多孔铜复合高氯酸钠含能材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用氢气泡模板法,以硫酸铜的硫酸溶液为基础镀液,电沉积制备多孔铜薄膜,利用SEM、XRD、激光共聚焦显微镜等分析手段,对多孔铜薄膜结构与形貌进行表征。研究了阴极电流密度、沉积时间、添加剂等因素对多孔铜薄膜表面平均主孔径、薄膜厚度、薄膜三维形貌以及构成海绵状疏松孔壁的铜晶枝的大小的影响。结果表明,氢气泡模板法制备的多孔铜表面的孔径较大,每个大孔的下面有几个小孔,孔与孔之间有较宽的孔壁,孔壁是由微小的铜晶枝自支撑构成的海绵状结构。采用基础镀液在2 A·cm-2下沉积30s,制备的多孔铜薄膜的表面主孔径大小分布的范围为50μm-70μm,薄膜厚度约为120μm,XRD结构显示该多孔铜薄膜物相为纯铜。NH4Cl的加入,可以使薄膜孔壁的晶枝变小,而(NH4)2SO4的加入可以使薄膜表面主孔径减小,从而增加海绵状孔壁所占比重。
     采用滴加NaClO4的甲醇溶液,使溶剂挥发的方法,制备多孔铜复合NaClO4材料。使用SEM、XRD、DSC等分析手段,对多孔铜复合NaClO4前后进行对比。研究表明,NaClO4H2O填充到多孔铜孔壁晶枝间的缝隙中,多孔铜与NaCl04可以发生反应,并放出热量。多孔铜的铜晶枝越小时,复合材料的DSC放热峰的峰值温度越低。
     运用DSC、TG等热分析手段结合物相分析手段XRD,研究多孔铜与NaClO4的反应机理。结果表明,NaClO4与多孔铜发生固相反应,多余的NaClO4在第一步反应产物CuO的催化作用下分解,对比NaClO4的DSC分析曲线得知,CuO的催化作用使NaClO4的熔融吸热峰峰温提前了约50℃,热分解峰温提前了约80℃。用Kissinger法计算两步反应的活化能分别是122.04 KJ·mol-1与359.8 KJ·mol-1。
In the paper, porous copper have been successfully electrodeposited on the hydrogen bubble template. The base bath is made up of copper sulfate and sulfuric acid. Study the effects of cathode current density, deposition time and additives to the average main diameter on the surface of the porous copper film, the thickness of film, the 3D morphology of film and the size of the copper dendrites. SEM, XRD and laser confocal microscope were used to analysis the structure and morphology of porous copper film. The results show that there are small holes under the surface pore of film, and the sponge-like wall of porous copper is made up of small copper dendrites. The basis of preparation conditions are determined as 2 A-cm-2 30s. Under this condition, the surface pore size of the film distribute in the range of 50μm-70μm. the thickness of the film is about 120μm.XRD show that the film is made up of copper. When NH4Cl is added to the bath, the pore size of the film become larger and the size of copper dendrites become smaller. When the (NF4)2SO4 was added to the bath, the pore size of the film is became smaller, but the size of copper dendrites is not changed.
     Dissolving NaClO4 in methanol and dropping the solution to porous copper film. The methanol was evaporated to leave NaClO4·H2O in the gap between copper dendrites. Using SEM, XRD, DSC to analysis the change of porous copper film after it composite NaClO4·H2O 0 The results show that, there are NaClO4·H2O in the gap between copper dendrites. The porous copper can react with NaC104 and produce heat. When the size of porous copper dendrites is smaller, the peak temperature of DSC exothermic peak is lower.
     Using SEM, XRD, DSC to research the reaction mechanism of porous copper with NaClO4. By using Kissinger method, the activation energy of the two exothermic reactions was calculated. The results show that, the first step reaction solid phase reaction between porous copper and NaCl4. The first reaction produce CuO and it has catalytic effect on the decomposition of the excess NaClO4. The melting endothermic peak temperature of NaClO4 advance about 50℃and the thermal decomposition peak temperature of NaClO4 advance about 80℃.The activation energy of two reactions were 122.04 KJ-mol-1 and 359.8 KJ-mol-1.
引文
[1]M.麦亚潘.碳纳米管——科学与应用[M].第1版.北京:科学出版社,2007
    [2]Tsang S C, Chen Y K. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372:159~163
    [3]Sinha Anil K, Hwang Dennis W, Hwang Lian pin, et al. A novel approach to bulk synthesis of carbon nanotubes filled whti metal by a catalytic chemical vapor deposition method [J]. Chem Phys Lett,2000,332:455~460
    [4]Yuan H J, Xie P, Xiang J, et al. Transport property investigation of pure and au-doped carbon nanotubes[J]. Solid State Comm,2001,119:573~577
    [5]Han WQ,Yoshio Bando,Keiji kurashima, et al. Boron-doped carbon nanotubes prepared throuth a substitution reaction [J].Chem Phys Lett,1999,299:368-373
    [6]Pan Z W, Xie S S, Chang B H, et al. Very long carbon nanotubes [J]. Nature,1998, 394:631~632
    [7]胡艳,吴筛青,叶迎华,沈瑞琪.内嵌硝酸钾碳纳米管的制备[J].火工品,2008:11~12
    [8]McCord P, Yan S L, Bard A J. Chemiluminescence of anodized and etched silicon: Evidence for a luminescent siloxene-like layer on porous silicon[J]. Scinence, 1992,257:68~69
    [9]Kovalev D V, etc. Strong explosive interaction of hydrogenated porous silicon with oxygen at cryogenic[J].Phys kev Lett,2001,87:1-4
    [10]Mikulec, F. V. Kirtland, J. D.Sailor, M. J. Explosive Nanocrystalline Porous Silicon and Its Use in Atomic Emission Spectroscopy[J]. Adv.Mater,2002, 14:38-41
    [11]D. Clement, J. Diener, E. Gross, N. Künzner, V. Yu. Timoshenko, and D. Kovalev. Highly explosive nanosilicon-based composite materials[J]. phys. stat. sol,2005,202:1357-1364
    [12]郁卫飞,黄辉,聂福德,黄亨建,李海波,张胜涛,黎学明,陶长元.纳米多孔硅复合材料爆炸反应的实验与理论研究[J].含能材料,2004,12(6):476~482
    [13]王守旭.多孔硅爆炸复合物发火性能的研究[D].南京理工大学,2007
    [14]薛艳,卢斌,张蕊等.纳米多孔硅含能材料表征分析[J].火工品,2008,12(6):13~15
    [15]J.R. Hayes, A.M. Hodge, J. Biener, and A.V. Hamza. Monolithic nanoporous copper by dealloying Mn-Cu[J]. J. Mater. Res,2006,21:2611~2616
    [16]Hai-Bo Lu, Ying Li, FuHui Wang. Improved corrosion behavior of nanocrystalline Cu-20Zr films in HCl solution[J]. Thin Solid Films, 2006,510:197-202
    [17]Zhen Qi, Changchun Zhao, Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang,and Xiufang Bian. Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys[J]. J.Phys.Chem,2009,113:6694-6698
    [18]Changchun Zhao, Zhen Qi, Xiaoguang Wang, Zhonghua Zhang. Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys [J]. Corrosion Science.2009,51:2120-2125
    [19]谭秀兰等.去合金化制备纳米多孔铜[J].强激光与粒子束,2009,21(1):63~66
    [20]Hai-Bo Lv,Ying Li,Fu-Hui Wang. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying[J], Scripta Materialia, 2007,56:165~168
    [21]Erlebancher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying[J].Nature,2001,410(22):450~453
    [22]X F Tao, L P Zhang, Y Y Zhao. Mechanical Response of Porous Copper Manufactured by Lost Carbonate Sintering Process[J], Materials Science Forum, 2007,539-543:1863~1867
    [23]徐卫东.烧结—脱溶工艺制备多孔铜的压缩行为[J].机械工程材料,2007,31(6):9~11
    [24]Lan Ding, Wang Yuren, Ma Wenjie, Cao He, Xie Taohua, Yao Can. The key factors in fabrication of high-quality ordered macroporous copper film[J]. Applied Surface Science,2008,254:6775~6778
    [25]李保山等.电沉积法制备泡沫铜[J].化工冶金,1998,19(3):199~203
    [26]赵信峰,方炎.金属铜纳米孔洞阵列膜制备方法研究[J].物理学报,2006,55(7):3784~3788
    [27]Fu-Sheng Ke, Ling Huang, Hong-Bing Wei, Jin-Shu Cai,Xiao-Yong Fan, Fang-Zu Yang, Shi-Gang Sun. Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries [J]. Journal of Power Sources,2007,170:450~455
    [28]Lan Ding, Wang Yuren, Ma Wenjie, Cao He, Xie Taohua, Yao Can. The key factors in fabrication of high-quality ordered macroporous copper film[J]. Scripta Materialia,2008,59:1047~1050
    [29]Heon-Cheol Shin, Jian Dong,Meilin Liu. Nanoporous Structures Prepared by an Electrochemical Deposition Process[J].Advanced Materials,2003,15:1610~1613
    [30]Heon-Cheol Shin, Meilin Liu. Copper Foam Structures with Highly Porous Nanostructured Walls[J]. Chem. Mater,2004,16:5460~5464
    [31]孙雅峰等.氢气泡模板法电沉积制备三维多孔铜薄膜[J].电化学,2006,12(2):177~182
    [32]Ying Li, Wen-Zhi Jia, Yan-Yan Song, Xing-Hua Xia. Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template [J]. Chem. Mater,2005,19:5758-5764
    [33]Jeong-Han Kim, Ryoung-Hee Kim, Hyuk-Sang Kwon. Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition [J]. Electrochemistry Communications 2008,10:1148~1151
    [34]Tao Jiang, Shichao Zhang, Xinping Qiu, Wentao Zhu, Li quan Chen. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery[J]. Electrochemistry Communications,2007,9:930~934
    [35]Jiao Yin, Jianbo Jia, Liande Zhu. Macroporous Pt modified glassy carbon electrode:Preparation and electrocatalytic activity for methanol oxidation [J]. international journal of hydrogen energy,2008,33:7444~7447
    [36]樊小勇等.以多孔铜为集流体制备Cu6Sn5合金负极及其性能[J].物理化学学报,2009,25(4):611~616.
    [37]Ying Li, Yan-Yan Song, Chen Yang, Xing-Hua Xia. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose[J]. Electrochemistry Communications,2007,9:981~988
    [38]屠振密,李宁,胡会利,曹立新.电沉积纳米晶材料技术[M].第一版,北京:国防工业出版社,2008
    [39]刘静峰,田德余,邓鹏图.超微细Cu2O对RDX/AP/HTPB推进剂组分热分解特性影响的研究[J].火炸药学报,1998(2):1~4
    [40]乔贞美等.电镀法制备超疏水性铜表面[J].北京航空航天大学学报,2008,34(12):1419~1422
    [41]蔡正千.热分析[M].第一版,北京:高等教育出版社,1993
    [42]S. Shimada,R. Furuichil. A Study on The Thermal Decomposition of KC1O4 and NaC104 by Acoustic Emission[J]. Thermochimica Acta,1990,163:313~316
    [43]潘功配,杨硕.烟火学[M]第一版,北京:北京理工大学出版社,1997
    [44]Jinn-Shing Lee, et al. The thermal properties and firing characteristics of Zr/KC104[J] Journal of Thermal Analysis and Calorimetry,1999,56:223~226
    [45]Jinn-Shing Lee, Chung-King Hsu. The DSC studies on the phase transition, decomposition and melting of potassium perchlorate with additives[J]. Thermochimica Acta,2001,367:367~370
    [46]衡秋丽等.纳米CuO:不同形貌的制备及对高氯酸钱热分解催化性能[J].无机化学学报,2009,25(2):359~363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700