低温固—固接触界面热传输研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温固-固接触界面间热传输的优劣决定着器件的热可靠性和器件的使用寿命,同时,在航空航天、低温工程、超导器件冷却等领域,固-固界面间的热传输直接决定着系统的热控成败。用实验和理论的手段研究低温固-固接触界面间的热传输,一方面可以解决技术关键,另一方面可以解决学科的科学问题,所以揭示固-固接触界面间的传热机制已成为一个研究热点。本文的主要任务是从实验和理论上研究低温固-固接触界面间的热传输。
     高温超导材料和小型低温制冷机的出现,使制冷机直接冷却超导器件成为一种超导冷却方式。小型超导磁体的制冷机冷却,因超导体间、超导体与金属间的热接触传输存在接触界面而影响超导磁体以及系统各部件的温度分布均匀性,所以超导磁体的热稳定性和影响温度分布的关键是接触界面热阻(电阻)。本文建立了高温超导直接冷却实验系统,用静磁场准稳态的方法对35KJ模型SMES磁体进行了直接冷却实验研究,获得了磁体的温度分布和直接冷却特性。研究表明,减小低温界面热阻(电阻)是实现直接冷却超导器件和系统的技术关键。本文以高温超导直接冷却中的接触热传导研究作为切入点,在国家自然科学基金(51076013)、863国家高技术项目(2002AA306331-4)、教育部博士学科专项基金(20040487039)项目的资助下,展开了对接触界面热传导的研究。
     从微结构低温工程学角度看,两接触固体的界面处存在一层微米或纳米级厚度的低温界面层,该界面层的组织结构和特性不同于两接触物体,低温界面层的存在是引起接触热阻的一个主要原因,因此从微结构低温工程学角度研究低温界面层的特性、界面层热阻和界面层上的热输运过程具有重要的理论意义和实际应用价值。稳态法接触界面热阻研究中,用温度外推法获得的接触界面温差,忽略了接触界面层的微结构对温差的影响,因而对研究接触界面热阻存在不足。为弥补这种不足,本文利用了调制激光光热法原理,探索性的提出了调制激光光热研究方法,用低温制冷机作为冷源,建立了研究低温固-固接触界面的热传输研究光热实验平台。
     材料的热物性是研究接触热阻的基础参数,工程材料由于成分的细微差别会导致热物性出现较大差别。考虑材料的这种差别,保证接触热阻研究的可靠性,本文首先在所建立的光热实验平台上,进行了铜、不锈钢、铝的低温热扩散系数的实验研究。报导了采用全新的调制激光光热原理获得的,在20-300K低温度范围内的,低温工程材料铜、不锈钢和铝的热扩散系数。低温热扩散系数的调制光热法研究结果,与已获得热扩散系数数据基本一致。在低温热扩散系数的调制光热法研究的基础上,本文使用调制光热法重点研究了铜、不锈钢、铝间的接触界面层热阻,在1.2――4.28 MPa的接触压力范围内,在20――300K温度范围内,接触界面层热阻随温度和接触压力的增加而降低。低温热扩散系数和接触界面层的调制光热法研究使用了新方法、新理论,为低温接触热传导(热阻)的研究,开辟了的新途径。
     低温界面层的微观描述是揭示接触热传递的基础,本文较全面的阐述了“三维低温界面层”概念,明确地把界面层分成两个物理构成――界面和亚表面层。用热载子在界面层内的弹道传递和扩散传递,建立了扩散弹道界面层热阻模型(DBITR)。在亚表面层内采用类比声子波和电磁波的辐射衰减相似性,获得了声子扩散弹道传递系数。DBITR模型的热阻预测值与光热接触界面热阻实验值基本吻合。
     声子的界面层内传输用传递系数表示。传递系数与界面条件、声子态密度、温度、声子入射角度等因素有关。由于传递系数的复杂性,现在还没有全要素研究声子传递系数的报导。本文对AMM和DMM模型中的声子传递系数,结合界面条件,从声子散射的能量(温度)和动量角度,对声子的镜面弹性传递、非镜面传递的传递系数做了理论上的分析。以YBCO和MgO的膜基接触界面为例,指出了实验值和理论值存在差别的原因是模型忽略了亚表面层对声子传递的影响。在声子垂直入射条件下,从扩散弹道声子传递系数得出了AMM模型中传递系数。
     论文比较了AMM和DBITR两个接触热阻模型,从比较结果来看,膜基固-固接触间热阻的DBITR预测值和实验值间还存在较大的差异,而压力接触间的固-固接触热阻DBITR模型值与实验值符合的较好,而且DBITR模型的预测值要比AMM模型的预测值更接近实验值。DBITR模型的建立对研究复杂的低温固-固接触热传导的科学问题,即是从理论上做了有益的探索,也是对实验研究的补充。
At low temperature, the heat transfer between two contact bulks determinates the reliability and life of apparatus, at same time, in aerospace, cryogenics, cooling superconductor fields, the heat trasfer between two contact bulks determinates whether the thermal manager of system. The heat transfer between two contact bulks is investigated using experimental and thoerical method, which can resolve the technique key and problem of discipline. So it is a hot to disclosure the mechanism of heat transfer between two contact bulks. The main task of this paper is investigated the heat transfe between two contact bulks using experimental and thoerical method at low temperatue.
     With the development of the high temperature superconducting material and mini-cooler, the cooler cooling is a cooling for the cooling superconductor. The cooler cooling of superconductor, since the contact heat transfer exists between the superconductor, between superconductor and metal, it affects the temperature distribution of superconducting maganet and system, so the key factors which affects themal stability and temperature of the superconducting maganet is the contact interface resistance. The cryocooler conduction cooling system of the superconducting magnet is set up, the test is conducted in this system using static maganet and quasi-steady state, and the feature of cooling on the 35KJ model superconducting magnet is obtained. The study shown that decreasing and controlling the thermal contact resistance is the technology key. The thermal contact conduction on the cryocooler conduction cooling is the start of this study, and the investigation is conducted under supporting the National nature science Foundation(51076013), the National 863 Foundation Research(2002AA306331-4), and the Specialized Research Fund of the Doctoral Program of Higher Education(20040487039).
     From the Micro-Nano cryogenic view, there is a micrometer (nanometer) interface layer between two bulks contact interface, the microstructure of the interface layer is different from that of bulk material. The cryogenic interface layer may result in the thermal contact resistance, so it has an important significance and application value for studying the character of interface layer, interface layer thermal contact resistance and the heat transport of the interface layer. A temperature extrapolation is usually used at steady state method for studying the thermal contact resistance. Since the influence of microstructure of the interface layer on the thermal contact resistance is neglected using the temperature extrapolation, so it may be shortage for studying the contact interface resistance. The modulation laser photothermal is exploitively used for studying the thermal contact resistance. Using cooler as cold source, the photothemal experimental platform has been set up.
     The thermal physic property is basic for studying the contact resistance, since the difference of component results in the large difference of the thermal physic property. To consider the difference, ensure the reliabilty of the investigation on thermal contact resistance, first, the thermal diffusivity on the copper, stainless steel and aluminium is studied at photothermal experimental platform. The results are resported on the photothemal at a temperature range from 20 to 300K. It is consistence with the result obtained using the steady state. Based on the thermal diffusivity, the contact interface resistance is intimately investigated, at a contact pressure range from 1.2MPa to 4.28 MPa, at a temperature range from 20K to 300K, the contact interface resistance decreases with rising of the contact pressure and temperature. The new technique and theory is applied in this study, it exploit a new path to invetigation of the contact interface resistance at low temperature.
     The microstructure explain on cryo-interface layer is basic to resolve the contact heat transfer, the conception of three dimension cryo-interface layer is fully explain, the interface layer is clearly divided into two parts—the interface and the sub-surface. The DBITR model is set up using the ballistic and diffusive transport of the phonon. The phonon transfer coefficient is obtained using the attenuation similar between the phonon wave and electron maganet wave. The prediction of the DBITR and experiment is basiclly identical.
     The transfer coefficient of the phonon is affected by the interface conditon, state density of phonon, temperature. Since the transfer coefficient is complex, the full investigation on the transfer coefficient is seldom reported. The transfer coefficient of the AMM and DMM model is concluded under considering the interface condition, from the view of energy and momentum of the heat carrier, under the elastic specular scattering and diffusivity scattering. The application example about the transport coefficient between YBCO and MgO is given, the difference between the prediction and experiment is that the influence of the microstrcuture of the sub-surface layer on the phonon transport. The transfer coefficient in the AMM is obtained from the DBITR under phonon normal incidence.
     The comparison is conducted between the AMM and DBITR model, the result shown that the prediction of the DBITR is consistent with the experiment under the pressure contact interface, however, the difference is exist on film on matrix contact interface. It is value that the DBITR model is set up for studying the problem of the contact heat conduction.
引文
[1] 王惠龄,饶荣水,李敬东等,超导电力低温技术展望. 电力系统自动化,2001,25(17):65-68
    [2] C.JMaddren and E.Marschall, Predicting thermal contact resistance at cryogenic temperature for spacecraft applications, Journal of Spacecraft and rocks, Vol.32,No.3, May-June 1995: 469-474.
    [3] E.T. Swartz, R.O.pohl, thermal boundary resistance, Review of modern physics, 1989,61(3):605-667.
    [4] A L Woodcraft, comment on ‘thermal boundary resistance of mechanical contacts between solids at sub-ambient temperature’. Journal of physics D: applied physics, 2001, 34: 2932-2934.
    [5] E Gmelin, M Asen-Palmer, M Reuther, and Rvillar, Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. Journal of physics D: Applied physics, 1999, 32: R19-R43.
    [6] M.R.sridhar and M.M.yovanovich, Thermal contact conductance of tool steel and comparison with model. Int.J.Heat Mass Transfer, 1996, 39(4):831-839.
    [7] E.E.Marotta, L.S.Fletcher, Thomas A.Dietz, Thermal contact resistance modeling of non-flat, roughened surface with non-metallic coatings. Journal of Heat Transfer, 2001,123:11-23.
    [8] M.A.Lambert, L.S.Fletcher, Thermal contact conductance of Non-flat, Rough, Metallic coated metals. Journal of Heat Transfer, 2002, 124:405-412.
    [9] N.Laraqi, Thermal constriction resistance of coated solids-static and sliding contacts.Int.Comm.Heat Transfer,199,26(3):299-309.
    [10] J.L.Pichardo and J.J.Alvarado-Gil, Open photoacoustic cell determination of the thermal interface resistance in two layer systems. J.App.Phy. 2001,89(7): 4070-4074.
    [11] K.Jagannad ham,Hsin Wang, Thermal resistance of interface in AlN-diamond thin film composite, Journal of Applied Physics, 2002,91(3):1224-1235.
    [12] Louis J.Salerno, Pater Kittel, Thermal conductance of pressed metallic contacts augmented with indium foil or apiezon grease at liquid helium temperature.Applied Physics Letters, 1965,12(1):31-33.
    [13] L.J. Salerno and P.Kittel, Thermal contact conductance. Low Temperature Physic, 1995, 13(1):262-280.
    [14] 饶荣水,王惠龄,汪京荣等,高温超导直接冷却中 AlN 与 Bi-2223 间界面热阻的实验研究,低温工程,2002,(5):12~16
    [15] E.T.swart and R.O.Pohl, Thermal resistance at interface, App. Phy.Lett., 1987,51(26):220-2202.
    [16] E.Neubaauer, G.Korb,C. Eisenmenger et al., The influence of mechanical adhesion of copper coating on carbon surface the interfacial thermal contact resistance. Thin Solid Films. 2003, 433:160-165.
    [17] M.Rosochowska, Rbalendra, K.Chodnikiewicz, Measurements of thermal contact conductance. Journal of Materials Processing Technology, 2003,135: 204-210.
    [18] Youming Xiao, Heng sun, Lie Xu, et al., Thermal contact conductance between solid interface under low temperature and vaccum. Review of Scientific Instruments, 2004, 75(9):3074-3076.
    [19] L.Zhao P.E.Phelan, Thermal contact conductance across filled polymide films at cryogenic temperature, Cryogenics, 38(1999): 803-809.
    [20] Hiroyuki fujishiro, Tatsuya okamoto, Koichi Hirose, Thermal contact resistance between high-Tc superconductor and copper. Physica C, 2001, 357-360:785-788.
    [21] I.S. Lisker, S.V.solovyev, A transient technique for measuring the thermal conductivity of non-metals. Experimental thermal and Fluid science, 2001, 25: 377-382.
    [22] A.Salazar, Thermal diffusivity measurements using linear relation from photothermal wave experiments, Rev. Sci. Instrum., 1994, 65(9):386-397.
    [23] Mark A. Shannon, Ali A.Rostmi and Richard E.Russo, Photothermal deflecton measurements for monitoring heat transfer during modulated laser heating of solids. J.App.Phys. 1992,71(1):53-63.
    [24] A.calder ó n, Method of measurement of the thermal diffusivity in solids: Application to metals, semiconductor, and thin materials. Journal of Applied physics, 1998,84(11):6327-6329.
    [25] E.Welsch, K.Ettrich,D.Ristau and U.Willamowski, Absolute measurement of thermophysical and optical thin-Film properties by photothermal methods for theinvestigation of laser damage. International Journal of Thermophysics, 1999, 20 (3): 965-975.
    [26] Yuriy G.Gurevich , Physics of thermal waves in homogeneous and inhomogeneous (two-layer) Samples. International Journal of Thermophysics, 2003, 42:63-69.
    [27] Toshimasa Hashimoto, Hunko Morikawa, Tsuyoshi Kuiihara, et al., Frequency dependent thermal diffusivity of polymer by temperature wave analysis. Thermochimica Acta, 1997, 304/305:151-156.
    [28] A.Ocariz, A.Sanchez-Lavega and A.Salazar, Photothermal study of subsurface cylindrical structure. J.Appl. Phys. 1997, 18(11):7561-7566.
    [29] E.G.Murakami, V.E.Sweat, S.K.Sastry, et al., Analysis of various design and operating parameters of the thermal conductivity probe. Joural of Food Engineering, 1996,30: 209-225.
    [30] W.Czarnetki, M.Wandelt and W.Roetzel, Thermal wave analysis measurements of thermal diffusivity. IEEE Instrumentation and Measurement Technology Conference, 1996, Brussels, Belgium, June 4-6 :1195-119.
    [31] Ohmyoung Kwon, Li Shi, Arun Majumdar, Scanning thermal wave microscopy (STWM). Journal of Heat Transfer, 2003, 125:156-163.
    [32] 石零,王惠龄,赵琰, 调制激光法低温接触界面层热阻研究.低温工程,2006,2:7-9
    [33] Y.Ohone, G. Wu, J.Dryden, F.Zok, A.Majumdar, Optical Measurement of thermal contact conductance between water-like thin solid samples, Journal of Heat Transfer, 1999, 121: 954-963.
    [34] A.A.Maznev, J.Hartmann and M.Reichling, Thermal wave propagation in thin films on substrate. J. Appl. Phys., 1995, 78(9):5266-5269.
    [35] 吕跃凯,张淑仪,周庆标,基于光声光热检测的反演技术在热波成像既缺陷分析方面的应用. 自然科学进展,2001,11(3):232-237.
    [36] Bincheng Li, L.Pottier, J.P.Roger, et al., Thermal characterzation of film-on-substrate systems with modulation thermoreflectance microscopy. Review of Scientific Instruments, 2000,71(5):2154-2160.
    [37] M.H.Xu, J.C.Cheng and S.Y.Zhang, Frequency bandwidth optimization of photothermal technique for thermal conductivity depth profiling. Review of Progress in Quantitative Nondestructive Evaluation, 2000, 1905-1910.
    [38] D.Devechio, D.Russell, and P.Taborek, Measurement of thermal diffusivity of small, high conductivity samples using a phase sensitive technique. Rev. Sci. Instru., 1995, 66(6):3601-3605.
    [39] Vladimir v.Kulish, Jose L.Lage, Pavel L.Komarov, et al., A fractional-Diffusion theory for calculation thermal properties of thin films from surface transient thermoreflectance measurements. Journal of Heat Transfer, 123: 1133-1138.
    [40] Andreas Mandelis, Stefano Paoloni, and Lena Nicolaides, Lock-in common-mode rejection demodulation: measurement technique and application to thermal-wave detection: Theoretical. Review of Scientific Instruments, 2000, 71(6):2440-2444.
    [41] W. P. Leung and A. C. tam, Thermal conduction at a contact interface measured by pulsed photothermal radiometry. J. Appl.Phys., 1988, 63(9):4505-4510.
    [42] K. D. Cole and W.A.McGahan, Theory of multiplayer heated by laser absorption. Journal of Heat Transfer, 1993, 115:767-770.
    [43] A.Lahmar,T.P.Nguycn, D.Sakami, et al., Experimental investigation on the thermal contact resistance between gold coating and ceramic substrates , Thin Solid Films, 2001,389: 167-172.
    [44] A.Lahmar,T.P.Nguycn, D.Sakami, et al., Experimental investigation on the thermal contact resistance between gold coating and ceramic substrates , Thin Solid Films, 2001,389: 167-172.
    [45] Andrew N. Smith, John L. Hosteler, Thermal boundary resistance measurements using a transient thermo-reflectance technique . Microscale Thermophysical Engineering, 2000,4:51-60.
    [46] Allan Rosencwaig and Allen Gersho, Theory of the photoacoustic effect with solids, Journal of Applied Physics, 1976,47(1):64-69.
    [47] J.A.Balderas-López and A.Mandelis, Self-normalized photothemal techniques for thermal diffusivity measurements, Journal of Applied Physics, 2000,88 (11): 6815-6820.
    [48] Xinwei Wang, Hanping Hu, Xianfan Xu, Photo-acoustic measurement of thermal conductivity of thin films and bulk materials. Journal of Heat Transfer, 2001, 123:138-144.
    [49] Madhusudana CV, Fletcher LS. Contact heat transfer — the last decade. AIAA J., 1986, 24(3): 510~523.
    [50] K.Jagannad ham, Hsin Wang, Thermal resistance of interface in AlN-diamond thin film composite, Journal of Applied Physics, 2002,91(3):1224-1235.
    [51] Ce-Wen Nan and R.Birringer, David R.Clarke et al., Effective thermal conductivity of particulate composites with interfacial thermal resistance, J.App.Phys., 1997,81(10):6692-6699.
    [52] A.Slaazar and Asánchez-Lavega, Measurements of the thermal diffusivity tensor of polymer-carbon composite by photothermal methods, International Journal of Thermophysics, 1998,19(1):625-636.
    [53] Vladimir.R, Romannovt, Joule heat release in a superconducting composite under a transport current charge, Superconductor Science and Technology, 2002,15:881-887.
    [54] Fletcher LS. Recent developments in contact conductance heat transfer. ASME J. Heat Transfer, 110(1988): 1059~1070.
    [55] Snaith B, Probert SD, O’Callaghan PW. Thermal resistances of pressed contacts. Applied Enery, 1986, 22(1): 31~84.
    [56] Mashusudana CV. Thermal contact conductance. Mechanical engineering series. Berlin: Springer, 1995.
    [57] A.G.Kozorezov, J.K.Wigmore, C.Erd et al., Scattering-mediated transmission of high-frequency phonons at a nonideal solid-solid interface. Physical Review B, 1998-Ⅰ,57:7411-7414.
    [58] Humphrey J. Maris, Phonon transmission across and the Kapitza resistance. Physical Review B, 1979,19(3):1443-1457.
    [59] J.K.Wigmore, Frequency distribution of phonon in a ballistic heat pulse determined by magnetic resonance. Physical Review B, 1972, 5(2):700-704.
    [60] P.E.phelan, Application of diffuse Mismatch theory to the prediction of thermal boundary resistance in thin film High-Tc superconductor, Journal of Heat transfer, 1998, 120: 37-48.
    [61] Leung M, Hsieh CK, Goseami DY. Prediction of thermal conductance in vacumn by statistical mechanics. J. Heat Transfer, 1998, 120(1): 51~57.
    [62] Majumdar A, Tien CL. Fractal network model for contact conductance. J. Heat Transfer ASME, 1991, 113(3): 516~525.
    [63] Li YZ, Madhusudana CV, Leonardi E. On the enhancement of the thermal contactconductance: effect of loading history. J. Heat Transfer, 2000, 122(1): 46~49.
    [64] Shllesh Y.vaidya, A.razani, Thermal modeling of steady state contact resistance between two dissimilar materials, J. Franklin Inst. 1998, 335B(8):1493-1506.
    [65] Mantelli MBH, Yovanovich MM. Compact analytical model for overall thermal resistance of bolted joints. Int. J. Heat Mass Transfer, 1998, 41(10): 1255-1266.
    [66] N.Laraqi and A.Bairi, Theory of thermal resistance between solids with randomly sized and located contacts. International Journal of Heat and Mass Transfer, 2002, 45: 4175-4180.
    [67] E.G.Wolff, D.A.Schneider, Prediction of thermal contact resistance between polished surface. International Journal of Heat and mass Transfer, 1998,41: 3469-3482.
    [68] S. Orain, Y.Scudller, S.Garcia, et al., Use of genetic algorithms for the simultaneous estimation of thin films thermal conductivity and contact resistance. International Journal of Heat and Mass Transfer, 2001, 44:3973-3984.
    [69] Kek-kiong tio, Kok chuantoh, Thermal resistance of two solids in contact through a cylindrical joint, Int. J. Heat Mass Transfer, 1998,41 (13): 2013-2024.
    [70] Peter Kittel, Modeling thermal contact resistance. Presented at 8th International Cryocooler conferece, Jue 28-30,Vail Vo,USA.
    [71] 张亚黎,王惠龄等. 高导热高电绝缘 AlN 的微结构及低温特性分析, 低温物理学报, 2003, 25(2): 132~136
    [72] Whey-Bin Lor, Hsin-sen chu, Hyperbolic heat conduction in thin-film high-Tc superconductor with interface thermal resistance, Cryogenics, 1999,39: 739-750.
    [73] Whey-Bin lor and Hsin-sen chu, Propagation of thermal wave in a composite medium with interface thermal boundary resistance. Numerical heat transfer, Part A, 1999,36:681-697.
    [74] D.E.Glass, M.N.?zisik, D.S. McRae et al., Hyperbolic heat conduction with temperature-dependent thermal conductivity. J.Appl.Phys.1986,59(6):1861-1865.
    [75] Ravi Prasher, Phonon transport in anisotropic scattering particulate media. Journal of Heat Transfer, 2003, 125:1156-1162.
    [76] Gang chen, Ballistic-Diffusive equations for transient heat conducton from Nano to Macroscale. Journal of Heat Transfer, 2002,124:320-328.
    [77] Gang chen, Ballistic-Diffusive Heat-conduction equations, Physical ReviewLetters, 2001,86(11):2297-2300.
    [78] Taofang Zeng and Gang Chen, Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. Journal of Heat Transfer, 2001, 123:340-347
    [79] Robert J.Stevens and Pamela M.Norris, Molecular-dynamics study of thermal boundary resistance: evidence of strong inelastic scattering transport channels. IMEC2004-60334,2004, 13-20,Anaheim,California USA.
    [80] Cherng-Jyh Twu and Jeng-Rong Ho, Molecular dynamics study of energy and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films. Physical Review B, 2003, 67:205422-1-7.
    [81] Soon-Ho Choi and Shigeo MARUYAMA, Evaluation of the phonon mean path in thin films by using classical molecular dynamics. Journal of the Korean Society, 2003, 43(5):747-753.
    [82] A.Maiti,G.D. Mahan and S.T. Pantelides, Dynamical simulations of non-equilibrium process-Heat flow and the Kapitza resistance across grain boundary. Solid State Communication, 1997, 102(7):517-521.
    [83] M.E.Lumpkin and W.M.Saslow, One-dimensional Kapitza conductance: comparison of the phonon mismatch theory with computer experiments. Physical Review B, 1979, 17(11):4295-4302.
    [84] Sune Pettersson and G.D.Mahan, Theory of the thermal boundary resistance between dissimilar lattices. Physical Review B, 1990-Ⅱ, 42(12):7386-7390.
    [85] Jeong S. Entropy generation minimization on CIC (Cable-In-Conduit) superconductor design. Cryogenics, 1999, 39 (1): 35-41.
    [86] 沈军,马骏,刘伟强. 一种接触热阻的数值计算方法. 上海航天,2002,4:33-36.
    [87] 张存泉,徐烈,赵兰萍等. 低温真空接触热阻温差的理论分析. 2001, 29(4): 56-59.
    [88] 黄志华,韩玉阁,王如竹. 用接触分热阻讨论接触热阻问题. 2001, 35(8): 1212-1215.
    [89] Rao Rongshi, Wang Huiling(王惠龄), Wang Jinrong, et al., An investigation on interface thermal resistance at superconductor cooling by cryocooler. Physica C, 2003, 386:547-550.
    [90] R.J.Stoner, Kapitza conductance and heat flow between solid at temperature from 50 to 300K, physical review B, 1993,48(2) :16373-16387.
    [91] 刘静. 微米/纳米尺度传热学. 科学出版社.2002,
    [92] M.I.Flik, B.I.Choi, K.E.goodson, Heat transfer regimes in microstructures, Journal of Heat Transfer, 1992,114: 666-674.
    [93] Dvid G.Cahill, Wayne K.Ford, Kenneth Goodson et al., Nanoscale thermal transport. Journal of Applied Physics, 2003, 93(15):794-816.
    [94] G.Chen,D.Borca-Tasciuc,R.G.Yang, Nanocale heat transfer, Encyclopedia of Nanoscience and Nanotechnology, Edited by H.S.Nalwa,1-30.
    [95] 徐虹玲, 王惠龄. 唐跃进等, 高温超导磁体(SMES)直接冷却热输运特性研究, 低温工程, 2003,(5):21 ~2 5
    [96] A. Tomioke, T. Bohno, S. Nose, et al., Experimental Results of the Model Coil for Cooling Design of a 1Tcryocooler-Cooled Pulse Coil for SMES, IEEE.Trans.Applied.Superconductivity, 1999,9(2):932-935.
    [97] 汪京荣, 滕鑫康等, 高温超导 Bi2223 带材磁体. 超导技术研究与应用研讨会,合肥: 2003 年 4 月.
    [98] 石零,王惠龄,唐跃进等, 制冷机直接冷却高温超导磁体的实验研究. 华中科技大学学报,2005,33(1):90-92
    [99] Wang Huiling( 王惠龄), Gao HC, An investigation on the thermoelectric properties of dillute magnetic copper-iron alloys at low temperature. Physica B, 1990, 165-166: 41~42.
    [100] 胡幼明, Paul Luyeye Luymas, 王惠龄. NiCr-CuFe 低温热电偶的实验室分度方法. 低温工程, 1997, (4): 23~26, 41.
    [101] 王惠龄编著. 制冷与低温测量技术. 华中理工大学出版社, 1988.
    [102] 石零, 王惠龄. 低温真空电流引线热分析. 低温工程,2005,4:53-55.
    [103] F.K.Gehring, M.E.Hüttner, R.P.Hubener, Peltier cooling of superconducting Current leads, cryogenics, 2001,41:521-528
    [104] Ho-Myung Chang and Steven W.Van Sciver, Thermodynamic Optimization of conduction-cooled HTS Current leads, Cryogenics, 1998,38:729-736
    [105] M.Mariani, M.Ariante, A.Matrone, el at, Cryocooler cooled HTS Current Leads for a 1MJ/1MW-class SMES System, IEEE Trans.App. Supercond., 2002, 12 (1):1293-1296
    [106] Haruhiko Ohumura, Satarou Yamaguchi, One Dimension simulation for Peltier Current Leads, Trans.App.supercond. 1997, 7(2):715-717.
    [107] A. Salazar, A.Sáchea-Lavega and J.M.Terrón, Effective thermal diffusivity materials measured by modulated photothermal technique, Journal of applied physics, 1998, 84(6) :3031-3040.
    [108] H.G. Walther, Surface roughness influence on photothermal radiometry. Applied Surface Science, 2002, 193:156-166.
    [109] G.González et al., Thermal diffusion of a two-layer system, Physical Review B, 1995-Ⅱ, 51 (4):863-868
    [110] 黄昆,韩汝琦改编. 固体物理,高等教育出版社,1990
    [111] 韦丹,固体物理. 清华大学出版社,2003
    [112] Adam L. Woodcraft, Predicting thermal conductivity of aluminium alloys in the cryogenic to room temperature range. Cryogenics, 2005, 45:421-431.
    [113] E.D.Marquardt, J.P.Le, and Ray Radebaugh,Cryogenic Material properties Database, 1th International Cryocooler Conference, 2000,June 20-22, Keystone, Co
    [114] Chuan Hu, Michael Kiene, and Paul S.Ho, Thermal conductivity and interfacial thermal resistance of polymeric low K films. Applied Physics Letters,2001, 79(25):314121-4123.
    [115] Partrick Prujia,Sauveur Bénet et al., Photothermal microanalysis of thermal discontinuities in metallic samples, Superlattices and Microstructure, 2004,35: 409-418.
    [116] H.L.Wang(王惠龄), Th.Wagner, G.Eska, An alunium heat switch from cold-pressed Cu-Al composite. Physica B, 2000, 284-288:2024-2025.
    [117] Y.Ohone, G. Wu, J.Dryden, F.Zok, A.Majumdar, Optical Measurement of thermal contact conductance between water-like thin solid samples, Journal of Heat Transfer, 1999, 121: 954-963.
    [118] Mehdi Fardmanesh, Allen Rothwarf, Low and midrange Modulation frequency response for YBCO infrared detectors: interface effects on the amplitude and phase. IEEE Transactions applied superconductivity,1995,5(1):7-13.
    [119] Little, W.A., The transport of heat between dissimilar solids at low temperature, Can.J.Phys.37:334-349.
    [120] G.Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direct of superlattices. Physical Review B, 1998, 57(23):14958-14973.
    [121] Giorgio Zoia and William Strieder, Transport coefficients in random two-phase media with interfacial resistance. Physical review B, 1997-Ⅰ, 56(20):13958~13972
    [122] Soon-HoChoi and Maruyama, Thermal boundary resistance at an epitaxially perfect interface of thin films. International Journal of Thermal Science, 2005, 44:547-558.
    [123] Taofang Zeng and Gang chen, Phonon Heat conduction in thin film: impacts of thermal boundary resistance and internal heat generation, Journal of Heat Transfer, 2001,123: 340~347.
    [124] Tom Klitsners, J.E. VanClee, Henry E.Fischer and R.O.Pohl, Phonon radiative heat transport and surface scattering. Physical Review B, 1990- Ⅰ , 38(11):7576-7594.
    [125] 石零,王惠龄. 固-固接触热传导的声子传递系数.低温与超导,2006,34(3):176-179
    [126] R.Beeman, Some experiments on thermal contact at low temperature. Journal of applied physics, 1956, 27(4):318-323.
    [127] Louis J.Salerno, Pater Kittel, Thermal conductance of pressed metallic contacts augmented with indium foil or apiezon grease at liquid helium temperature. Applied Physics Letters, 1965,12(1):31-33
    [128] Rober Dean Abelson, Mohamed A. Abdou, Experimental evaluation of the interface heat conductance between roughened beryllium and stainless steel surface, Journal of Nuclear materials 232-237(1996):847-851.
    [129] G.Chen, Phonon Wave heat conduction in thin films and superlattices. Journal of Heat Transfer, 1999,121:945-953.
    [130] Gang Chen and Taofang zeng, Nonequilibrim phonon and electron trandsfer in heterostructures and superlattices. Proc. Int. Conf. Heat Transfer and Transport Phenoment in Microscale, Banff,CANNADE, OCT.15-20: 1-11
    [131] G.Fagas, A.G.Kozorezov, C.J.Lambert, et al., Lattice dynamics of a disordered solid-solid interface. Phsical Review B, 1999-Ⅰ, 60(9):6459-6463.
    [132] Hmina N, Scudeller Y. Thermal interface resistance and subsurface effusivity ofsubmicron metallic films on dieletric substrates: an experimental method for simultaneous determination. J. Heat Mass Transfer, 1998, 41(10): 2781~2798.
    [133] Chen RC, Wu JP, Chu HS. Bolometric response of high-Tc superconducting detectors to optical pulse and continuous waves. J. Heat Transfer, 1995, 117(2): 366~372.
    [134] Marshall CD, Fishman IM, Dorfman RC, et al., Thermal diffusion, interfacial thermal barrier, and ultrasonic propagation in YBa2Cu3O7-x thin films: Surfacr-selective transient-grating expermients. Phys. Rev. B, 1992, 45(17): 10009~10021.
    [135] Wu JP, Shih CH, Chu HS. Influence of thermal boundary resistance on bolometric response of high-Tc superconducting films. Cryogenics, 1998, 38(9): 881~892.
    [136] A.A.Joshi and A.Majumdar, Transient ballistic and diffusive phonon heat transport in thin films. J.Appl.Phys.,1993,74(1):8979-8993.
    [137] Majumdar,A, Microscale heat conduction in dielectric films. Journal of Heat Transfer,1993,115:7-16.
    [138] Ravi S. Prasher and Patrck E.Phelan, A scattering –Mediated acoustic mismatch model for the prediction of thermal boundary resistance. Journal of Heat Transfer, 2001,123:105-112.
    [139] 梁昆淼编,数学物理方法.高等教育出版社,北京,1996
    [140] [美]B.A.奥尔特著,固体中的声场和波.科学出版社,北京,1982.
    [141] Klemens,P.G.,1958, Thermal conductivity and Lattice vibration modes. in solid state physics, F.Seita and T.Turnbull eds.,Acadimic Press, New York,7,pp1-98
    [142] Modest, M.F., 1993,Radiative Heat Transfer, McGraw-Hill, New York

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700