正六边形球面肋板式换热器性能分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板式换热器以其结构紧凑,性能优良,易清洗等优点,越来越广泛的应用于石油、化工、轻工、冶金、动力等工程领域,在整个国民经济和工业生产中对改善能源利用率,提高经济效益都起着举足轻重的作用,因此对板式换热器进行新板型的开发和优化设计,提高换热器整体性能就具有十分重要的现实意义和应用价值。
     本文采用数值计算的方法研究一种新型板式换热器—正六边形球面肋板式换热器,并在分析其内部传热和阻力特性的基础上进行优化设计,得到性能最优时的换热器参数。具体工作如下:
     首先,比较三种换热器评价标准:JF因子、熵产最小法和火积耗散原理,分析三种评价标准各自的物理意义及其在换热器中的应用情况,发现将JF因子作为基于热力学第一定律的性能评价标准是合适的;在热力学第二定律范畴内,火积耗散原理可以避免熵产最小法在实际应用中出现的矛盾和问题,本文将其推广应用到实际换热器的数值计算中。
     综合考虑各种影响因素,建立换热器计算模型,并搭建正六边形球面肋板式换热器水—水换热实验台进行实验验证,实验数据与数值计算结果吻合度较好,表明本文建立的计算模型能够准确预测换热器内部传热和流动情况,得到的数据是真实可信的。
     随后本文利用验证模型对正六边形球面肋板式换热器进行了传热和阻力特性研究,得到不同工况下换热器内部流场、温度场、压力场和火积耗散分布情况,探讨了板片结构对换热器性能的影响规律。发现火积耗散数忽略了阻力性能的影响,不适合单独作为换热器评价标准使用。并与一种传统人字形板式换热器进行性能比较,证实了正六边形球面肋板式换热器综合性能的优越性。
     最后,将球肋弧度和比例因子作为板片结构特征参数进行优化设计,得到了结构参数对换热器传热性能、阻力性能和火积耗散数的影响规律,提出火积耗散原理的优化方向为温度梯度最小,并不适合单独用于换热器新板型优化设计。因此采用JF因子作为主要优化目标,火积耗散数作为辅助优化目标,得到了最佳板片结构和运行参数。
Plate heat exchangers(PHE) are more and more widely used in petroleum, chemical, light industry, metallurgy, power and other engineering fields with its advantages like compact structure, excellent performance, ease to clean, etc. It plays an important role in improving energy and economic efficiency of the whole national economy and industrial production. Therefore, it has important practical significance and applied value to design and optimize new PHE for improving the overall performance.
     In this paper, we investigate a novel PHE, Regular Hexagonal PHE with Spherical Ribs(RHPHE) by using numerical method, followed with the optimal parameter design through the analysis of its internal heat transfer and pressure drop characteristic, Which is specifically shown as follow:
     First, the physical meaning and the application in heat exchanger of three heat exchanger evaluation criteria, JF Factor, Entropy Minimization Method, and Entransy Dissipation Principle, are compared. JF Factor was found to be an appropriate criterion foras the First Law of Thermadynamics-based performance evaluation. In the context of the Second Law of Thermadynamics, Entransy Dissipation Principle avoided the contradictions and problems in practical application of Entropy Minimization Method. Then, we extend it to the actual PHE numerical calculation.
     Considering various influencing factors, we have established the PHE numerical model, and tested RHPHE in an experimental installation for experimenta verification. The experimental results fit well with the numerical results, which means the numerical model is reliable and can accurately predict the heat transfer and flow in RHPHE.
     Then, we use the verified model to study the heat transfer and pressure drop properties of RHPHE. Based on the obtained fluid flow and temperature, pressure, entransy distribution under different conditions, the effect of structure on entransy dissipation number is investigated. Results showed that the entransy dissipation number is not suitable as a separate heat exchanger evaluation criterion because of ignorance of the flow resistance. Compared with a traditional chevron PHE, RHPHE has a better overall performance.
     Finally, optimized design is carried on by chosing curvature and scale factor of spherical ribs as structural parameters. Effects of different structural parameters on heat tansfer performance, resistance performance, and entransy dissipation number distribution are studied. It is found that the optimal direction of the Entransy Dissipition Principle is to minimize the temperature gradient. So it's not suitable for designing new plate type. Therefore, using JF Factor as main optimization objective, and Entransy Dissipation Number as auxiliary optimization objective, the optimal structural design and operating parameter of RHPHE are obtained.
引文
[1]王惠良.板式换热器概述[J].国外化工装备技术.1982,(01):1-25.
    [2]曲宁板式换热器传热与流动分析[D].山东大学硕士学位论文.2005.
    [3]蔡毅.板式换热器性能的数值模拟和实验研究[D].北京化工大学硕士学位论文.2008.
    [4]史美中,王中铮.热交换器原理与设计[M].第二版.南京:东南大学出版社,2007:124-132.
    [5]雷国庆,张志川.板式换热器波纹板片设计[J].石油化工设备.2003,6(32):5.
    [6]杨崇麟.板式换热器工程设计手册[M].北京:机械工业出版社,1995:44-45.
    [7]H.Martin. A Theoretical Approach to Predict the Performance of Chevron-type Plate Heat Exchangers[J]. Chemical Engineering and Processing.35(1996) 301-310.
    [8]谢静茹.板式换热器的调研[J].北京节能.1990,(4):6-8.
    [9]安英华.板式换热器在集中供热系统中的应用问题[J].区域供热.1989,(3):29-31.
    [10]蔡晓君,王利华,吕涛.板式换热器的结构及应用[J].化工设备与管道.2001,38(4):15-16.
    [11]P. Vlasogiannis, G. Karagiannis, P. Argyropoulos, V. Bontozoglou. Air-water two-phase Flow and Heat Transfer in a Plate Heat Exchanger[J]. International Journal of Multiphase Flow.2002,(28):757-772.
    [12]T.S. Khan, M.S. Khan, Ming-C. Chyu, Z.H. Ayub. Experimental Investigation of Single Phase Convective Heat Transfer Coefficient in a Corrugated Plate Heat Exchanger for Multiple Plate Configurations[J]. Applied Thermal Engineering.2010,(30):1058-1065.
    [13]刘艳,何国庚,赖学江.板式换热器板型尺寸对换热性能影响的探讨[J].制冷.2003,22(2):65-68.
    [14]赵镇南.流量分布不均匀对板式换热器传热性能的影响[J].化工机械.2003,30(1):1-4.
    [15]任洪理,张国磊,等.板式换热器在高粘度流体强化传热的工程研究[J].化工设计.2009,19(2):20-22.
    [16]Carla S. Fernandes,Ricardo P. Dias, et. Friction Factors of Power-law Fluids in Chevron-type Plate Heat Exchangers[J]. Journal of Food Engineering.2008,(89):441-447.
    [17]Carla S. Fernandes,Ricardo P. Dias, et. Laminar Flow in Chevron-type Plate Heat Exchangers: CFD Analysis of Tortuosity, Shape Factor and Friction Factor[J]. Chemical Engineering and Processing.2007,(46):825-833.
    [18]Ying-Chi Tsai, et. Investigations of the Pressure Drop and Flow Distribution in a Chevron-type Plate Heat Exchanger[J]. International Communications in Heat and Mass Transfer.2009,(36):574-578.
    [19]Reinhard Wurfel, Nikolai Ostrowski. Experimental Investigation of Heat Transfer and Pressure Drop During the Condensation Porcess within Plate Heat Exchangers of the Herringbone-type[J]. Int.J.Heat and Mass Transfer.2003,(46):2571-2585.
    [20]许淑惠,周明连.板式换热器进出口段流道内的压力分布、流阻及流型显示的实验研究[J].节能.1996,(8):12-15.
    [21]李崇岳,奚延安,等.板式换热器流体力学性能的研究[J].河北工学院学报.1981,(1):32-45.
    [22]Aydin Durmus, Huseyin Benli, et. Investigation of Heat Transfer and Pressure Drop in Plate Heat Exchangers Having Different Surface Profiles[J]. Internation Journal of Heat and Mass Transfer.2009,(52):1451-1457.
    [23]D. Dovic, B. Palmb, S. Svaic. Generalized Correlations for Predicting Heat Transfer and Pressure Drop in Plate Heat Exchanger Channels of Arbitrary Geometry[J]. International Journal of Heat and Mass Transfer.2009,(52):4553-4563.
    [24]Francisco Taboas, Manel Valle's, Mahmoud Bourouis, Alberto Coronas. Flow Boiling Heat Transfer of Ammonia/water Mixture in a Plate Heat Exchanger[J]. International Journal of Refrigeration.2010,(33):695-705.
    [25]Giovanni A. Longo. Heat Transfer and Pressure Drop During HFC Refrigerant Saturated Vapour Condensation Inside a Brazed Plate Heat Exchanger[J]. International Journal of Heat and Mass Transfer.2010,(53):1079-1087.
    [26]Giovanni A. Longo. Heat Transfer and Pressure Drop During Hydrocarbon Refrigerant Condensation Inside a Brazed Plate Heat Exchanger[J]. International journal of refrigeration. 2010,(33):944-953.
    [27]赵镇南.板式换热器人字波纹倾角对传热及阻力性能的影响[J].石油化工设备.2001,30(5)增刊:1-3.
    [28]马学虎,林乐,兰忠低,等.Re下板式换热器性能的实验研究及热力学分析[J].热科学与技术.2007,6(1):38-44.
    [29]石友妮,冯丽丽,杜小泽.人字形板式换热器传热和阻力性能的测试[J].现代电力.2008,25(6):60-63.
    [30]栾志坚,张冠敏,张俊龙,等.波纹几何参数对人字形板式换热器内流动形态的影响机理[J].山东大学学报(工学版).2007,37(2):34-37.
    [31]徐志明,郭进生,郭军生,等.板式换热器传热和阻力特性的实验研究[J].热科学与技术.2010,9(1):11-16.
    [32]Jorge A.W. Gut, Jose M. Pinto. Optimal Configuration Design for Plate Heat Exchangers[J]. International Journal of Heat and Mass Transfer.2004,(47):4833-4848.
    [33]Lieke Wang. Bengt Sunden. Optimal Design of Plate Heat Exchangers with and without Pressure Drop Specifications[J]. Applied Thermal Engineering.2003,(23):295-311.
    [34]商建平,俞树荣.板式换热器遗传算法优化设计[J].石油化工设备.2002,31(5):16-18.
    [35]任鹏,吴吁生.基于粒子群优化算法的板式换热器优化设计[J].能源技术.2009,30(5):270-271.
    [36]LUAN Zhi-jian, ZHANG Guan-min, TIAN Mao-cheng, FAN Ming-xiu. Flow Resistance and Heat Transfer Characteristics of a New-type Plate Heat Exchanger[J]. Journal of Hydrodynamics.2008,20(4):524-529.
    [37]Flavio C.C. Galeazzo, RaquelY. Miura, JorgeA.W. Gut, Carmen C. Tadini. Experimental and Numerical Heat Transfer in a Plate Heat Exchanger[J]. Chemical Engineering Science. 2006,(61):7133-7138.
    [38]A.G. Kanaris, A.A. Mouza, S.V. Paras. Optimal Design of a Plate Heat Exchanger with Undulated Surfaces[J]. International Journal of Thermal Sciences.2009,(48):1184-1195.
    [39]S. Freund, S. Kabelac. Investigation of Local Heat Transfer Coefficients in Plate Heat Exchangers with Temperature Oscillation IR Thermography and CFD[J]. International Journal of Heat and Mass Transfer.2010,(53):3764-3781.
    [40]X.-H. Han, et al. A Numerical and Experimental Study of Chevron, Corrugated-plate Heat Exchangers[J]. Int. Commun.Heat Mass Transf.2010,37(8):1008-1014.
    [41]蔡毅,贾志刚,周文学,等.人字形波纹板式换热器性能数值模拟的研究[J].计算机与应用化学.2009,26(1):105-108.
    [42]徐国想,邓先和,许兴友,等.换热器传热强化性能评价分析[J].淮海工学院学报.2005,(2):42-44.
    [43]邓先和,张亚君,邢华伟.换热器在多种冲刷条件下的传热强化性能评价[J].华南理工大学学报.2002,30(3):44-45.
    [44]Kays, W.M., London, A.L.. Compact Heat Exchangers[M]. New York, NY:McGraw-Hill,1984.
    [45]夏再忠.热传导和对流过程的分析与优化[D].清华大学博士学位论文.2001.
    [46]Degroot S R, Mazur P. Thermodynamics of Irreversible Processes[M]. Amsterdam: North-Holland Publishing Company.1962,1-37.
    [47]Bejan A. The Concept of Irreversibility in Heat Exchanger Design:Counter Flow Heat Exchanger for Gas-to-Gas Application[J]. Transactions of the ASME, Journal of Heat Transfer. 1977,99:374-380.
    [48]Bejan, A. General Criterion for Rating Heat-exchanger Performance[J]. Int. Heat Mass Transfer. 2000,21 pp.:655-658.
    [49]吴双应,牟志才,刘泽筠.换热器性能的火用经济性评价[J].热能动力程.1999,14(11):437-440.
    [50]杨波涛,戚冬红.管壳式换热器火用损分析[J].石油化工设备.2001,30(4):21-24.
    [51]朱明善.能量系统的火用分析[M]北京:清华大学出版社,1998.
    [52]过增元,梁新刚,朱宏晔.火积——描述物体传递热量能力的物理量[J].自然科学进展.2006,16(10):1288-1296.
    [53]刘利平,马晓建,陈现玉.管内装元件强化传热的技术经济评价[J].冶金能源.2003,22(4):25-29.
    [54]Jeom-Yul Yuna, Kwan-Soo Lee. Influence of Design Parameters on the Heat Transfer and Flow Friction Characteristics of the Heat Exchanger with Slit Fins[J]. International Journal of Heat and Mass Transfer.2000,43:2529-2539.
    [55]C.B. Allison, B.B. Dally. Effect of a Delta-winglet Vortex Pair on the Performance of a Tube-fin Heat Exchanger[J]. International Journal of Heat and Mass Transfer. 2007,50:5065-5072.
    [56]Min-Soo Kim, Kwan-Soo Lee, Simon Song. Effects of Pass Arrangement and Optimization of Design Parameters on the Thermal Performance of a Multi-pass Heat Exchanger[J]. International Journal of Heat and Fluid Flow.2008,29:352-363.
    [57]Lihua Guo, Feng Qin, Jiangping Chen, Zhijiu Chen, Yimin Zhou. Influence of Geometrical Factors and Pressing Mould Wear on Thermal-hydraulic Characteristics for Steel Offset Strip Fins at Low Reynolds Number[J]. International Journal of Thermal Sciences. 2007,46:1285-1296.
    [58]H. Bhowmik, Kwan-Soo Lee. Analysis of Heat Transfer and Pressure Drop Characteristics in an Offset Strip Finheat Exchanger[J]. International Communications in Heat and Mass Transfer. 2009,36:259-263.
    [59]M. Zeng, L.H. Tang, M. Lin, Q.W. Wang. Optimization of Heat Exchangers with Vortex-generator Fin by Taguchi Method[J]. Applied Thermal Engineering. 2010,(30):1775-1783.
    [60]杨东华.不可逆过程热力学原理及工程应用[M].北京:科学出版社,1987.1.
    [61]倪振伟,焦芝林.换热器的熵增计算法与总熵增率[J].工程热物理学报.1988,9(1):4-6.
    [62]A.Bejan. Entropy Generation though Heat and Fluid Flow[M]. A Wiley-Interscience Publication. JOHN WILEY&SONS,1982:102-107.
    [63]Bejan A. Entropy Generation Minimization[M]. New York:Wiley,1996.
    [64]Bejan A. A Study of Generation in Fundamental Convective Heat Transfer[J]. Transactions the A S ME, J, Heat Transfer.1979,101:718-725.
    [65]Bejan A. Entropy Generation in Heat and Fluid Flow[M]. New York:Wiley,1982.
    [66]陈维汉,钱壬章.基本对流换热过程熵产分析[J].华中理工大学学报.1989,17(1):32-35.
    [67]Nag P.K., Mukherjee P. Thermodynamics Optimization of Convective Heat Transfer Though a Duct with Constant Wall Temperature[J]. Int. J. Heat Mass Transfer.1987,30(2):401-405.
    [68]P.P.P.M. Lerou, T.T. Veenstra, J.F. Burger, H.J.M. ter Brake, H. Rogalla. Optimization of Counterflow Heat Exchanger Geometry through Minimization of Entropy Generation[J]. Cryogenics.2005,(45):659-669.
    [69]T.H. Ko. Thermodynamic Analysis of Optimal Mass Flow Rate for Fully Developed Laminar Forced Convection in a Helical Coiled Tube Based on Minimal Entropy Generation Principle[J]. Energy Conversion and Management.2006,(47):3094-3104.
    [70]T.H. Ko. Numerical Analysis of Entropy Generation and Optimal Reynolds Number for Developing Laminar Forced Convection in Double-sine Ducts with Various Aspect Ratios[J]. International Journal of Heat and Mass Transfer.2006,(49):718-726.
    [71]N. Sahiti, F. Krasniqi, Xh. Fejzullahu, J. Bunjaku, A. Muriqi. Entropy Generation Minimization of a Double-pipe Pin Fin Heat Exchanger[J]. Applied Thermal Engineering. 2008,(28):2337-2344.
    [72]Kotcioglu I, et al.. Second Law Analysis and Heat Transfer in a Cross-flow Heat Exchanger with a New Winglet-type Vortex Generator[J]. Energy.2010,35(9):3686-3695.
    [73]李大鹏,孙丰瑞,焦增庚.传热与流动系统熵产生的研究与进展[J].能源研究与信息.2000,16:40-46.
    [74]Lina Zhang, Chunxin Yang, Jianhui Zhou. A Distributed Parameter Model and its Application in Optimizing the Plate-fin Heat Exchanger Based on the Minimum Entropy Generation[J]. International Journal of Thermal Sciences.2010,(49):1427-1436.
    [75]苏亚欣,骆仲泱,岑可法.带侧向喷气孔的钉肋换热器的熵产分析[J].电站系统工程.2000,16(4):203-207.
    [76]Bejan A. Advanced Engineering Thermodynamics[M]. New York:Wiley,1988.
    [77]Hesselgreaves J. E.. Rationalisation of Second Law Analysis of Heat Exchanger[J]. Internet J. Heat Mass Transfer.2000,43:4189-4204.
    [78]Biot M A. Variational Principle in Irreversible Thermadynamics with Applications to Viscoelasiticity[J]. Phys Rev.1995,97(6):1463-1469.
    [79]程新广,李志信,过增元.热传导中的变分原理[J].工程热物理学报.2004,25(3):457-459.
    [80]过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用[J].科学通报.2003,48(1):21-25.
    [81]朱宏晔,陈泽敬,过增元.火积耗散极值原理的电热模拟实验研究[J].自然科学进展.2007,17(12):1692-1698.
    [82]魏曙寰,陈林根,孙丰瑞.基于矩形单元体的以火积耗散最小为目标的体点导热构形优化[J]. 中国科学E辑:技术科学.2009,39(2):278-285.
    [83]谢志辉,陈林根,孙丰瑞.以火积耗散最小为目标的空腔几何构形优化[J].中国科学E辑:技术科学.2009,39(12):1949-1957.
    [84]谢志辉,陈林根,孙丰瑞.T形腔火积耗散最小构形优化[J].科学通报.2009,54:2605-2612.
    [85]魏曙寰,陈林根,孙丰瑞.以火积耗散最小为目标的电磁体多学科构形优化[J].中国科学E辑:技术科学.2009,39(9):1606-1613.
    [86]吴晶,梁新刚.火积耗散极值原理在辐射换热优化中的应用[J].中国科学E辑:技术科学.2009,39(2):272-277.
    [87]Meng J A, Liang X G, Li Z X. Field Synergy Optimization and Enhanced Heat Transfer by Multi-longitudinal Vortices Flow in Tube[J]. Int J Heat Mass Tran.2005,48(16):3331-3337.
    [88]Chen Q, Ren J X, MengJ. Field Synergy Equation for Turbulent Heat Transfer and its Application[J]. Int J Heat Mass Tran.2007,50:5334-5339.
    [89]陈群,任建勋.对流换热过程的广义热阻及其与火积耗散的关系[J].科学通报,2008,53(14):1730-1736.
    [90]王松平,陈清林,张冰剑.火积传递方程及其应用[J].科学通报.2009,54(15):2247-2251.
    [91]柳雄斌,孟继安,过增元.基于火积耗散的换热器热阻分析[J].自然科学进展.2008,18(10):1186-1190.
    [92]许明田,程林,郭江峰.火积耗散理论在换热器设计中的应用[J].工程热物理学报.2009,30(12):2090-2092.
    [93]郭江峰,程林,许明田.火积耗散数及其应用[J].科学通报.2009,54(19):2998-3002.
    [94]柳雄斌,孟继安,过增元.换热器参数优化中的熵产极值和火积耗散极值[J].科学通报.2008,53(24):3026-3029.
    [95]夏少军,陈林根,孙丰瑞.换热器火积散最小优化『J].科学通报.2009,54(15):2240-2246.
    [96]冯端,冯少彤.溯源探幽熵的世界[M].北京:科学出版社,2005.
    [97]Chen C J, Jaw S Y. Fundamentals of Turbulence Modeling[M]. Washington DC:Taylor&Franic, 1988:91-92.
    [98]Moin P, Mahesh K. Direct Numerical Simulation:a Tool in Turbulence Research[J]. Ann Rev Fluid.1998,30:39-78.
    [99]王立新.回路型重力热管蒸发腔沸腾传热的FLUENT数值分析[D].浙江大学硕士学位论文.2006.
    [100]刘志刚,刘咸定,赵冠春.工程热物理性质计算程序的编制及应用[M].北京:科学出版社,1992:55-59.
    [101]何庆琼.复合波纹板式换热器换热与阻力特性研究[D].山东大学硕士学位论文.2005.
    [102]欧阳新萍,吴国妹,刘宝兴.等流速法在板式换热器传热试验中的应用[J].动力工 程.2009,21(3):1260-1262.
    [103]田胜元.实验设计与数据处理[M].北京:中国建筑工业出版社,1988.
    [104]张十虎.正六边形球面肋板式换热器的传热和流动研究[D].山东大学硕士学位论文.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700