食品废弃物和剩余污泥联合发酵产酸耦合活性污泥合成聚羟基烷酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品废弃物和剩余污泥是最具代表性的两种有机固体废弃物,二者都具有较高的有机质含量和含水率,所以在环境中极易腐败,释放臭气和有毒气体,并对地下水和土壤造成污染。食品废弃物和剩余污泥混合发酵产有机性挥发酸(VFAs),为活性污泥合成聚羟基烷酯(PHA)提供廉价碳源,不但能够实现两种固体废弃物的资源化,还能够大大降低PHA的生产成本。全文研究内容和实验结果如下:
     (1)以食品废弃物和剩余污泥为底物,采用半连续流加料方式,进行有机固体废弃物高效发酵产酸菌的驯化培养。结果表明,培养20天后驯化体系达到稳定,稳定后发酵所得VFAs浓度为4000±150 mg COD/l,VFAs中丁酸含量最高,其次为戊酸,丙酸和乙酸含量相对较少。
     选取底物中食品废弃物和剩余污泥挥发性固体(VSS)比分别为100:0,90:10,70:30,50:50,30:70,0:100,研究不同比例下发酵产VFAs情况。结果表明,发酵液中溶解性化学需氧量(SCOD)与食品废弃物的含量成正比,食品废弃物和剩余污泥比例为90:10时发酵产VFAs量最高,100%食品废弃物所得发酵液中NH_4~+-N和PO_4~(3-)-p浓度过低,影响了产VFAs微生物的活性;同时,不同底物比例还会影响VFAs的分布,VFAs中乙酸的百分含量随着剩余污泥比例的增高而增高,丁酸的百分含量则是随着底物中剩余污泥比例的增高而出现明显下降。
     (2)利用表面响应法(RSM),对食品废弃物和剩余污泥混合发酵产VFAs的条件进行优化。考察了底物中食品废弃物比例、有机负荷率(OLR)、固体停留时间(SRT)、pH对VFAs浓度、VFAs/SCOD比的相互作用关系,以确定最优工艺条件。优化得到的最高VFAs浓度对应的件为:食品废弃物含量88.03%,SRT8.92 d,OLR 8.31 gVSS/1 d,pH值6.99,实验值29099 mg/l与预测值28000 mg/l存在较好的一致性;预测得到的最高VFAs/SCOD比为92.82%,对应的的优化条件为食品废弃物含量:92.12%,SRT:6.26 d,OLR:4.26 gVSS/1 d,pH值:7.18,实验值89.91%与预测值92.82%存在较好的一致性。发酵所得VFAs中C_偶/C_奇比随着底物中食品废弃物比例的增大而增大,并且随着有机负荷率OLR的增大而增大,pH值为6.7左右时得到最小C_偶/C_奇比。
     (3)以食品废弃物和剩余污泥混合发酵产的VFAs为底物,采用逐步增加负荷法驯化高PHA储存能力活性污泥。结果发现,在3600 mgCOD/l的负荷下得到最高PHA含量为47.65%(细胞干重),在720mgCOD/l负荷条件下得到最高转化率0.59 mgCODPHA/mgCODVFAs。
     采用均匀设计实验,在0 mT,7 mT,21 mT磁场条件研究乙酸、丙酸、丁酸和戊酸与PHA成分之间的关系模型。利用SAS 9.0软件回归得到的系列模型都具有很高的可靠性,验证实验值与模型预测值存在较高的一致性,被证明可以用来预测PHA组分的合成量。
     选择0 mT、7 mT、21 mT三个磁场条件进行活性污泥合成PHA的批式实验。以食品废弃物和剩余污泥混合发酵产VFAs为底物合成PHA时,7 mT磁场能够提高HB的合成量,21 mT磁场能够提高HV的合成量。不加磁场条件下最终得到的转化率为205 mgCODPHA/gVSS;7 mT磁场条件下得到的转化率为232mg CODPHA/gVSS,与21 mT磁场条件下接近。以有机固体废弃物的酸化发酵液为底物合成PHA时,不同磁场条件下的HB、HV合成量与以分析纯有机酸为底物时相比普遍增高,说明酸化发酵液中非VFAs的溶解性有机物对合成PHA也有贡献。
Food waste and excess sludge are the two kinds of representative organic solid waste, which are the source of decay, odor and toxic gas emission and groundwater and soil contamination due to their high-volatile solids and moisture content. Acidogenic fermentation of food waste in combination with excess sludge is an alternative strategy because volatile fatty acids (VFAs) can be harvested and used as carbon sources for polyhydroxyalkanoates (PHA) storage. The strategy not only achieves recovery energy from the organic solid waste, but also reduces the production cost of PHAs greatly. The study and results were shown as follows:
     (1) Acclimated efficient VFAs fermentation bacteria with co-substrate of food waste and dewatered excess sludge under semi-continuous technique. The results showed that the acclimatization system achieved steady-state condition after 20 days, when the VFAs concentration was 4000±150 mgCOD/1 and butyric acid content was the highest, followed by valeric acid, propionic acid and acetic acid content is relatively small.
     Study the effect of ratio of food waste and excess sludge in substrate on bio-production of VFAs. The ratio of food waste and excess sludge choose in accordance with VSS ratio of 100:0, 90:10, 70:30, 50:50, 30:70, 0:100. The results showed that soluble chemical oxygen demand (SCOD) deserved from the acidogenesis was proportional to the content of food waste. When the food waste versus excess sludge is 90:10, the most VFAs concentration achieved. When the substrate was all the food waste, the NH_4~+-N and PO_4~(3-)-P concentration in the fermentative liquid were so low that inhibited the activity of VFAs fermentation microbiology. At the same time, the ratio of food waste and excess sludge can also influence the distribution of the VFAs. The percentage of acetate acid in VFAs increased with the ratio of food waste and excess sludge decreased, and the percentage of butyrate acid in VFAs increased with the ratio of food waste and excess sludge increased.
     (2) Used response surface methodology (RSM) optimization of semi-continuous VFAs production with co-substrate of food waste and excess sludge. The effects of food waste composition in substrate, solid retention time (SRT), organic loading rate (OLR) and pH on the acidogenesis were evaluated individually and interactively. The optimum VFAs condition derived was food waste composition; 88.03%, HRT; 8.92 d, OLR; 8.31 gVSS/l d and pH; 6.99. The experimental VFAs concentration was 29099 mg/L, which was well in agreement with the predicted value of 28000 mg/l. And the optimum VFAs/SCOD condition was food waste composition; 92.12%, SRT; 6.26 d, OLR; 4.26 gVSS/l d, pH; 7.18. The experimental VFAs/SCOD 89.91% wse well in agreement with the predicted value 92.82%. The ratio of even C and odd C of the fermentative VFAs increased with increasing the food waste composition and increasing OLR, and the lowest value achieved when pH was around 6.7.
     (3) Acclimated activated sludge with high PHAs storage capacity under aerobic dynamic feeding (ADF) technique fed with the fermentative VFAs by gradually increasing organic load. It was demonstrated that the optimum organic load was 3600 mgCOD/l when the maximum PHA content in biomass achieved to 47.65% (on dry cell weight basis), and the maximum yield occurred when the organic load was 720 mg COD/l.
     Uniform design was utilized to find out relational models between C sources and PHA components. The data from the experiments analyzed and calculated by software SAS Version 9.0. The models derived were proved to be useful of predicting PHA components, and the experimental values well agreed with the predicted values.
     The batch production of PHA were operated by the magnetic field with 0mT, 7 mT, 21 mT fed with fermentative VFAs. We found that 7 mT magnetic field favored HB accumulation in biomass and 21 mT magnetic field favored HV accumulation in biomass. The yield of PHA from co-substrate of food waste and excess sludge achieved to 205 mgCODPHA/gVSS without magnetic field, which was 232 mgCOD PHA/gVSS by 7 mT magnetic field similar with the 21 mT. HA accumulation fed with fermentative VFAs were lager than fed with synthesized VFAs under any magnetic field.The no VFAs composition of the fermentative liquid was demonstrated mostly contributed to growing; meanwhile, it also contributed to PHA storage.
引文
[1]严太龙,石英.国内外厨余垃圾现状及处理技术[J].城市管理与科技,2004,6(4):165-166.
    [2]王启中,宋碧玉.污水处理中的污泥减量新技术[J].城市环境与城市生态,2003,16(6):295-297.
    [3]Van Wegen RJ,Ling Y,Middelberg APJ.Industrial production of polyhydroxyalkanoates using Escherichia coli:an economic analysis[J].Chemical Engineering Reserch and Design,76:417-426.
    [4]方战强,吴坚,鲍伦军.餐厨垃圾处置方法探讨[J].华南师范大学学报(自然科学版),2007(1):70-74.
    [5]孙营军.杭州市厨余垃圾现状调查及其厌氧沼气发酵可行性研究[硕士学位论文].杭州:浙江大学,2008:14.
    [6]郭燕,戴文灿.浅析城市生活垃圾综合处理与再生利用[J].再生资源研究,2000(5):30-32.
    [7]汪慧群等.厨余垃圾的资源化技术[J].现代化工,2004,24(7):56-59.
    [8]Garg P,Gupta a,Satya S.Vermicomposting of different types of waste using Eisenia foetida:A comparative study[J].Bioresource Technology,2006,97:391-395.
    [9]张记市,孙可伟,苏存荣.城市生活垃圾处理前言动态[J].中国资源综合利用,2004,9:18-21.
    [10]Nijmeha MN,Ragaba AS,Emeisha MS.Jubran BA.Design and testing of solar dryers for processing food wastes[J].Applied Thermal Engineering,1998,18(12):1337-1346.
    [11]Rundberget t,Skaar I,Flaoyen A.The Presence of Penicillum and Penicillum Mycotoxins in Food Waste[J].International Journal of Food Micro-biology,2004,90:181-188.
    [12]熊善柏,董汉萍.稻米加工与维生素损失[J].粮食与油脂,2001,(2):2-3.
    [13]阮文权,郁丹,邹华等.小城镇废弃物沼气生产技术进展[J].中国沼气,2006,24(4):28-31.
    [14]陈庆今,刘焕彬,胡勇有.固体有机垃圾厌氧消化处理的研究进展[J].中国沼气,2001,19(3):3-8.
    [15]Jayalakshmi S,Kurian Joseph,Sukumaran V.Bio-hydrogen generation from kitchen waste in an inclined plug flow reactorinternational[J].Journal of hydrogen energy,2009,34:8854-8858.
    [16]Rhu DH,Lee WH,Kim JY,Choi E.Polyhydroxyalkanoate(PHA) production from waste[J].Water Science and Technology,2003,48:221-228.
    [17]Du G,Chen LXL,Yu J.High-efficiency production of bioplastics from biodegradable organic solids[J].Journal of Polymers and the Environment,2004,12:89-94.
    [18]孔祥娟,何强,柴宏祥.城镇污水厂污泥处理处置技术现状与发展[J].市政技术,2009,19:57-59.
    [19]金儒霖,刘永龄.污泥处置[M].北京:中国建筑出版社,1982.
    [20]Xiao BY,Liu JX.Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation[J].Journal of Hazardous Materials,2009,168:163-167.
    [21]Bouzas A,Gabaldon C,Mazral P,etal.Fermentation of municipal:Primary sludge:effect of SRT and solid concentration on volatile fatty acid Production[J].Environmental Technology,2002,23(8):863-875.
    [22]Cai MM,Chua H,Zhao QL,Sin NS,Ren J.Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation [J]. Bioresource Technology, 2009, 100: 1399-1405.
    [23] Toshinari M, Takayuki Y, Tomohiko S, Yoshihito S, Hiroaki I. Ogawa.Enhanced production of lactic acid with reducing excess sludge by lactate fermentation [J]. Journal of Hazardous Materials, 2009, 168: 656-663.
    [24]Bryant MP.Microbial methane production-theoretical aspects [J]. Journal of Animal Science, 1979,48(1): 193-201.
    [25]Gomec CY, SPeece RE. The role of PH in the organic material solubilization of domestic sludge in anaerobic digestion [J].Water Science and Technology, 2003,48 (3):143-150.
    [26]Yu HQ, zheng XJ, Hu ZH, Gu GW. High-rate anaerobic hydrolysis and acidogenes of sewage sludge in a modified upflow reactor [J]. Water Science and Technology, 2003 48 (4): 69-75.
    [27]史红钻,张波,蔡伟民. pH对厨余垃圾发酵产酸特性影响的研究[J].农业环境科学学报2005,24(4): 809-811.
    [28]Lim SJ, Kim BJ, Jeong CM, Choi J, Ahn YH, Chang HN.Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor [J]. Bioresource Technology, 2008, 99: 7866-7874.
    [29] Zhang P, Chen YG, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH [J]. Water research, 2009,43:3735-3742
    [30] Elefsiniotis P, Oldham WK. Influence of pH on the acid-Phase anaerobic digestion of primary sludge [J]. Journal of ChemicalTechnology & Bioteehnology, 1994, 60: 89-96.
    [31]Eastman JA, Ferguson JE.Solubilization of Particulate organic carbon during the acid phase of anaerobic digestion [J]. Jounal (Water Pollution Control Federation), 1981, 53 (3):352-366.
    [32]Yu HQ, Fang HHP. Acidogenesis of dairy waste water at various PH levels [J]. Water Science and Technology, 2002, 45 (10): 201-206.
    [33] Guerrero L, Omil F, Mendez R. Lema JM. Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein [J]. Water Research, 1999, 33 (15): 3281-3290.
    [34]Miron Y, Zeeman G, van Lier J, Lettinga G.The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems [J].Water Research, 2000, 34: 1705-1713.
    [35] Elefsiniotis P, Oldham WK. Anaerobic acidogenesis of primary sludge: The role solids of retention time [J].Biotechnology and Bioengineering, 1994, 44 (1):7-13.
    [36] Borja R, Sanchez E, Rincon B, Raposo F, Martin MA, Martin A.Study and optimisation of the anaerobic acidogenic fermentation of two-phase olive pomace [J]. Process Biochemistry, 2005, 40:281-291.
    [37]Zhang P, Chen YG, Huang TY, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation in the presence of SDBS in semi-continuous flow reactors: Effect of solids retention time and temperature [J]. Chemical Engineering Journal, 2009, 148: 348-353.
    [38]Rincon B, Sanchez E, Raposon F, Borja R, Travieso L, Martin MA, Martin A. Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue [J]. Waste Management, 2008, 28: 870-877.
    [39] Ferreiro N, Soto M. Anaerobic hydrolysis of Primary sludge: influence of sludge concentration and temperature [J].Water Science and Technology, 2003, 47 (12): 239-246.
    [40]郑元景,沈永明,沈光范.污水厌氧生物处理[M].北京:中国建筑工业出版社,1988:59-114.
    [41]Kim SH,Han SK,Shin HS.Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge[J].International Journal of Hydrogen Energy,2004,29:1607-1616.
    [42]Kim HW,Han SK,Shin HS.The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge[J].Waste Management and Research,2003,21:515-526.
    [43]Zhu HG,Parker W,Basnar R,Proracki A,Falletta P,Beland M,Seto P.Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges[J].International Journal of Hydrogen Energy,2008,33:3651-3659.
    [44]伍珂.市政污泥与食品废弃物混合发酵产酸研究[硕士学位论文].无锡:江南大学,2008:13-19.
    [45]Canetti M,Qrso M,Sadocco P,et al.Influence of the morphology and the supmolecular structure on the enzymatic degradation of bacterial poly(3-hydroxybutyrate)[J].Ploymer,1999,40:2587-2591.
    [46]Luengo JM,Garcla B,Sandoval A,et al.Present Situation of Research and Prospect of Application of Microbic Plastics[J].Current Opinion in Microbiology,2003,6:251-255.
    [47]陈琦,黄和容,易祖华.微生物合成生物降解塑料研究现状与展望[J].微生物学通报,1994,21(5):297-303.
    [48]Marchessault RH.Tender morsels for bacteria:recent developments in microbial polyesters [J].Trends Ploymer Science,1996,4(5):163-168.
    [49]Paulo C,Lemos,Luisa SS,Maria AMR.Synthesis of polyhydroxyalkanoates from different short- chain fatty acids by mixed cultures submitted to aerobic dynamic feeding[J].Journal of Biotechnology,2006,122:226-238.
    [50]Lee SY.Plastic bacteria progress and prospects for polyhydroxyalkanoate production in bacteria[J].Trends Biotechnology,1996,14:431-438.
    [51]Lusa S,Serafim,Paulo C,Lemos,Rui Oliveira,Mafia AM,Reis.Optimization of Polyhy droxybutyrate Production by Mixed Cultures Submitted to Aerobic Dynamic Feeding Conditions [J].Biotechnology and Bioengineering,2004,87:145-160.
    [52]Meesters K.Production of poly-3-hydroxyalkanoates from waste streams.Design Report,Delft University of Technology,1998.
    [53]Serafim LS,Lemos PC,Oliveira RF,et al.Optimisation of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions[J].Biotechnology and Bioengineering,2004,87(2):145-160.
    [54]Loosdrecht V,Pot MAM,Heijnen JJ.Importance of bacterial storage polymers in bioprocess [J],Water Science and Technology,1997,35:41-47.
    [55]Dionisi D,Majone M,Tandoi V,Beccari M.Sequencing Batch Reactor:Influence of Periodic Operation on Performance of Activated Sludges[J].Indoustry & Engineering Chemestry Reserch,2001,40(23):5110-5119.
    [56]Mino T,Liu WT,Satoh H,Matsuo T.Possible metabolism of polyphosphate accumulating organisms(PAOs) and glycogen non accumulating organisms(GAOs.) in enhanced biological phosphate removal process[J].Proceedings,Belgium,1996,10:1769 -76.
    [57]Ganzeveld K.,van Hagen A,van Agteren MH,de Koning W,Uiterkamp AMJS.Upgrading of organic waste:production of the copolymer poly-3-hydroxybutyrate-co-valerate by Ralstonia eutrophus with organic waste as sole carbon source[J].Journal of Cleaner Production,1999,7:413-420.
    [58]Cho KS,Ryu HW,Park CH,Goodrich PR.Poly(hydroxybutyrate-cohydroxyvalerate) from swine waste liquor by Azotobacter vinelandii UWD[J].Biotechnology Letters,1997,19:7-10.
    [59]Ribera RG,Monteoliva-Sanchez M,Ramos-Cormenzana A.Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harboring pSK2665 in wastewater from olive oil mills(alpechin)[J].Electron.Journal of Biotechnology,2001,4:116-119.
    [60]Anshuman A.Khardenavis M,Suresh Kumar,Sandeep N,Mudliar,Tapan Chakrabarti.Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic poly b-hydroxybutyrate[J].Bioresource Technology,2007,98:3579-3584.
    [61]Anshuman A,Khardenavis Atul N,Vaidya M,Suresh Kumar,Tapan Chakrabarti.Utilization of molasses spentwash for production of bioplastics by waste activated sludge[J].Waste Management,2009,29:2558-2565.
    [62]Rusendi D,Sheppard JD.Hydrolysis of potato processing waste for the production of poly-b-hydroxybutyrate[J].Bioresource Technology,1995,54:191-196.
    [63]Yu J.Production of PHA from starchy wastewater via organic acids[J].Journal of Biotechnology,2001,86:105-112.v64]Law KH,Cheng YC,Leung YC.Lo WH,Chua H,Yu HF.Construction of recombinant bacillus subtilis strains for polyhydroxyalkanoates synthesis[J].Biochemical Engineering Journal,2003,16:203-208.
    [65]Bengtsson S,Werker A,Christensson M,Welander T.Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater[J].Bioresource Technology,2008,99:509-516.
    [66]Beccari M,Bertin L,Dionisi D,Fava F.Lampis S,Majone M,Valentino F,Vallini G,Villano M.Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic-aerobic process[J].Journal of Chemical Technology and Biotechnology,2009,84:901-908.
    [67]Gurieff NB.Production of biodegradable polyhydroxyalkanoate polymers using advanced biological wastewater treatment process technology[J].Doctoral thesis(University of Queensland),2007.
    [68]刘艳玲,任南琪,刘敏等.气相色谱法分析厌氧反应器中的挥发性脂肪酸(VFA)[J].哈尔滨建筑大学学报,2000,33:31-34.
    [69]陈庆今,刘焕彬,胡勇有.气相色谱测厌氧消化液挥发性脂肪酸的快速法研究[J].中国沼气,2003,21:3-5.
    [70]Braunegg G,Sonnleitner B,Lafferty RM.A rapid gas chromatographic method for the determination of polyhydroxybutyric acid in microbial biomass.Europen Journal of Appllied[J].Microbiology Biotechnology,1978,6:29-37.
    [71]Comeau Y,Hall KJ,Oldham WK.Determination of polyhydroxybutyrate and Poly-h-hydroxyvalerate in activated sludge by gas-liquid chromatography[J].Appllied Environmental Microbiology,1998,54:2323-2327.
    [72]Satoh.H,Ramey WD,Koch FA,et al.Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage[J].Water Science and Technology,1996,34:9-16.
    [73]American Public Health Association(APHA).Standard methods for the examination water and wastewater 20~(th)ed[M].Washington,DC:American Public Health Association,1998.
    [74]Lim,S.-J.,Kim,E.-Y.,Ahn,Y.H.,Chang,H.N.Biological nutrient removal with volatile fatty acids(VFA)from food wastes in sequencing batch reactor(SBR)[J].Korean Journal of Chemical Engeneering,2008,25(1):1-28.
    [75]Liu H,Cheng S,Logan BE.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.Environmental[J].Science and Technology,2005,39:658-662.
    [76]Yu H,Sui Y,Wang J,Zhang F,Dai X.Optical control of oxygen concentration in a magnetic czochralski crystal growth by response surface methodology[J].Journal of Master Science Technology,2006,22:173-178.
    [77]Wang G,Mu Y,Yu HQ.Response surface analysis to evaluate the influence of pH,temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater [J].Biochemical Engineering Journal,2005,23:175-184.
    [78]Chen H,Huang H,Wu HY.Process optimization for PHA production by activated sludge using response surface methodology[J].Biomass and Bioenergy,2009,33:721-727.
    [79]方开泰.均匀设计--数论方法在试验设计的应用[J].应用数学学报,1980,3(4):363-372.
    [80]Akiyama M,Taima Y,Doi Y.Production of poly(3-hydryoxyalkanoates)by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids[J].Appllied Microbiology Biotechnology,1992,37:698-702.
    [81]Linko S,Vaheri H,Seppala J.Production of Poly-β-hydroxybutyrate on Lactic Acid by alcaligenes eutrophus H16 in a 3-1 Bioreactor[J].Enzyme Microbial Technology,1993,15:401-405.
    [82]Doi Y,Kunioka M,Nakamura Y,et al.Biosynthesis and characterization of bacterial poly (3-hydroxybutyrate-co-3-hydroxypropionate)[J].Macromolecules,1997,20:2988-2993.
    [83]Chen H,Li XL.Effect of static magnetic field on synthesis of polyhydroxyalkanoates from different short-chain fatty acids[J].Bioresuorce Technology,2008,99:5538-5544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700