硫参与的成环反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于硫原子比氧原子的原子半径大,硫负离子的亲核性要比氧负离子强,硫在有机合成中也容易形成硫鎓正离子,含有烯丙基烯基硫醚结构单元的化合物也容易发生[3,3]δ重排,所以硫参与是有机合成中构建杂环化合物的重要的手段。近年来也有很多的研究工作者通过硫参与的方法合成了很多的杂环化合物,本论文中,我们也是利用硫参与的方法合成了一系列的茚的衍生物和噻吩的衍生物。
     茚是许多天然产物和药物的重要结构单元,也可以作为合成相关化合物的重要合成前体。本论文的第二章中我们以烷硫基取代的烯烃作为原料,用三氟甲磺酸酐和过量碱(吡啶)存在下合成了一系列的茚的衍生物,反应过程中以环状的硫鎓正离子中间体的机理构成茚环,其机理我们已经从侧面进行了证明。这种合成茚的衍生物的新方法具有无金属催化、原料易得、官能团适用性好的优点。
     噻吩的衍生物在医药合成、农药、染料、功能材料上有广泛的应用。本论文的第三章中,我们研究了硫参与的五步串联反应:炔丙基的联烯重排、硫参与的Claisen重排、硫酮的烯醇化、Michael加成和1,5-H迁移来合成一系列的噻吩衍生物,我们研究了此反应的最佳反应条件,研究了这个反应的官能团的适用性,也用氘代的方法研究了这个反应的反应机理。我们所报道的这种合成噻吩的新反应只需要在常温的条件下,用有机碱DBU(1,5-二氮杂二坏[5.4.0]十一-5-烯),以较快的速率、较高的产率生成相应的产物,是一种合成噻吩衍生物的简便方法。
The nucleophilicity of sulfur anion is stronger than oxygen anion due to its atomic radius and sulfur is also inclined to form sulfonium ion intermediate in organic synthesis. Sulfur participation is significant in organic synthesis to construct the heterocyclic compounds. Thio-Claisen rearrangement (TCR), classically a [3, 3] sigmatropic rearrangement in the allyl vinyl sulfides leading to a homoallyl thiocarbonyl unit, has received considerable attention in the past decades. In this dissertation, a series of indene derivatives and thiophene derivatives were synthesized via the sulfur participation strategy.
     The indenes moiety is present in a class of drug candidates possessing interesting biological activities, and also could be principal precursors in organic synthesis. In the second section of this dissertation, an intramoluclar addition of sulfur-participated Nazarov-type cyclization affording 3-thio-1H-indenes was reported. As a result of the ready availability of starting materials and the simple and convenient operation, this type of reaction presented here has potential utility in organic synthesis.
     In the third section of this dissertation, A sulfur-assisted five-cascade sequential reaction, wherein the in situ-generated allenyl allyl sulfides undergo thio-Claisen rearrangement, intramolecular Michael addition, and 1, 5-proton migration aromatization to obtain allyl thiophen-2-yl acetates, propionates, and ketones as thefinal products, was reported. Application of this efficient method for the synthesis of potentially pharmaceutical compounds also might be useful for the pharmacists.
引文
1. Pilar V.; Natalia C.; Ignacio L. G.; Nerea A.; and Manuel H. C.; J. Agric. Food Chem. 2003, 51, 3704-3708
    
    2. Araki Tohru; Ito Eisuke; Oichi Kazuyoshi; et al. J. Phys. Chem. B. 1997, 101, 10378-10385
    
    3. Yasav J. S.; and Chetia Lakshindra; Org. Lett. 2007, 9, 4587-4589
    
    4. Goldsmith Randall H.; Vura-Weis Josh, Scott Amy M.; Borkar Sachin; Sen Ayusman; Ratner Mark A.; and Wasielewski Michael R.; J. Am. Chem. Soc. 2008,130,7659-7669
    
    5. Crandall Jack K.; Steve Magaha H.; Henderson Mark A.; Widener Rexford K.; and Tharp Gregg A.; J. Org. Chem. 1982,47, 5372-5380
    
    6. Francisco Sarabia; Samy Chammaa, Miguel Garcia-Castro; and Francisca Martin-Galvez; Chem. Commun. 2009,5763-5765
    
    7. Naisbitt Dean J.; O'Neill Paul M.; Pirmohamed Munir; and Kevin Park B.; Bioorganic & Medicinal Chemistry Letters. 1996, 6, 13, 1511-1516
    
    8. McNicholas Thomas P.; Ding Lei; Yuan Dongning; and Liu Jie; Nano Lett. 2009, Vol. 9, No. 10,3646-3650
    
    9. Ju Zhicheng; Xing Zheng; Guo Chunli; Yang Lishan; Xu Liqiang; and Qian Yitai; Eur. J. Inorg. Chem. 2008, 3883-3888
    
    10. Takumi Mizuno; Takeo Nakai; Masatoshi Mihara; Synthesis 2009, No. 15, 2492-2496
    
    11. Lak Shin Jeong; Su Jeong Yoo; Hyung Ryong Moon; Yun Ha Kima and Moon Woo Chun. J. Chem. Soc., Perkin Trans. 1, 1998, 3325-3326
    
    12. Bjorn Zeysing, Carola Gosch, and Andreas Terfort, Org. Lett., 2000, Vol. 2, No. 13, 1843-1845
    
    13. (a) Metzner P.; Pham T.N.; Vialle J.; J. Chem. Res. 1978, 478. (b) Yamabe S.; Okumoto S.; Hayashi T.; J. Org. Chem. 1996, 61, 6218. (c) Arnaud R.; Vallee Y.; J. Chem. Soc, Perkin Trans 2, 1997, 2737.; d) Gomez B.; Chattaraj P.K.; Chamorro E.; Contreras R.; Fuentealba P.; J. Phys. Chem. A, 2002, 106, 11227
    
    14. Tubery F.; Grieson D.S.; Husson H-P; Tetrahedron Lett. 1987, 28, 6461
    15. Wu H-P; Aumann R.; Venne-Dunker S.; Saarenketo P.; Eur. J. Org. Chem. 2000, 3463
    
    21. Schaumann E.; Grabley F-F; Tetrahedron Lett. 1977,4307
    
    22. Brandsma L.; Verkruijsse H. D.; Recl. Trav. Chim. 1974, 93, 319
    
    23. a) Schuijl P.J.W.; Bos H.J.T.; Brandsma L.; Recl. Trav. Chim. 1969, 88, 597. b) Moghaddam F.M.; Zali-Boinee H.; Tetrahedron Lett. 2003,44, 6253. c) Takeshita H.; Uchida K.; Mametsuka H.; Heterocycles 1983, 20, 1709
    
    24. Mohan C.; Singh P.; Mahajan M.P.; Tetrahedron 2005, 61, 10774
    
    25. Majumdar K.C.; Kundu U.K.; Ghosh S.; J. Chem. Soc. Perkin. Trans. 1, 2002, 2139
    
    26. Balasubramanian K.K.; Venugopalan B.; Tetrahedron Lett.,1914, 2643
    
    27. Mizutani M.; Sanemitsu Y.; Tamaru Y.; Yoshida; J. Org. Chem. 1983, 48, 4585
    
    28. Takahashi H.; Oshima K.; Yamamoto H.; Nozaki H.; J. Am. Chem. Soc., 1973, 95, 5803
    
    29. (a) Metzner P.; Synthesis, 1992, 1185. (b) Beslin P.; Metzner P.; Vallee Y.; Vialle J.; Tetrahedron Lett., 1983, 24, 3617. (c) Tamaru Y.; Harada T.; Nishi S.; Mizutani M.; Hioki T.; Yoshida Z.; J. Am. Chem. Soc., 1980, 102, 7806. (d) Tamaru Y.; Furukawa Y.; Mizutani M.; Kitao O.; Yoshida Z.; J. Org. Chem. 1983, 48, 3631. (e) Tamaru Y.; Mizutani M.; Furukawa Y.; Kitao O.; Yoshida Z.; Tetrahedron Lett., 1982,23,5319
    
    30. (a) Beslin P.; Perrio S.; J. Chem. Soc. Chem. Commun., 1989, 414. (b) Beslin P.; Perrio S.; Tetrahedron, 1991, 47, 6175
    
    31. (a) Welch J.T.; Eswarakrishnan S.;J. Am. Chem. Soc., 1987, 109, 6716. (b) Reddy K.V.; Rajappa S.; Tetrahedron, 1992, 33, 7957. (c) Jain S.; Sinha N.; Dikshit D.K.; Anand N.; Tetrahedron Lett., 1995, 36, 8467
    
    32. (a) Devine P.N.; Meyers A.I.; J. Am. Chem. Soc., 1994, 116, 2633. (b) Watson D.J.; Lawrence C.M.; Meyers A.I.; Tetrahedron Lett., 2000, 41, 815
    
    33. Lemieux R.M.; Meyers A.I.; J. Am. Chem. Soc., 2000, 120, 5453
    
    34. Lemieux R.M.; Devine P.N.; Mechelke M.F.; Meyers A.I.; J. Org. Chem., 1999, 64,3585
    35. Watson D.J.; Devine P.N.; Meyers A.I.; Tetrahedron Lett., 2000, 41, 1363
    
    36. Blot V.; Reboul V.; Metzner P.; J. Org. Chem., 2004, 69, 1196
    
    37. Bycroft B.W.; Landon W.; J. Chem. Soc., Chem. Commun., 1970, 967
    
    38. (a) Takase S.; Uchida I.; Tanaka H.; Aoki H.; Tetrahedron, 1986, 42, 5879. (b) Takase S.; Itoh Y.; Uchida I.; Tanaka H.; Aoki H.; Tetrahedron, 1986, 42, 5887
    
    39. Harvey J.N.; Viehe H.G.; J. Chem. Soc., Chem. Commun., 1995, 2345
    
    40. Novikov A.V.; Kennedy A.R.; Rainier J.D.; J. Org. Chem., 2003, 68, 993
    
    41. Gonda J.; Angew. Chem. Int. Ed, 2004, 43, 3516
    
    42. Malherbe R.; Bellus D.; Helv. Chim. Acta., 1978, 61, 3096
    
    43. Rosini G.; Spineti G.G.; Foresti E.; Pradella G.; J. Org. Chem., 1981, 46, 2228
    
    44. Malherbe R.; Rist G.; Bellus D.; J. Org. Chem., 1983, 48, 860
    
    45. (a) Vedejs E.; Dolphin J.M.; Mastalerz H.; J. Am. Chem. Soc., 1983, 105, 127. (b) Vedejs E.; Buchanan R.A.; J. Org. Chem., 1984, 49, 1840
    
    46. Johnston B.D.; Czyzewska E.; Oehlschlager A.C.; J. Org. Chem., 1987, 52, 3693
    
    47. (a) Oehrlein R.; Jeschke R.; Ernst B.; Bellus D.; Tetrahedron Lett., 1989, 30, 3517. (b) Nubbemeyer U.; Ohrlein R.; Gonda J; Ernst B.; Bellus D.; Angew. Chem., Int. Ed. Engl., 1991, 30, 1465. (c) Ernst B.; Gonda J.; Jeschke R.; Nubbemeyer U.; Oehrlein R.; Bellus D.; Helv. Chim. Acta., 1997, 80, 876. (d) Gonda J.; Martinkov M.; Ernst B.; Bellus D.; Tetrahedron, 2001, 57, 5607
    
    48. Aggarwal V.; Lattanzi A.; Fuentes D.; Chem. Commun., 2002, 253
    1. Tu Song; Xu Long-He; Ye Li-Yi; Wang Xi; Sha Yong; and Xiao Zong-Yuan; J. Agric. Food Chem., 2008, Vol. 56, No. 13, 5247-5253
    
    2. Banner Carl T.; Bingham Norma H.; Brotherton David H.; et al. J. Med. Chem., 1973, Vol. 16, No. 4, 421-425
    
    3. Berson J. A.; Apelin G. B.; Tetrahedron, 1964, 20, 2697-2700
    
    4. Noland Wayland E.; Landucci Lawrence L.; and Kameswaran Venkataraman; J. Org. Chem. 1980, Vol. 45, No. 17, 3456-3458
    
    5. Dime David S.; and Mclean Stewart; J. Org. Chem. 1981, Vol. 46, 5000-5003
    
    6. Moss Robert A.; Xue Song; Sauers and Ronald R.; J. Am. Chem. Soc. 1996, 118, 10307-10308
    
    7. Zhou Xiaobo; Zhang Huimin; Xie Xin; and Li Yanzhong; J. Org. Chem. 2008, 73, 3958-3960
    
    8. Chang Kuo-Jui; Rayabarapu Dinesh Kumar; and Cheng Chien-Hong; J. Org. Chem., 2004, 69, 4781-4787
    
    11. Duan Xin-Hua; Guo Li-Na; Bi Hai-Peng; Liu Xue-Yuan; and Liang Yong-Min; Org. Lett., 2006, Vol. 8, No. 25, 5777-5780
    
    12. Miyamoto Masaki; Harada Yasuyuki; Tobisu Mamoru; and Chatani Naoto; Org. Lett., 2008, Vol. 10, No. 14, 2975-2978
    
    13. Zhu Zhi-Bin; and Shi Min; Chem. Eur. J. 2008, 14, 10219-10222
    
    14. Romines Karen R.; Lovasz Kristine D.; Mizsak Stephen A.; Morris Jeanette K.; et al. J. Org. Chem., 1999, 64, 1733-1737
    
    15. Bajracharya Gan B.; Pahadi Nirmal K.; Gridnev Ilya D.; and Yamamoto Yoshinori; J. Org. Chem., 2006, 71, 6204-6210
    
    16. Beaver Matthew G.; Billings Susan B.; and Woerpel K. A.; J. Am. Chem. Soc. 2008, 130,2082-2086
    
    17. Bossenbroek Byron; Shechter Harold; J. Am. Chem. Soc. 1967, 7112-7114
    
    18. Mikofajczyk Marian; Grzejszczak Srawomir; Chefczyfiska Anna; and Zatorski Andrzej; J. Org. Chem. 1979, Vol. 44, No. 17, 2967-2971
    1.谢德名,谢忠巍,王荣顺,高分子材料科学与工程,1996,12,19-23
    2.化工中间体,2003,2,43-44
    3.Brettle R.;Dunmur D.A.;Marson C.M.;Pinol M.;and Toriyama K.;Chem.Lett.,1992,613
    4.(a) Sonpatki V.M.;Herbert M.R.;Sandvoss L.M.;and Seed A.J.;J.Org.Chem.,2001,66,7283.
    (b) Herbert M.R.;Sonpatki V.M.;Jakli A.;and Seed A.J.;Mol.Cryst.Liq.Cryst.,2001,365,181.
    5.a) Keegstra M.A.;Peters T.H.A.;and Brandsma L.;Synth.Commun.,1990,20,213.
    (b) Keegstra M.A.;Peters T.H.A.;and Brandsma L.;Tetrahedron,1992,48,3633.
    (c) Parker R.A.;Kariya T.;Grisar J.M.;and Petrow V.;J.Med.Chem.,1977,20,781.
    (d) Binder D.;Pyerin M.;and Pusterer F.;Monatsh.Chem.,1999,130,645.
    (e) Burger K.;Helmreich B.;Popkova V.Y.;and German L.S.;Heterocycles,1994,39,819.
    6.Kiryanov A.A.;Sampson R;and Seed A.J.;J.Mater.Chem.,2001,11,3068.
    7.Smith K.;Musson A.;and DeBoos G.A.;J.Org.Chem.,1998,63,8448.
    8.Voronkov M.G.;Trofimov B.A.;Kryuchkov V.V.;Amosova S.V.;Skvortsov Y.M.;Volkov A.N.;Malkina A.G.;and Mushii R.Y.;Khim.Geterotsikl.Soedin.,1981,1694.
    9.Kim E.K.;Lee K.U.;Cho B.Y.;Kim Y.B.;and Kang K.T.;Liq.Cryst.,2001,28,339.
    10.Kobarfard F.;Kauffman J.M.;and Boyko W.J.;J.Heterocycl.Chem.,1999,36,1247.
    11.York C.;Prakash G.K.S.;and Olah G.A.;Tetrahedron,1996,52,9.
    12.11 th Annual British Liquid Crystal Society Conference,University of Central Lancashire,1st-3rd April 1996.
    13. Liu P.; Nakano H.; and Shirota Y.; Liq. Cryst., 2001, 28, 581.
    
    15. (a) Seed A. J.; Toyne K. J.; and Goodby J. W.; J. Mater. Chem., 1995, 5, 653. (b) Seed A. J.; Cross G. J.; Toyne K. J.; and Goodby J. W.; Liq. Cryst., 2003, 30, 1089.
    
    16. (a) Kwart, H.; Hackett, C. M.; J. Am. Chem. Soc. 1962, 84, 1754. (b) Kwart, H.; Cohen, M. H.; J. Org. Chem. 1967, 32, 3135. (c) Kwart, H.; Evans, E. R.;J. Org. Chem. 1966, 31, 413. (d) Kwart, H.; Cohen, M. H.; J. Chem. Soc. D 1968, 319, 1296. (e) Majumdar, K. C.; Ghosh, S.; Ghosh, M.; Tetrahedron ,2003, 59 ,7251. (f) Kwart, H.; Miles, W. H.; Horgan, A. G.; Kwart, L. D.; J. Am. Chem. Soc., 1981, 103, 1757. (g) Block, E.; Ahmad, S.; J. Am. Chem. Soc., 1985, 107, 6731.
    17.(a) Liu, Z.; Qu, H.; Gu, X.; Min, B. J.; Nyberg, J.; Hruby, V. J.; Org. Lett. 2008, 10, 4105. (b) Nowaczyk, S.; Alayrac, C.; Reboul, V.; Metzner, P.; Averbuch-Pouchot, M. T.; J. Org. Chem. 2001, 66, 7841. (c) Liu, Z.; Qu, H.; Gu, X.; Min, B. J.; Nyberg, J.; Hruby, V. J.; Org. Lett. 2009, 11, 497. (d) Lemieux, R. M.; Meyers, A. I.; J. Am. Chem. Soc., 1998, 120, 5453
    18. Baker R.; Castro J. L.; J. Chem. Soc., Perkin Trans 1,1990, 47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700