离子液体中Ⅰ-ⅡB族纳/微米材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为一种新型的绿色环保溶剂,与传统溶剂相比,它具有很多独特的性质,如可忽略的蒸汽压、高热稳定性、很宽的液相温度、高极性、低毒性、宽电势窗等,被广泛的用于各领域。目前,已经利用离子液体合成出了纳米金属粒子、金属氧化物、多孔材料、分子筛等,为纳米材料的制备开辟了一条新的途径。
     本文中通过把离子液体和超声波、微波加热相结合,采用一种快速、无毒、环境友好的绿色方法,合成了氧化锌纳米材料。采用离子液体-水为介质的体系下,通过液相法,简单有效的合成了硫化铜纳米材料和银纳米材料。用X-射线粉末衍射仪(XRD)、场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM)、紫外-可见光分光光度计(UV-Vis)和荧光分光光度计(PL)对样品进行了分析和表征。本硕士论文主要研究以下几个内容:
     1.超声的空化作用可以使液体在高强度超声作用下形成气泡,并迅速的生长和爆炸性的溃灭,在气泡溃灭的瞬间能产生高温高压的环境,从而诱发高能化学反应。而离子液体具有低的蒸汽压,非常适合超声作用的环境。因此,在本论文中将超声作用和离子液体相结合,首次在离子液体[BMIM][PF6]超声辅助下制备出了形貌均匀、直径在50 nm左右、长度约为1-2μm的氧化锌纳米棒,并提出了改纳米棒的生长机制。实验发现由于离子液体[BMIM][PF6]的粘度较大,有效的控制了反应溶液中离子的扩散速度,非常有利于该纳米棒的形成。
     2.微波加热能显著提高反应速度和反应选择性,且在加热的同时,能够快速的改变电场使离子极化,导致在反应系统中的晶体各项异性生长。同时,离子液体本身具有很高的极化率,是一种良好的微波吸收剂。两者相结合大大的缩短了反应合成时间。本论文中结合离子液体和微波加热的优点,首次在离子液体[BMIM][PF6]微波辅助下成功的制备出大小均匀、长径比较大、结晶性良好的氧化锌纳米棒,该纳米棒的直径在20 nm左右,长度在400~500nm左右。实验表明,该纳米棒具有良好的光学性能,在362nm处有明显的紫外吸收峰,并且在389 nm处有较强的紫外发射峰,而深能级发光较弱。实验中还发现离子液体[BMIM][PF6]对纳米棒的形成起着至关重要的作用,并提出了该纳米棒的生长机制。
     3.液相沉淀法是一种合成纳米材料最简单普遍的方法。本论文中以氯化铜和硫代乙酰胺为反应原料,室温下运用液相沉淀法首次在[BMIM][PF6]中成功制备出硫化铜花状球纳/微米材料。该花状球大小均匀、直径在1μm左右。从紫外-可见光光谱图可以看出,CuS花状球最强的紫外吸收峰位于268nm处。从荧光光谱图可以看出,该花状球在可见光区存在两强发射峰,分别在432 nm和570 nm处,表明该样品具有很好的光学性质。实验发现,离子液体[BMIM][PF6]在该花状球的形成过程中起着重要的作用。
     4.本论文运用液相还原法以硝酸银和维C为反应原料,柠檬酸为配位剂,室温下在离子液体[BMIM][PF6]的水溶液中合成出了大小均匀的花状银纳米结构。研究发现该花状结构是由很多厚度在30 nm左右的花瓣组成的。实验发现,反应时间和离子液体对产物形貌有重要的影响。
As a new type of green environment friendly solvent, room temperature ionic liquid(RTIL) have great advantage over the traditional solvents, such as negligible vapor pressure, low melting points, wide range of liquid temperatures, high polarity, low toxicity, large electrochemical window, high ionic conductively and thermal stability, etc.. So, RTIL have been widely used in the organic chemical reactions, separation, and electrochemical. Presently, RTIL have been widely used in the synthesis of metal nanoparticles, metal-oxide, nano-porous materials, molecular sieve and so on, and provide a new route for the synthesis of nano-materials.
     In this paper, ZnO nano-materials have been synthesized the ultrasonic or microwave irradiation method in the RTIL [BMIM][PF6]. This method is a rapid, nontoxic and environment friendly synthesis route. CuS and Ag nano-materials have been synthesized via liquid phase method in the ionic liquid ([BMIM][PF6]) aqueous solution. The products were characterized by XRD, EDX, FESEM, TEM, HRTEM, UV-Vis and PL techniques. The main points can be summarized as followed:
     1. Sonochemistry is a result of acoustic cavitations:the formation, growth, and implosive collapse of bubbles in a liquid. The chemical effects of cavitations are highly dependent on the contents of the collapsing bubble and hence on the choice of solvent. However, the solvent with lower vapor pressure would favor the sonochemical reaction. In this meaning, RTILs are suitable candidates to play such role. So, Rod-like ZnO nanocrystals have been synthesized via an ultrasound-assisted way in the ionic liquid aqueous solution. The as-prepared ZnO nanorods have a diameter of about 50 nm and a length of 1-2μm. A plausible four-step mechanism was proposed to explain the formation of ZnO nanorods. It was found that the lowered ion diffusion velocity in the water-ionic liquid medium could largely contribute to the formation of the ZnO nanorods.
     2. The microwave-assisted RTILs method is a facile and environment friendly route to the preparation nanostructured materials. Heating by microwave can accelerate the reaction evidently, and the polarization of ions under the rapidly changing electric field of the microwave results in anisotropic growth of crystals. While, the RTILs with the high ionic conductivity and polarizability of cations is an excellent microwave absorbing agent, leading to a high heating rate and a shorten reaction time. By combing the advantages of both RTILs and microwave heating, ZnO nanorods have been successfully synthesized. The results showed that the as-prepared ZnO nanorods have a diameter of about 20 nm and a length of 400~500 nm, and the ionic liquid [BMIM][PF6] played a key role. A plausible three-step mechanism was proposed to explain the formation of ZnO nanorods. This facile and environment friendly synthetic strategy many open new route to the preparation of other ID functional nanomatericals.
     3. Liquid precipitation method is one of the most popular methods of synthesis nanometer powders. CuS flower-like sphere micro/nanostructure have successfully synthesized via liquid precipitation method by the reaction between CuCl2·2H2O and TAA in the ionic liquid [BMIM][PF6] aqueous solution. The results showed that the as-prepared CuS flower-like sphere have a diameter of about lμm and the ionic liquid [BMIM][PF6] played a key role. UV-Vis curves indicate a single peak centered at 268 nm. PL curves indicated the two peaks centered at 432 nm and 570 nm. The results showed the CuS flower-like sphere micro/nanostructure have a good optical properties.
     4. The flower-like Ag nanostructure was synthesized via liquid phase reduction method in the presence of silver nitrate, ascorbic acid and citric acid in the ionic liquid [BMIM][PF6] aqueous solution at room temperature. The flower-like Ag nanostructure is composed of nano-petals of the diameter of about 30 nm. The results showed reaction time and IL play important roles in the formation of Ag nanostructure.
引文
[1]张志琨,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.
    [2]潘翌,黄兰坚,顾少轩.材料导报,2002,14(1):28-29.
    [3]白春礼.纳米科技-现代与未来.成都:四川教育出版社,2002.
    [4]施利毅等.纳米材料,上海:华东理工大学出版社,2007.
    [5]曹茂盛, 曹传宝,徐甲强等。纳米材料学。哈尔滨:哈尔滨工程大学出版社,2002。
    [6]刘吉平.无机纳米材料.北京:科学出版社,2003.
    [7]Wilkers JS. A short history of ionic liquids-from molten salts to nenoteric solvents. Green Chem, 2002,4(2):73-78.
    [8]Wasserscheid P, Keim W. Ionic liquid—new "solutions"for transition metal catalysis. Angew. Chem. Int. Ed,2000,39:3773-3798.
    [9]Hurley F H, Wier T P. Electrodeposition of metals from fused quaternary ammonium salts[J]. Electrochem. Soc,1951,98 (2):203-208.
    [10]Chum H L, Koch V R, Miller L L, et al. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in room temperature molten salt. J. Am. Chem.Soc,1975, 97 (11):3264-3265.
    [11]Wilkes J S, Levisky J A, Wilson R A et al. Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem.,1982,21 (3):1263-1264.
    [12]Wilkes J S, Zaworotko M J. Air and water stable 1-ethy-3-methylimidazolium based ionic liquid. J. Chem. Soc., Chem. Commun.,1992,13:965-966.
    [13]Bonhote P D, Dias A P. Hydrophobic, highly conductive ambient-remperature molten. Inorg. Chem.,1996,35:1168-1178.
    [14]杨雅立,王晓化,寇元等.不断壮大的离子液体家族.化学进展,2003,15(6):471-476.
    [15]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料.科学通报,2004,49(6):515-521.
    [16]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用.过程工程学报,2003,3(2):177-185.
    [17]刘鹰,刘植昌,徐春明等.室温离子液体催化异丁烷·丁烯烷基化的中试研究.化工进展,2005,24(6):656-660.
    [18]孙宁,张锁江,张香平,李增喜.离子液体物理化学性质数据库及QSPR分析.过程工程学
    报,2005,5(6):698-702.
    [19]李淑彩,孙仁义.离子液体数据库及结构.性质关系研究:[D].开封:河南大学,2007:9-22.
    [20]王军.离子液体的性能及应用.北京,中国纺织出版社,2007.5.
    [21]曹洁明,房宝青,王军等,离子液体在无机纳米材料合成上的应用[J].化学进展,2005,17:1025-1033.
    [22]Zhou Y, Antonietti M. Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. J Am Chem Soc, 2003,125 (49):14960-14961.
    [23]Yoo K, Choi H, Dionysiou D D.Ionic Liquid assisted preparation of nanostructured TiO2 particles. Chem. Commun,2004,17:2000-2001.
    [24]Nakashima T, Kimizuka N J. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. J Am Chem Soc,2003,125 (21):6386-6387.
    [25]Weiwei Wang, Yingjie Zhu. Mierowave-assisted synihesis of cuprie oxide nanosheets and nanowhiskers[J], Materials Letters.2006 (60):609 - 612.
    [26]Wang Li, Zhao Bin, Yuan Zhong Yong. Syntheses of CuO nanostructures in ionic liquids[J]. Seience in China Series B:Chemistry,2007,50(1):63 - 69.
    [27]张晟卯,张春丽,吴志申等.化学学报,2004,62(15):1443.
    [28]张晟卯,张春丽,张经纬等.物理化学学报,2004,20(5):554.
    [29]Scheeren C W, Machado G, Dupont J, et al. Ionrg Chem.,2003,42(15):4378.
    [30]Fonseca G S, Umpierre A P, Fichtner P F P, et al. Chem. Eur. J.,2003,9(14):3263-3269.
    [31]Jun Huang, Tao Jiang, Buxing Han, et al. Chem. Eur. J.,2003:1654-1655.
    [32]Lanzheng Ren, Lingjie Meng, Qinghua Lu, et al. J. Colloid and Interface Science,2008, 323:260-266.
    [33]Xinzhong Xue, Tianhong Lu, Changpeng Liu, et al. Electrochimica Acta,2005,50 (16-17): 3470-3478.
    [34]Jie Jiang, Shuhong Yu, Weitang Yao, et al. Chem. Mater.,2005,17(24):6094-6100.
    [35]Yongzhong Wu, Xiaopeng Hao, Jiaxiang Yang, et al. Materials Letters,2006,60 (21-22):2764-2766.
    [36]Li Y M, Zhang L D, et al. Ordered semiconductor ZnO nanowires arrays and their photoluminescence properties[J].App. Phy. Lett.2007,76 (15):2011-2013.
    [37]Wu J, Liu S. Catalyst-free growth and characterization of ZnO nanorods [J]. Plays Chem. B., 2002,1069370:9546-9551.
    [38]祖庸,雷闫盈等.纳米ZnO的奇妙用途[J].化工新型材料,1999,27(3):14-16.
    [39]董立峰,崔作林等.电弧等离子体制备纳米ZnO的气敏特性[J].材料研究学报,1998,8:
    407-410.
    [40]Zhonghao Li, Jiangling Zhang, Jimin Du, et al. Materials Letters,2005,59 (8-9):963-965.
    [41]Wensheng Dong, Mengyuan Li, Chunling Liu, et al. Journal of collid and Interface Science, 2008,319:115-122.
    [42]王辉,朱俊杰.液相微波介电加热法制各纳米粒子的研究进展[J].无机化学学报,2002,18(4):329-334.
    [43]翟国钧,李从举等.ZnO微/纳米纤维的静电纺丝及其表征[J].合成纤维工业,2006,29(6):6-8.
    [44]刘艳,夏宁,陈日耀等.静电纺丝法制备ZnO纳米纤维及其光催化性能的研究[J].福建师范大学学报,2008,24(1):66-69.
    [45]杨森,倪永红.低维氧化锌纳米材料[J].化学进展,2007,19(10):1510-1516.
    [46]Okada T, Kawashima K, Ueda M. Femtosecond laser deposited zinc oxide film [J]. Applied Phys. A,2005,81:907-910.
    [47]Yang Y, Sun X W, Chen B J,et al. Refractive indices of textured indium tin oxide and zinc oxide thin films [J]. Thin Solid Films,2006,510(1):95-101.
    [48]Kim S, Jeong M C, Oh B Y, et al. Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering[J]. Journal of Crystal Growth,2006,290(2): 485-489.
    [49]Yuxin Wang, Xinyong Li, Ning Wang, et al. Separation and Purification Technology,2008,62: 727-732.
    [50]Ping Li, Hui Liu, Fangxiang Xu, et al. Mater. Chem. Phy.,2008, 112:393-397.
    [51]Yanhua Tong, Juan Cheng, Yulong Liu, et al. Scripta. Materialia,2009,60:1093-1096.
    [52]刘素琴,黄可龙,宋志方等.Sol-gel制备ZnO压敏陶瓷及其电性[J].无机学报,2002,15(2):376-380。
    [53]曹优明,郑仕远,张辉等.纳米氧化锌的制备方法与应用[J].渝西学院学报,2003,2(4):15-18.
    [54]贾晓林,王振峰.应用广泛的纳米氧化锌[J].河南科技,2003,3:22-23.
    [55]王九,陈波水,侯滨等.润滑油中Cu S纳米粒子的摩擦学性能研究[J].润滑与密封,2001,2:42-43.
    [56]张翼东,杨光红,孔令豪等. CuS—PAA—APS有机无机复合膜的制备及其摩擦学行为研究[J].润滑与密封,2007,32(2):85-87.
    [57]王芳辉,朱红,王滨.表面修饰CuS纳米颗粒的合成及其摩擦学性能研究[J]’润滑与密封,2007,32(10):36—39.
    [58]P. V. Braun, S. I. Stupp, Synthesis and characterization of nanocrystalline Bi2Se3 by solvothermal
    method. Mater. Res. Bull.,1999,34:136.
    [59]H.Huang, E. E.Remsen, T. Kowalewski, K. L. Wooley, a novel method for the synthesis of shell cross-linked knedels.J. Am.Chem.Soc.,1999,121:3805.
    [60]D. walsh, S. Mann, Fabrieation of hollow porous shells of caleium carbonate from self-organizing media. Nature,1995,377:320.
    [61]P. Jiang, J. E. Bertone, V. L. Colvin, Monodisperse Colloids and Colloidal Crystals. Sience, 2001,291:19.
    [62]C. E. Fowler, D. Khushalani, S. Mann, Interfacial synthesis of hollow microspheres of mesostructured silica. Chem.commun.,2001,19:2028.
    [63]Chunyan Wu, Shuhong Yu, Shaofeng Chen, et al. J. Mater. Chem.,2006,16:3326-3331.
    [64]Yangfeng Huang, Hanning Xiao, Shugang Chen, et al. Ceramics International,2009,35:905-907.
    [65]王大全主编.无机抗菌新材料与技术[J].北京:化学工业出版社,2006:49.
    [66]张吴然,李清彪,孙道华等.纳米级银颗粒的制备方法[J],贵金属,2005,26(2):51.
    [67]G. W. Yan, J. H. Huang, A. P. Jia, et al. Mater. Res. Bull.,2009,44(6):1360-1365.
    [68]Subrata Kundu, Vivek Maheshwari, Sanjun Niu, et al. Nanltechnology,2008,19:4484-4489.
    [69]Jin R C,Cao Y W,Mirkin C A,et al. Science,2001,194:1901.
    [70]Mulvaney P. Langmuir,1996,12:788.
    [71]Jana N R, Geaheart L, Murphy C J. Adv. Mater,2001,13(181):1389.
    [72]Wiley B J, Chen Mclellan J M, et al. Nano Letters,2007,7(4):1032.
    [73]Murphy C J, Jana N R. Adv. Mater,2002,14(1):80.
    [74]Kim F, et al. J. Am. Chem. Soc.,2002,124(48):14316.
    [75]Isabel Pastoriza-Santos, et al. Nano Lett.,2002,2(8):903.
    [76]Jin R, et al. Nature,2003,425:487.
    [77]Zhang Jiatao, et al. J. Phys. Chem.B.,2005,109(25):12544.
    [78]Jensen T R, et al. J. Cluster. Sci.,1999,10(2):295
    [79]Kottmannn J P,et al. Phys. Rev.B.,2001,64 (23):235402.
    [80]P. G. Gao, Y. Ding, Z. L. Wang, Nano. Lett.2003,3:1315.
    [81]Z.W. Pan, Z. R. Dai, Z. L. Wang, Science,2001,291:1947.
    [82]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science,2001,292:1897.
    [83]S. Y. Li, C. Y. Lee, T. Y. Tseng. J. Cryst. Growth,2003,247:357.
    [84]J. S. Lee, K. Park, M. I. Kang, I. W. Park, S. W. Kim, W. K. Cho, H. S. Han, S. Kim, J. Cryst. Growth,2003,254:423.
    [85]Z. L. Wang, Appl. Phys. A.,2007,88:7.
    [86]Wang Y C, Leu I C, Hon M H. J Cryst Growth [J],2002,564:237-239.
    [87]Z. Q. Li, Y. Xie, Y. J. Xiong, R. Zhang, W. He, Chem. Lett.2003,32:760.
    [88]X. M. Sun, X. Chen, Z. X. Deng, Y. D. Li, Mater. Chem. Phys.2002,78:99.
    [89]Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, Appl. Phys. Lett.2002,81:3046.
    [90]朱俊杰.超声化学合成金属硫族半导体纳米材料[J].纳米材科与结构,2002,12:21-27。
    [91]Chandan Upadhyay, Devabrate Misshra, Verma H C.水热法中制备条件对纳米Ni-Zn铁氧化物体形成的影响[J],磁体和磁性材料学报,2003,260:188-194.
    [92]金长善.超声工程[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [93]E. K. Goharshadi, Y. Ding, M. N. Jorabchi, P. Hancarrow, Ultrason. Sonochem.2009,16:120.
    [94]刘晶莹,王祝敏,史济月等[J].化学试剂,2008,30(11):816-818.
    [95]孙萍,熊波,张国青等.[J].光谱学与光谱分析,2007,27(1):143-146.
    [96]T. Alammar, A.V. Mudring, Mater. Lett.2009,63:732.
    [97](a) Y. Masuda, N. Kinoshita, F. Sato, K. Koumoto, Cryst. Growth Des.2006,6:75. (b) M. H. Huang, Y. Y. Wu, H. N. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater.2001, 13:113.
    [98]I. Yavari, A. R. Mahjoub, E. Kowsari, J. Nanopart. Res.2009,11:861.
    [99]S. Monticone, R. Tufeu, A.V. Kanaev, J. Phys. Chem. B.,1998,102:2854.
    [100]E. K. Goharshadi, Y. Ding, M. N. Jorabchi, P. Hancarrow, Ultrason. Sonochem.2009,16:120.
    [101]X. Hou, F. Zhou, Y. Sun, W. Liu, Mater. Leter.2007,61:1789.
    [102]B. Liu, S. H. Yu, L. J. Li, F. Zhang, Q. Zhang, M. Yoshimura, P. K. Shen, J. Phys. Chem. B., 2004,108:2788.
    [103]Y. Qin, Y. Song, N. Sun, N. Zhao, M. Li, L. Qi, Chem. Mater.2008,20:3965.
    [104](a) A. B. Pereiro, J. L. Legido, A. Rodriguez, J. Chem. Thermodyn.2007,39:1168. (b) H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, J. Phys. Chem. B., 2006,110:19593.
    [105]麻孝勇,莫羡忠.微波在合成纳米材料中的应用[J].化工技术与开发,2007,36(2):38-41.
    [106]Patel K, Kapoor S, Dave D P, et al. Res.chem. inter.,2006,32:103-113.
    [107]Li D S, Komarneni S. J. Am. Ceram. Soc.,2006,89:1510-1517.
    [108]Hong R Y, Pan T T, Li H Z. J. magn. magn. mater.,2006,303:60-68.
    [109]Patra C R, Gedanken A. New j.chem.,2004,28:1060-1065.
    [110]Wang. J, Gao. J. M, Fang. B. Q, et al. [J]. Mater. Lett,2005,59 (11):1405-1408.
    [111]刘晶莹,王祝敏,史济月等.[J].化学试剂,2008,30(11):816-818.
    [112]孙萍,熊波,张国青等.[J].光谱学与光谱分析,2007,27(1):143-146.
    [113]Wang. J, Gao. J. M, Fang. B. Q, et al. [J]. Mater. Lett,2005,59 (11):1405-1408.
    [114]Wang. Y. G, Lau. S. P, Lee. H. W, et al. [J]. J. Appl. Phys,2003,94 (1):354.
    [115]Kang.H. S, Kang. J. S, Kim. J. W,et al. [J]. J. Appl. Phys,2004,95 (3):1246.
    [116]Meng. X. Q, Zhao. D. X, Zhang. J. Y, et al. [J]. Chem. Phys. Lett,2005,407 (1-3):91-94.
    [117]Vanheusden. K, Seager. C. H, Warren. W. L,et al. [J]. Appl. Phys. Lett,1996,68 (3):403.
    [118]赵文刚,马忠权,裴广庆,等.[J].人工晶体学报,2007,36(3):634-637.
    [119]陈四海,任新民.[J].物理化学学报,1995,11(2):171-174.
    [120]梅宗维,王建芳,母建林,等.[J].科技情报开发与经济,2009,19(17):147-150.
    [121]J. S Chung, H. J Sohn. [J]. J Pow. Sour,2002,108:226-231.
    [122]Holmes J D, Johnston K P, Doty R C, et al, [J]. Science,2000,287(5457):1471-1473.
    [123]Zach M P, Newberg J T, Sierra L, et al. [J]. J Phys. Chem. B,2003,107(23):5393-5397.
    [124]Walter E C, Murray B J, Favier F, et al. [J]. J Phys. Chem. B,2002,106(44):11407-11411.
    [125]王二兰,陶庭先,辛后群.超声波.直接沉淀法制备CuS纳米溶胶[J].安徽工程科技学院学报,2006,21(6):12-15.
    [126]王文忠,何清,庄燕.表面活性剂辅助低温固相合成CuS纳米棒[J].化工新型材料,2007,35(11):29—31.
    [127]王鲁宁,赖广辉,覃爱苗.无机功能材料硫化铜纳米粉体的溶剂热合成研究[J].化工技术与开发,2008,37(8):4—7
    [128]刘金库,吴庆生,丁亚平等.银、铜硫化物纳米球的活性模板合成及其光学性能研[J].功能材料,2004,35(6):739-741.
    [129]王巍,王声乐.CuxS(x=1,2)纳米薄膜的异步脉冲超声喷雾热解法制备[J].南京师范大学学报,2002,2(3):26—29.
    [130]廖学红,杨水彬.微波介电加热合成半导体CuS纳米粒子[J].微纳电子技术,2003,3:23-24.
    [131]周杰,贾殿赠,刘浪.硫化铜纳米棒的低热固相合成及其光学性能[J].高等学校化学学报,2005,26(4):620—622.
    [132]胡文武,韩志辉.ⅠB、ⅡB族金属元素硫化物纳米微粒的光谱研究[J].中国热带医学,2008,8(9):1500—1503.
    [133]台玉萍,杜锦屏,马淑惠等.纳米硫化铜的非水溶剂法合成及其光学性能研究[J].河北化工,2008,31,(10):21-23.
    [134]N. M. Huang, C. S. Kan, P. S. Khiew, S. Randiman, Single w/o microemulsion templating of CdS nanoparticles. J.Mater. Sci.,2004,39,2411.
    [135]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [136]杨剑,滕风恩.纳米材料综述.材料导报[J].1997,11(2):6—10
    [137]姜会庆,汪军,胡心宝等.纳米银敷料在烧伤创面的应用[J].医学研究生学报,2001,(5):439.
    [138]胡建强,吴继红,任斌等.纯化学还原方法制备纳米棒及其SERS活性[J].光散射学报,2002,13(4):226—229.
    [139]宁远涛,赵怀志.银纳米材料[J].贵金属,2003,24(3):54—60
    [140]Yang N J, et al. [J]. J Physical Chemistry,1996,100(24):10235-10242.
    [141]Zhai X, et al. [J]. J Physical Chemistry,1996,100(24):10230-10235.
    [142]Jana N R, et al. [J]. Chemical Communications,2001,7:617-618.
    [143]Gardea-Torresdey J L, et al. [J]. Nano Letters,2002:2(4); 397-401.
    [144]Baker C, et al. [J]. J Nanoscience and Nanotechnology,2005,5(2):244-249.
    [145]Mazur M, et al. [J]. Electrochemistry Communications,2004,6:400-403.
    [146]Yin H, et al. [J]. Materials Chemistry and Physics,2004,83:66-67.
    [147]Sun Y, Mayers B, Herricks T, Xia Y, Nano Lett.2003,3:955
    [148]Sun Y, Yin Y, Mayers B, Herricks T, Xia Y, Chem.Mater.,2002,14:4736.
    [149]Sun Y, Mayers B and Xia Y, Adv. Mater.,2003,15:641
    [150]Jana N R,Gearheart L, Murphy C J. J.Phys. Chem. B.,2001,105:4065
    [151]Murphy C J, Jana N R. Adv. Mater.2002,14:80
    [152]Kim F, Song J H, Yang P. J. Am. Chem. Soc.2002,124:14316
    [153]Hao EC ,Kelly K L,Hupp J T,Schatz G C.J. Am. Chem. Soc.2002,124:15182
    [154]Sun Y, Xia Y. Science,2002,298:2176
    [155]Kundu S, Panigrahi S, Praharaj S, at al. Nanotechnology,2007,180:75712
    [156]Sun Y, Mayers B, Xia Y. Nano Lett.,2003,5:675
    [157]Lijun Hong, Qing Li, Hua Lin, et al., Mater. Res. Bull,2009,6(44):1201-1204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700