上海城市河流滨岸带生态系统退化评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流退化是当今世界各国河流生态系统面临的主要问题,城市化进程的加快,河流滨岸带,尤其是城市河流滨岸带生态系统遭受人类的干扰而严重退化。退化评价是保护和修复河流滨岸带生态系统的重要手段之一,亦是河流整治与可持续管理的有效依据。基于此背景下,尝试城市河流滨岸带生态系统退化评价研究,对于城市河流滨岸带整治的规划及管理具有重要的理论及现实意义。
     本文广泛研究相关文献资料,在阐述国内外河流滨岸带的研究进展及退化机理的基础上,指出城市河流滨岸带的内涵。从河流健康评价、现状评价与生态恢复及重建后评价三方面总结澳大利亚、美国、英国、瑞典、南非和中国等国家的河流滨岸带相关评价实践,并构建评价因子数据库。
     本文根据城市河流滨岸带的横向结构,尝试从滨水带、护岸带、缓冲带、近岸带4个方面来表征河岸带生态系统的退化状况。结合上海地区城市河流滨岸带的自身特征,通过确定评价指标、评价原则、评价标准和评价模型等步骤,初步构建包括滨水带、护岸带、缓冲带、近岸带4个一级指标,23个二级指标的城市河流滨岸带生态系统退化评价指标体系。
     本文实证研究以上海段苏州河为例,选取其干流43个河段为评价单元,结合遥感影像解译与实地调研,构建指标数据库,度量河岸带综合状况指数(Riparian Comprehensive Situation Index, RCSI);运用SPSS软件中的ANOVA分析及Spearman相关分析方法,识别不同区位、用地类型及河流两岸的退化程度以及退化因子间的响应规律,进而提出河岸带整治规划及修复策略。同时,本文初步探讨了苏州河滨岸带的范围,并运用Pearson相关分析研究河岸带用地类型变化的水环境效应。
     实证研究表明:①RCSI分布于3.79-25.03范围内,69.8%河段严重退化或极度退化;②高于85%河段的滨水带及护岸带严重退化或极度退化,滨水带宽度和护岸类型是其主要影响因素;大于50%河段的近岸带严重退化或极度退化,不透水面积率和设施丰富度是其关键限制因子;③人类活动强度、城市化进程等原因导致以及多数指标在不同区位、不同用地类型以及河流两岸中存在显著差异,而滨水带宽度、护岸坡度、侵蚀程度、α多样性指数和纵向连通性等方面无显著性差异;④RCSI与各一级指标及多数二级指标之间显著相关;⑤基于控制面源污染及提供生物廊道功能的河岸带范围为5.19-30.00m,基于提供航运码头或工业用地功能的河岸带为0.00-7.00m,基于提供景观休憩和公众居住功能的河岸带为6.00-30.00m;⑥100mbuffer的景观廊道能够较好的反映河岸带用地类型演变带来的水环境效应。
River degradation becoming the primary problem faced by the river ecosystem of countries all over the word. With the accelerating process of urbanization, riparian zone, especially urban riparian ecosystem suffers serious degradation because of human interference. Degradation assessment is not noly the important means of protect and repair the riparian zone ecosystem, but also is the effective proof of river regulation and sustainable management. Based on this background, try to study on riparian ecosystem degradation assessment of urban river is useful abstractly and practically for urban riparian zone for planning and management regulation.
     Literatures and references are complete studied, research progress and degradation mechanism of riparian zone at home and abroad are described. Based on which, connotation of urban riparian zone is showed. Practices on assessing riparian zone in Australia, United States, British, Sweden, South Africa and China are concluded from river health assessment, status assessment and ecological restoration and reconstruction after-assessment three aspects, and evaluation factor database is established.
     Based on horizontal structure of riparian zone, the paper try to characterization of riparian ecosystem degradation degree from waterfront zone, revetment zone, buffer zone and nearshore zone four aspects. With consideration of the characteristics of urban riparian zone in Shanghai, a degradation assessment system of riparian ecosystem of urban river is established with 4 first-grade indexes (including waterfront zone, revetment zone, buffer zone and nearshore zone) and 23 second-grade indexes after determining the assessment indicators, assessment principle, assessment standards and assessment model.
     Suzhou Creek in Shanghai is selected as the study case for practice, whose natural characteristics are under significant destruction and degradation due to rapid urbanization.43 reaches were selected as the assessment units on the main stream of Suzhou Creek, constructs indicators database using the method of remote sensing image interpretation and spot investigation, measures the Riparian Comprehensive Situation Index (RCSI). Then it identifies the level of degradation interprets and the RCSI response to reaches location, land use types and two banks on the basis of ANOVA analysis and Spearman correlation analysis, and put forward remediation planning and restoration strategies. Meanwhile, the paper preliminary discussed the scope of riparian zone of Suzhou Creek, and the environmental effects of riparian land-use change of urban river are studied on the basis of Pearson correlation analysis.
     The results show that:(ⅰ) The riparian comprehensive situation of Suzhou Creek is in the poor grade with RCSI distributing from 3.79 to 25.03, and no reach is in the minimal degradation, and 69.8% reaches belongs to serious and extreme degradation grade; (ⅱ) River channelization and revetment hardening of Suzhou Creek result in more than 85% reaches of the waterfront and revetment zone status belonging to serious and extreme degradation grade, the width of waterfront zone and type of revetment are the key factors to the grade. Though 72.1% reaches of the buffer zone status belongs to slight and moderate degradation grade, irrational vegetation structure and single species problems are still remained. Rapid urbanization makes more than 50% reaches of the nearshore zone status belonging to serious and extreme degradation grade, and impervious area ratio and facilities richness degree are the crucial factors to the grade; (ⅲ) The results of analysis of variance (ANOVA) reveal that human activity intensity and urbanization are the key forces to cause RCSI and most of other indexes having significant differences in reach location, land use types and two banks, while waterfront zone width, revetment slope, erosion degree, a diversity index and longitudinal connectivity have no significant differences; (ⅳ) It has most significant correlation among RCSI, first-grade indexes and second-grade indexes. (ⅴ) The scope of riparian zone based on function of control point source pollution and provides biological corridor range of 5.19-30.00m. The scope of riparian zone based on function of the shipping dock or industrial land range of 0.00-7.00m, The scope of riparian zone based on function of open and public housing range of 6.00-30.00m; (ⅵ) 100m buffer landscape corridor is better reflects the environmental effects of riparian land-use change of urban river.
引文
[1]Anthony R, Ladson, Lindsay J. Development and testing of an index of stream condition for waterway management in Australia. Freshwater Biology,1999,41:453-468.
    [2]Barbour M T. Rapid bioassessment protocols for use in streams and wadeable river:preiphyton. benthic macroinvertehrates and fish. Washington, D C:USEPA,1999,841-899.
    [3]Brookes A. Channelized Rivers:Perspectives for Environmental Management. Chichester: John Wiley and Sons.1988.
    [4]Campbell AG, Franklin J F. Riparian vegetation in Oregon's Western Cascade Mountains composition, biomass, and autumn phonology. Ecosystem Analysis Studies on Coniferous Forest Biomes, Bulletin No.14. Seattle:University of Washington, USA.1979.
    [5]Carleson D, Wilson L. Report of the riparian habitat technical task force. Final Report to Oregon Department of Forestry and Oregon Department of Fish and Wildlife. Salem, OR, USA.1985.
    [6]Castelle A T. Wetland and stream buffer size requirements-a review. Published in J. Environ. Qual.1994, (23):878-882.
    [7]David T, Leon M. Rapid bioassessment of Victorian Streams:the approach and methods of the Environment Protection Authority. Victoria:Environment Protection Authority,1998:15-19.
    [8]Dawson T E, Ehleringer J R. Streamside trees that do not use stream water. Nature,1991,350: 335-337.
    [9]Franklin J F, Perry D A, Schowater T D, et al. Importance of ecological diversity in managing long-term site productivity. In:Perry DA eds. Maintaining Long-term Productivity of Pacific Northwest Forest Ecosystems. Portland, OR, USA:Timber Press,1991
    [10]Greenwood H, O'dowd D J, Lake P S. Willow (Salix × rubens) invasion of the riparian zone in south-eastern Australia:reduced abundance and altered composition of terrestrial arthropods. Diversity and Distributions,2004,10:485-492.
    [11]Gregory S V, Swanson F J, McKee A, et al. An ecosystem perspective of riparian zones: Focus on links between land and water. BioScience,1991,41(8):540-551.
    [12]Gurnell A M, Edwards P J. A conceptual model for alpine proglacial river channel evolution under changing climatic conditions. Elsevier Science,1999, (38):223-242
    [13]Holmes TP, Bergstrom JC, Huszar E, et al. Contingent valuation, netmarginal benefits, and the scale of riparian ecosystem restoration. Ecological Economics,2004,49:19-30.
    [14]Hulme P E, Bremner E T. Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. Journal of Applied Ecology, 2005,43:43-50.
    [15]Jennifer Leavitt. The functions of riparian buffers in urban watersheds. University of Washington,1998.
    [16]Kilroy C, Biggs B, Mulcock C. New Zealand stream health monitoring and assessment kit: stream monitoring manual. National Institute of Water and Atmospheric Research.1998.
    [17]Lowrance, R, R. Leonard, and J. Sheridan.1985. "Managing Riparian Ecosystems to Control NonpointPollution." Journal of Soil & Water Conservation,40:87-97.
    [18]Meeban W R, Swanson F J, Sedell J R. Influences of riparian vegetation on aquatic ecosystems with particular references to salmonoid fishes and their food supplies. Washington:USDA Forest Service General Technical Report,1979:137-145.
    [19]Muscutta D, Harris G L, Bailey S W, et al.Buffer zones to improve water quality:A review of their potential use in UK agriculture.Agriculture, Ecosystems and Environment,1993, 45(1):59-77.
    [20]Naiman R J, Decamps H, Pollock M. Role of riparian corridors in maintaining regional biodiversity. Ecological Applica-tions,1993(3):209-212.
    [21]Paul M. Riparian Buffer width, vegetative cover, and nitrogen removal effectiveness:a review of current science and regulations. EPA,2005.
    [22]Pollock, Naiman, Hanley. Plant species richness in riparian wetlands——A test of biodiversity theory. Ecology,1998,79(1):94-105.
    [23]Sally T, Malcolm E. Water health enhancement program:assessing riparian zone ecosystem services and valuing the benefits of protecting and enhancing these services. Brisbane:BCC Waterway Health,2007.
    [24]Schofield N J, Davies P E. Measuring the health of our rivers. Water,1996,5(6):39-43.
    [25]Seth W. A review of the scientific literature on riparian buffer width, extent and vegetation. Office of Public Service & Outreach Institute of Ecology University of Georgia,1999.
    [26]Simpson J C, Norris R H. Biological assessment of river quality:development of AusRivAS models and outputs, in Wright J F, Sutcliffe D W, Furse M T. Assessing the biological quality of freshwaters. RIVPACS and other techniques, Ambleside:The Freshwater Biological Association,2000.
    [27]Smith M J, Kay W R, Edward D H D, et al. AusRivAS:using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology,1999,41:269-282.
    [28]Sparovek G. A conceptual framework for the definition of the optimal width of riparian forests. Agriculture, Ecosystems and Environment,2002,90:169-175.
    [29]Stanford J A, Ward J V. Management of aquatic resources in large catchments:recognizing interactions between ecosystem connectivity and environmental disturbance, in Naiman R J. Watershed management:balancing sustainability and environmental change, New York:Springer-Verlag,1992:91-124.
    [30]Stohlgren T J, Binkley D, Chong G W, et al. Exotic plant species invade hot spots of native plant diversity. Ecological Monographs,1999,69(1):25-46
    [31]Stoodley, Scott Howard. Economic feasibility of riparian buffer implementation. Case Study: Sugar Creek. Caddo Country, Oklahoma. Oklahoma State University,1998:1-24.
    [32]Sunil N, Tingchun Z, John R J.1997. Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones. Aquatic Botany, 58:393-409.
    [33]Suren A, Snelder T, Scarsbrook M. Urban Stream Habitat Assessment Method (USHA).1998. www.niwa.cri.nz/commercial-services/tools.html
    [34]Swanson FJ, Gregory SV, Sedell JR, et al. Land-water inter-actions:the riparian zone. In: Edmonds RL ed. Analysis of Coniferous Forest Ecosystems in the Western United States. US/ IBP Synthesis Series No.14. Hutchinson Ross Publishing, Stroudsburg, Pennsylvania, USA, 1982.
    [35]Thomas J W, Maser C, Rodiek J E. Riparian zones. In:Thomas JW ed. Wildlife Habitats in Managed Forests:The Blue Mountains of Oregon and Washington. USDA Forest Service Agricultural Handbook,1979, No.553:41-47
    [36]Xiang W-N. Application of a GIS-based stream buffer generation model to environmental policy evaluation. Environmental Management,1993,17:817-827.
    [37]Xiang W-N. GIS-based riparian buffer analysis:injecting geographic information into landscape planning. Landscape and Urban Planning,1996,34:1-10.
    [38]白慧强,李全平.河岸带研究现状与存在问题探讨.科技情报开发与经济,2007,17(22):165-167.
    [39]蔡永立.上海市河道绿化建设导则研究报告.上海:华东师范大学/上海市水务局/上海市绿化管理局,2008.
    [40]车生泉.城市绿色廊道研究.城市规划,2001(11):44-48.
    [41]陈吉泉.河岸植被特征及其在生态系统和景观中的作用.应用生态学报,1996,7(4):439-448.
    [42]陈婷.平原河网地区城市河流生境评价研究——以上海为实例.上海:华东师范大学,2007.
    [43]陈子珊.北京郊区河岸带自然性评价与生态恢复.北京:北京林业大学,2008.
    [44]邓红兵,王青春,王庆礼,等.河岸植被缓冲带与河岸带管理.应用生态学报,2001,12(6):951-954.
    [45]邓红兵,王青春,王庆礼.长白山二道白河溪流大木质物残体的初步研究.林业研究(英文版),2002,13(3):196-200.
    [46]冯泽深,高甲荣.北京郊区雁栖河自然性定量评价.中国农村水利水电,2008(10):14-17.
    [47]高甲荣,王芳,朱继鹏,等.河溪生态系统自然性评价指标体系.中国水土保持科学,2006,4(5):66-70.
    [48]高阳,高甲荣,陈子珊,等.河溪近自然治理评价指标体系探讨以及应用,水土保持研究,2007,14(6):404-407.
    [49]高阳,高甲荣,刘瑛,等.河溪缓冲带的功能及其科学管理.林业调查规划,2006,31(5): 37-41.
    [50]高阳,高甲荣,刘瑛,等.河溪缓冲带的生态功能及其管理原则.水土保持通报,2006,26(5):94-97
    [51]郭怀成,黄凯,刘永,等.河岸带生态系统管理研究概念框架及其关键问题.地理研究,2007,26(4):789-798.
    [52]郭会哲,樊巍,宋绪忠.河岸带植被结构功能及修复技术研究进展.河南林业科技,2005,25(4):1-3.
    [53]何东,魏新增,李连发,等.神农架山地河岸带连香树的种群结构与动态.植物生态学报,2009,33(3):469-481.
    [54]胡学军,江明喜.香溪河流域一条一级支流河岸林凋落物季节动态.武汉植物学研究,2003,21(2):124-128
    [55]黄凯,郭怀成,刘永,等.河岸带生态系统退化机制及其恢复研究进展.应用生态学报,2007,18(6):1373-1382.
    [56]江明喜,蔡庆华.长江三峡地区干流河岸植物群落的初步研究.水生生物学报,2000,24(5):458-463.
    [57]李静,张浪,李敬.城市生态廊道及其分类.中国城市林业,2006,4(5):46-47.
    [58]李苗,龙岳林,陈艳,等.河岸带景观生态研究进展.湖北林业科技,2008(5):44-47.
    [59]李巧,陈彦林,周兴银,等.退化生态系统生态恢复评价与生物多样性.西北林学院学报,2008,23(4):69-73.
    [60]李素新.汾河河岸带植被管理对策.山西农业科学,2007(12).
    [61]林木隆,李向阳,杨明海.珠江流域河流健康评价指标体系初探.人民珠江,2006,(4):1-4.
    [62]罗江华等.柳州市城市土地利用空间格局演化特征分析.中国人口.资源与环境,2008,18(1):145-148.
    [63]罗晓娟,余勇利.植被缓冲带结构与功能对水质的影响.水土保持应用技术,2006(4):1-3.
    [64]孟飞,鲍文,单宝艳.上海耕地动态变化与驱动机制研究.山东建筑大学学报,2007,22(5):403-407.
    [65]牟溥,王庆成, Anne E.Hershey,等.土地利用、溪流级别与溪流河水理化性质的关系.生态学报,2004,24(7):1486-1492.
    [66]潘晓云,耿宇鹏,张文驹,等.喜旱莲子草沿河岸带不同生境的盖度变化及形态可塑性.植物生态学报,2006,30(5):835-843.
    [67]彭补拙,张建春.河岸带研究及其退化生态系统的恢复与重建.生态学报,2003,23(1):56-63.
    [68]钱进,王超,王沛芳,等.河湖滨岸缓冲带净污机理及适宜宽度研究进展.水科学进展,2009,20(1):139-144.
    [69]钱进,王超,王沛芳,等.基于层次分析法的河湖滨岸缓冲带宽度适宜性评价.水资源 保护,2008,24(6):76-79.
    [70]饶良懿,崔建国.河岸植被缓冲带生态水文功能研究进展.中国水土保持科学,2008,6(4):121-128.
    [71]上官铁梁,贾志力.汾河河岸植被类型及其利用与保护.河南科学,1999,17(A06):83-86.
    [72]邵波,方文,王海洋.国内外河岸带研究现状与城市河岸林带生态重建.西南农业大学学报(社会科学版),2007,5(6):43-46.
    [73]施展.平原河网地区城市河流滨岸带生境评价研究-以上海市苏州河为例.上海:华东师范大学,2008.
    [74]石晓丹,阮晓红,吕学研.南京秦淮河河岸带原生植被初步调查.环境科学与管理,2007,32(3):84-88.
    [75]汪冬冬,施展,杨凯,等.城市河流滨岸带土地利用变化的环境效应——以上海苏州河为例.中国人口.资源与环境,2009,19(3):96-101.
    [76]汪冬冬,杨凯,车越,等.河段尺度的上海苏州河河岸带综合评价.生态学报,2010.
    [77]王国胜,徐文彬,林亲铁,等.河流健康评价方法研究进展.安全与环境工程,2006,13(4):14-17.
    [78]王国玉,李湛东.河岸带自然度综合评价指标体系的构建.山东林业科技,2008,(6):12-15.
    [79]王建群,卢志华.土地利用变化对水文系统的研究影响.地球科学进展,2003,18(2):292-298.
    [80]王良民,王彦辉.植被过滤带的研究和应用进展.应用生态学报,2008,19(9):2074-2080.
    [81]王琳,宫兆国,张炯等.综合指标法评价城市河流生态系统的健康状况.中国给水排水,2007,23(10):97-100
    [82]王青春,邓红兵,王庆礼.基于生物多样性保护的河岸带植被管理对策——以长白山二道白河为例.生态学杂志,2006(6).
    [83]王巍,李传奇.城市河流景观设计之探析.水利学报,2003,(8):117-121.
    [84]王文雯,赵彦玲.济南市玉绣河沿岸绿地的生物多样性分析及其优化措施.地球物理学进展,2005,20(2):482-486.
    [85]邬建国.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社,2000.
    [86]吴阿娜,杨凯,车越,等.河流健康评价在城市河流管理中的应用.中国环境科学,2006,26(3):359-363.
    [87]吴阿娜,杨凯,车越,等.河流健康状况的表征及其评价.水科学进展,2005,16(4):602-608.
    [88]吴阿娜.河流健康评价:理论、方法与实践.上海:华东师范大学,2008.
    [89]夏继红,胡玲.生态河岸带功能区划的定性与定量研究.水利学报,2007(S1).
    [90]夏继红,严忠民,蒋传丰.河岸带生态系统综合评价指标体系研究.水科学进展,2005,16(3):345-348.
    [91]夏继红,严忠民.生态河岸带的概念及功能.水利水电技术,2006,37(5):14-17.
    [92]夏继红,严忠民.生态河岸带研究进展与发展趋势.河海大学学报(自然科学版),2004,32(3):253-255.
    [93]夏继红,严忠民.生态河岸带综合评价理论与修复技术.北京:中国水利水电出版社,2009.
    [94]夏继红,严忠民.生态河岸带综合评价与GIS耦合研究.河海大学学报(自然科学版),34(4):366-369.
    [95]夏自强,郭文献.河流健康研究进展与前瞻.长江流域资源与环境,2008,17(2):252-256.
    [96]肖化顺.城市生态廊道及其规划设计的理论探讨.中南林业调查规划,2005,24(2):15-18.
    [97]邢忠,徐晓波.城市绿色廊道价值研究.重庆建筑,2008(5):19-22.
    [98]熊斯顿,由文辉,黄沈发,等.苏州河东风港滨岸带生态景观综合评价研究.生态科学,2007,26(3):220-226.
    [99]徐洁思,蔡永立,左俊杰,等.上海市苏州河河岸绿化结构的演变.现代城市研究,2007,(9):58-66.
    [100]阎水玉,王祥荣.城市河流在城市生态建设中的意义和应用方法.城市环境与城市生态,1999,12(6):36-38.
    [101]杨胜天,王雪蕾,刘昌明,等.岸边带生态系统研究进展.环境科学学报,2007,27(6):894-905.
    [102]杨亭,杨庆媛,张安明.从使用者观点评价都市河岸空间规划.安徽农业科学,2006,34(16):3976-3977
    [103]杨文慧,严忠民,吴建华.河流健康评价的研究进展.河海大学学报(自然科学版),2005,33(6):607-611.
    [104]杨文慧,杨宇.河流健康概念及诊断指标体系的构建.水资源保护,2006,22(6):28-30.
    [105]尹澄清.内陆水—陆地交错带的生态功能及其保护与开发前景.生态学报,1995.
    [106]由文辉.谈河岸带的生态管理.上海建设科技,2003(1):27-28.
    [107]岳隽,王仰麟.国内外河岸带研究的进展与展望.地理科学进展,2005,24(5):33-40.
    [108]张凤凤,李土生,卢剑波.河岸带净化水质及其生态功能与恢复研究进展.农业环境科学学报,2007,26(B10):459-464.
    [109]张建春.河岸带功能及其管理.水土保持学报,2001,15(6):143-146.
    [110]张可刚,赵翔,邵学强.河流生态系统健康评价研究.水资源保护,2005,21(6):11-14.
    [111]张勇,王云,叶文虎.上海市地表水水质近20年的变化.环境科学学报,2002,22(2):247-251.
    [112]章家恩,徐琪.生态系统退化的动力学解释及其定量表达探讨.地理科学进展,2003,22(3):251-259.
    [113]章家恩,徐琪.退化生态系统的诊断特征及其评价指标体系.长江流域资源与环境,1999,8(2):215-220
    [114]赵军.平原河网地区景观格局变化与多尺度环境响应研究——以上海地区为例.上海:华东师范大学,2008.
    [115]赵雯,管岩岩.河流缓冲带的功能与基本恢复原则.山东林业科技,2008,38(4):89-91.
    [116]赵彦伟,杨志峰,姚长青.黄河健康评价与修复进展.水土保持学报,2005,19(5):131-134.
    [117]赵彦伟,杨志峰.城市河流生态系统健康评价初探.水科学进展,2005,16(3):349-355.
    [118]赵彦伟,杨志峰.河流生态系统修复的时空尺度探讨.水土保持学报,2005,19(3):196-200.
    [119]周婷,彭少麟,任文韬.东江河岸缓冲带景观格局变化对水体恢复的影响.生态学报,2009,29(1):231-239.
    [120]朱强,俞孔坚,李迪华.景观规划中的生态廊道宽度.生态学报,2005,25(9):2406-2412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700