J]. Biomaterials,2001,22 (13):1705-1711.
    [43]Webster T J, Ergun C, Doremus R H, et al. Enhanced osteoclast-like cell functions on nanophase ceramics[J]. Biomaterials,2001,22(11):1327-1333.
    [44]Nukavarapu S P, Kumbar S G, Brown J L, et al. Polyphosphazene/Nano-hydroxyapatite composite microsphere dcaffolds for bone tissue rngineering[J]. Biomacromolecules,2008,9(7):1818-1825.
    [46]Colon G, Ward B C, Webster T J. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2[J]. J Biomed Mater Res A,2006,78(3):595-604.
    [47]Webster T J, Hellenmeyer E L, Price R L. Increased osteoblast functions on theta plus delta nanofiber alumina[J]. Biomaterials, 2005,26(9):953-960.
    [48]Price R L, Waid M C, Haberstroh K M, et al. Select bone cell adhesion on formulations containing carbon nanofibers[J].Biomaterials,2003,24(11):1877-1887.
    [49]Sitharaman B, Shi X F, Walboomers X F, et al. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering[J]. Bone,2008,43(2): 362-370.
    [50]Webster T J, Ejiofor J U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo[J]. Biomaterials,2004,25(19):4731-4739.
    [51]Popat K C, Leoni L, Grimes C A, et al. Influence of engineered titania nanotubular surfaces on bone cells[J]. Biomaterials,2007,28(21):3188-3197.
    [52]Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science,2001,294(5547):1684-1688.
    [53]Hosseinkhani H, Hosseinkhani M, Tian F, et al. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers[J]. Biomaterials,2006,27(22):4079-4086.
    [54]Choudhary S, Haberstroh K M, Webster T J. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications[J]. Tissue Eng PartA,2007,13(7):1421-1430.
    [55]Miller D C, Thapa A, Haberstroh K. M, et al. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surfaces[J].Biomaterials,2004,25(1):53-61.
    [56]Miller D C, Haberstroh K M, Webster T J. Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films[J]. J Biomed Mater Res A,2005,73(4):476-484.
    [57]Miller D C, Haberstroh K M, Webster T J. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion[J]. J Biomed Mater Res A,2007,81(3):678-684.
    [58]Xu C Y, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering[J]. Biomaterials,2004,25(5):877-886.
    [59]Lee S J, Yoo J J, Lim G. J, et al. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application[J]. J Biomed Mater Res A,2007,83(4):999-1008.
    [60]Bahr M, Bonhoeffer F. Perspectives on axonal regeneration in the mammalian CNS[J]. Trends Neurosci,1994,17(11):473-479.
    [61]Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance[J]. Brain Res Rev,2005, 49(1):48-64.
    [62]Huang Y C, Huang Y Y. Biomaterials and strategies for nerve regeneration [J]. Artif Organs,2006, 30(7):514-522.
    [63]Evans G R D. Peripheral nerve injury:a review and approach to tissue engineered constructs[J]. Anat Rec, 2001,263(4):396-404.
    [64]Terzis J K, Sun D D, Thanos P K. History and basic science review:past,present, and future of nerve repair[J]. J Reconstr Microsurg,1997,13(3):215-225.
    [65]Zalewski A A, Gulati A K. Rejection of nerve allografts after cessation of immunosuppression with cyclosporin A[J]. Transplantation,1981,31(1):88-89.
    [66]Koh H S, Yong T, Chan C K, et al. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin[J]. Biomaterials, 2008, 29(26):3574-3582.
    [67]Prabhakaran M P, Venugopal J R, Chyan T T, et al. Electrospun Biocomposite Nanofibrous Scaffolds for Neural Tissue Engineering[J]. Tissue Eng PartA,2008,14(11):1787-1797.
    [68]Holmes T C, Lacalle S D, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds[J]. PNAS,2000,97(12):6728-6733.
    [69]Ellis-Behnke R G, Liang Y X, You S W, et al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision[J]. PNAS,2006,103(13):5054-5059.
    [70]Mattson M P, Haddon R C, Rao A M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth[J]. J Mol Neurosci,2000,14(3):175-182.
    [71]Hu H, Ni Y, Montana V, et al. Chemically functionalized carbon nanotubes as substrates for neuronal Growth[J]. Nano Lett,2004,4(3):507-511.
    [72]Lovat V, Pantarotto D, Lagostena L, et al. Carbon nanotube substrates boost neuronal electrical signaling[J]. Nano Lett,2005,5(6):1107-1110.
    [73]McKenzie J L, Waid M C, Shi R, et al. Decreased functions of astrocytes on carbon nanofiber materials[J]. Biomaterials,2004,25(6):1309-1317.
    [74]Nguyen-Vu T D B, Chen H, Cassell A M, et al. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface[J]. IEEETrans Biomed Eng,2007,54(6):1121-1128.
    [75]Gabay T, Jakobs E, Ben-Jacob E, et al. Engineered self-organization of neural networks using carbon nanotube clusters[J]. Physica A: Statistical Mechanics and its Applications,2005,350(2-4):611-621.
    [76]Reynolds B A, Weiss S. Generation of neurons and astrocytes fromisolated cells of the adult mammalian central nervous system[J]. Science,1992,255(5052):1707-1710.
    [77]Han J T, Kim S Y, Woo J S, Lee G W. Transparent, conductive, and superhydrophobic films from stabilized carbon nanotube/silane sol mixture solution. Advanced Materials,2008,20(19):3724-3727.
    [78]Harrington D A, Cheng E Y, Guler M O, et al. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds[J]. J Biomed Mater Res A,2006,78(1):157-167.
    [79]Baker S C, Atkin N, Gunning P A, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies[J]. Biomaterials,2006,27(16):3136-3146.
    [80]Thapa A, Miller D C, Webster T J, et al. Nano-structured polymers enhance bladder smooth muscle cell function[J]. Biomaterials,2003,24(17):2915-2926.
    [81]Pattison M, Webster T J, Leslie J, et al. Evaluating the In vitro and In vivo efficacy of nano-structured polymers for bladder tissue replacement applications[J]. Macromol Biosci,2007,7(5):690-700.
    [82]Pattison M A, Wurster S, Webster T J, et al. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications[J]. Biomaterials,2005,26(15):2491-2500.
    [83]De Jong W H, Hagens W I, Krystek P, et al. Geertsma, Particle size-dependent organ distribution of gold nanoparticles after intravenous administration[J]. Biomaterials,2008,29(12):1912-1919.
    [84]Zhang D W, Yi C Q, Zhang J C, et al. The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts[J]. Nanotechnology,2007,18:475102(1-9).
    [85]Ahdjoudj S, Fromigue O, Marie P J. Plasticity and regulation of human bone marrow stromal osteoprogenitor cells:potential implication in the treatment of age-related bone loss[J]. Histol Histopathol,2004,19(1):151-157.
    [86]Dominici M, Hofmann T J, Horwitz E M. Bone marrow mesenchymal cells:biological properties and clinical applications[J]. J Biol Regul Homeost Agents,2001,15(1):28-37.
    [87]Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model[J]. J Cell Sci,2000,113(7): 1161-1166.
    [88]Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J]. Biochem Biophys Res Commun,2001,282(1):148-152.
    [89]Deans R J,Moseley A B. Mesenchymal stem cells:biology and potential clinical use[J]. Exp Hematol, 2001,28:875-884.
    [90]Verma S, Rajaratnam J H, Denton J, et al. Adipocyteic proportion of bone marrow is inversely related to bone formation in osteoporosis[J]. J clin Pathol,2002,55 (9):693-698.
    [91]Katherine A K, Jeffrey M G. 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene experssion in murine bone marrow stromal cell clones and primary cultures[J]. Endocrinology,1998, 139(5):2622-2628.
    [92]Mossmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays[J]. J Immunol Methods,1983,65:55-63.
    [93]Abdallah B M, Jensen C H, Gutierrez G, et al. Regulation of human skeletal stem cells differentiation by Dlkl/Pref-1 [J]. J Bone Miner Res,2004,19:841-852.
    [94]Song H J, Liang X, Luo X Q, et al. Experimental study on the reconstruction of bone defects in vivo and the osteoinduction with degradation products of alpha-tricalcium phosphate cements in vitro[J]. Sichuan Da Xue Xue Bao Yi Xue Ban.2005; 36(6):847-849.
    [95]Song L H, Pan W, Yu Y H, et al. Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway[J]. Toxicol In Vitro,2006,20:915-922.
    [96]Ducy P, Zhang R, Geoffroy V, el al. osf2/Cbfal:a transcriptional activator of osteoblast differentiation[J]. Cell,1997,89(5):747-754.
    [97]Kobayashi H, Gao Y H, Ueta C, el al. Multilineage differentiation of Cbfal-deftdent calvarial cells in vitro[J]. Biochem Biophys Res Commun,2000,273 (2):630-636.
    [98]Zhou S H, Turgeman G, Harris S E, et al. Estrogens activate bone morphogenetic protein-2gene transcription in mouse mesenchymal stem cells[J]. J Mol Endocrinol,2003,17(1): 56-66.
    [99]Wozney J M, Rosen V, Celeste A J, et al. Novel regulators of bone formation:molecular clones and activities[J]. Science,1988,242(4885):1528-1534.
    [100]Wang E A, Rosen V, D'Alessandro J S, et al. Recombinant human bone morphogenetic protein induces bone formation[J]. Proc Natl Acad Sci,1990,87 (6):2220-2224.
    [101]Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone:a novel cell mediated gene therapy[J]. J Gene Med,1999, 1(2):121-133.
    [102]Hanada K, Dennis J E, Caplan A J. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells[J]. J Bone Miner Res,1997,12:1606-1614.
    [103]Moutsatsos I K, Turgeman G, Zhou S, et al. Exogenously regulated stem cellmediated gene therapy for bone regeneration[J]. Mol Ther, 2001,3(4):449-461.
    [104]Yamaguchi A, Ishizuya T, Kintou N, et al. Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow derived stromal cell lines, ST2 and MC3T3-G2/PA6[J]. Biochem Bioph Res Co,1996,220(2):366-371.
    [105]Xiao G, Gopalakrishnan R, Jiang D, et al. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells[J]. J Bone Miner Res,2002,17(1):101-110.
    [106]Turgeman G, Pittman D, Muller R, et al. Engineered human mesenchymal stem cells:a novel platform for skeletal cell mediated gene therapy[J]. J Gene Med,2001,3(3):240-251.
    [107]Chen T, Fry D. Hormonal regulation of the osteoblastic phenotype expression in neonatal murine calvarial cells[J]. Calcif Tissue Int,1999,64:304-309.
    [108]Bennet J H, Joyner C J, Triffit J T. et al. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci,1991,99:131-139.
    [109]Nuttall M E, Patton A J, Olivera D L, et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype:implications for osteopenic disorders[J]. J Bone Miner Res,1998, 13(3):371-382.
    [110]Beresford J N, Bennett J H, Devlin C, et al. Evidence for inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures[J]. J Cell Sci,1992, 102:341-351.
    [111]Yi C Q, Fong C C, Chen W W, et al. Interactions between carbon nanotubes and DNApolymerase and restriction endonucleases[J]. Nanotechnology,2007,18:025102.
    [112]Yi C Q, Zhang Q, Fong C C, et al. The structure and function of ribonuclease A upon interacting with carbon nanotubes[J]. Nanotechnology,2008,19:095102.
    [113]Chen W W, Tzang C H, Tang J X, et al. Covalently linked deoxyribonucleic acid with multiwall carbon nanotubes:Synthesis and characterization[J]. Appl Phys Lett,.2005,86:103-114.
    [114]Jia G, Wang H F, Yan L, et al. Cytotoxicity of carbon nanomaterials:Single-wall nanotube, multi-wall nanotube, and fullerene[J]. Environ Sci Technol,2005,39:1378-83.
    [115]Sengupta P, Xu Y, Wang L, et al. CollagenlAl(I) gene (COL1A1) is repressed by RFX family[J]. J Biol Chem,2005,280:21004-21014.
    [116]Abdallah B M, Jensen C H, Gutierrez G, et al. Regulation of human skeletal stem cells differentiation by Dlkl/Pref-1[J]. J Bone Miner Res,2004,19,841-52.
    [117]Dang Z C, van Bezooijen R L, Karperien M, et al. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogensis[J]. J Bone Miner Res,2002,17(3):394-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700