基于傅立叶红外光谱仪的材料光谱发射率测量技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发射率是描述物体热辐射特性的重要参数,在航天、航空、国防、科学研究及工农业生产等领域中具有重要研究意义和应用价值。例如,当航天飞机、卫星在空间飞行时,它们表面的辐射特性数据是其热控制的重要依据。在红外制导武器对抗中,对导弹火焰和蒙皮辐射特性数据的掌握是能否突防的关键,而对军事目标辐射特性的认知又是能否有效攻击和隐身的重要因素。在民用领域中,在粮食、油漆、皮革烘干、电采暖中,加热体辐射特性的控制是节能降耗和提高生产效率的重要技术。在辐射测温技术中,发射率是现有测温方法中想得到目标真温而必须先知的唯一参数,也是影响目前辐射测温技术广范应用的瓶颈技术。
     材料发射率不仅取决于材料的组成成分和材料的表面状态(粗糙度、氧化等),还与材料的温度、考察的波长及观察的方向等因素有关。它不是物质的本征特性,随外界条件变化,不易测得。多年来,各国学者进行了大量和深入的研究,提出了很多测量方法,研制了种类繁多的测量设备,得到大量热物性数据。但是不得不承认:目前发射率的测量技术水平还不够高,数据分散性较大,而且我国还处于起步状态。因此,本文在国家自然科学基金和航天材料与工艺研究所的资金支持下,在建立基于傅里叶红外光谱仪的光谱发射率测量装置的基础上,对光谱发射率测量技术进行深入的研究。本文主要完成了以下几方面的创新性研究工作:
     1.研制基于傅里叶红外光谱仪的材料光谱发射率测量装置。设计了试样加热炉、参考黑体炉、反射式聚光光路、恒温环境腔体和真空系统。采用恒温环境辐射补偿技术,有效地消除背景辐射的影响。系统的主要技术指标优于国际同类装置。
     2.考虑到环境辐射对测量结果的影响,提出了背景辐射补偿新算法。测量环境的背景辐射包括两个部分:一是光谱仪内部辐射,另一个是光谱仪外部辐射,它们通过一定的方式耦合到光谱仪中去,给测量结果造成较大影响。本文提出了两次测量的环境补偿新算法,有效消除了环境的影响。
     3.从维恩位移定律得到启示,提出一种基于光谱测量温度的新方法。采用傅里叶红外光谱仪,测量目标的辐射光谱曲线,找到曲线峰值时的波长,再根据维恩位移定律得到目标的温度,称为光谱极值法。理论上分析了采用该方法测量黑体目标和实际目标的不确定度,建立了验证装置,并进行验证实验,理论和实验都证明了该方法具有较高的测量精度和实用性。
     4.利用本文研制的光谱发射率测量装置,对两种航天材料的光谱发射率进行了测量实验研究,揭示了材料光谱辐射特性随波长和温度的变化规律。对测量系统进行了不确定度分析,结果表明系统测量不确定度满足设计要求。
     系统研制后,受多个单位的委托,进行了多种材料的发射率测量试验,给委托单位提供了详细的测量数据,为委托单位的材料(型号)设计提供了基础数据,体现了该系统研制的必要性。
The emissivity is an important parameter which describes the thermal radiative property of material, and it has a wide application in the aeronautics, astronautics, national defence, science research, industry, agriculture and other research fields. For example, the radiative characteristic of aerospace crafts and satellite is important for temperature controlling when they fly in the airspace. The radiative characteristic of missile plume and skin is a necessary parameter in the antagonism between the infrared guided weapon, and the radiative characteristic of military targets also has a critical effect on the attack and hiding of military targets. On the other hand, in the field of food supplies, oil paint, leather drying and electric heating, the control of the radiative characteristic of heating target is an important technique for the decrease on energy consumption and increase on production efficiency. In the radiative temperature measurement, the radiative is a necessary prior parameter before the true temperature is known, so the problem of the measurement of radiative is a bottle-neck in the radiative temperature research.
     The emissivity not only depends on the components of material and surface state (such as roughness, oxidation), but also on the temperature and wavelength measured. The emissivity is not a characteristic parameter of material itself, but it varies with the external condition. Lots of studies had done much research, and provided many useful methods, and developed all kinds of equipment as well. But the level of emissivity measurement is not satisfactory, the dispersity of data is larger, and we are at the initial step. The research comes from the project of National Natural Science Foundation of China and Aerospace Research Institute of Materials & Processing Technology. The purpose of this project is to research the spectrum emissivity according the measurement equipment based on Fourier transform spectrometer. The finished research works are as follows:
     1. A new measurement equipment has been researched based on the Fourier transform spectrometer. The stove for heating specimen, reference blackbody stove, light path with condenser mirror, cavity body at constant temperature and vacuum system have been designed. This system can work in spectral range from 0.6μm to 25μm and in the temperature range from 60℃to 1500℃, and the measurement precision can get to 3%.
     2. A new method for compensating the influence of surrounding radiation has been proposed. At the infrared spectral region, the stray radiation from surrounding may be comparable to target’s radiation, and the surrounding radiation contains the radiation inside the instrument and the radiation outside the instrument. The two kinds of radiation can come into the instrument by some couple mode, which will have a bad effect on the measurement results. So the new method for compensating the influence of surrounding radiation by twice measurement eliminates the influence of surrounding radiation effectively.
     3.A new method for temperature measurement has been proposed based on the Wien displacement law. First, the radiant spectral curve of target can be measured by a Fourier transform spectrometer, second, the peak value of curve can be found and corresponding wavelength must be marked. Third, the temperature of target can be calculated by Wien displacement law. We call this method as Peak Wavelength Method-PWM. For blackbody surface and real surface, theoretical and experimental analysis on the uncertainty is done, and a set-up is constructed and tested. They prove that PWM method has a high accuracy and practicability.
     4. A series of experiments have been done using the apparatus developed to measure the spectral eimssivity of materials. The results show that the data measured agree well with the data from literature. In the end, the uncertainty has been estimated for this apparatus and its result also proves this measurement system can satisfy the design demand.
引文
1 H. P. Tan, Y. Shuai, S. K. Dong. Analysis of Rocket Plume Base Heating by Using Backward Monte-Carlo Method. AIAA J of Thermophysics and Heat Transfer. 2005, 19(1): 125~127
    2 Y. Shuai, S. K. Dong, H. P. Tan. Simulation of the Infrared Radiation Characteristics of High-Temperature Exhaust Plume Including Particles Using the Backward Monte Carlo Method. J. of Quantitative Spectroscopy and Radiative Transfer. 2005, 95(2): 231~240
    3 张海兴, 张建奇, 杨威. 飞机红外辐射的理论计算. 西安电子科技大学学报. 1997, 24(1): 78~81
    4 王东明, 唐斌. 火箭尾喷焰流场的研究. 指挥技术学院学报. 2001, 12(6): 104~107
    5 孟新强. 隐身技术与隐身武器的研究和应用. 目标与环境特性研究. 1999, 2: 37~43
    6 覃文汉. 遥感植被双向反射光谱的理论研究与应用展望. 环境遥感. 1992, 7(4): 290~297
    7 M. Hori, T. Aoki, T. Tanikawa. In-situ Measured Spectral Directional Emissivity of Snow and Ice in the 8-14um Atmospheric Window. Remote Sensing of Environment. 2006, 100: 486~502
    8 王霞, 金伟其. 利用 FTIR 光谱议进行地物光谱发射率的野外测量方法研. 北京理工大学学报. 2003, 23(4): 407~418
    9 朱军, 刘文清, 陆亦怀. 基于 FTIR 的目标背景辐射测量方法研究. 红外技术. 2004, 26(1): 52~55
    10 张天舒, 刘文清, 高闽光. 地表发射率的机载傅里叶变换红外光谱反演方法研究. 光学技术. 2006, 32(2): 219~225
    11 汪骏发, 高晓萍, 陈志峰. 多角度遥感及其航空成像仪. 红外与毫米波学报. 2001, 20(5): 329~334
    12 王海燕, 吴坚业, 朱国荣. 红外发射材料光谱发射率的测量法. 红外技术. 2003, 25(6): 61~63
    13 范毅. 多参数电流脉冲加热动态热物性测量技术研究. 哈尔滨工业大学博士学位论文. 2003, 3
    14 褚载祥, 孙毓星, 陈守仁. 料发射率测量技术. 红外研究. 1986, 5A: 231-239
    15 Y. Kaneko, Y. Shimizu, J. Ishii. Numerical Estimation of Effective Emissivities of Low-Temperature Blackbody Cavities with Apertgures. Sice Annual Conference in Sapporo. 2004: 1764~1767
    16 S. Bonanno, S. Knight, K. Kinsella. In-Stiu Measurement of Residual Carbon Content in Flyash. SPIE. 2367: 194~201
    17 G. Neuer, G. Jaroma Weiland. Spectral and Total Emissivity of High Temperature Materials. International Journal of Thermophysics. 1998, 19(3): 917~929
    18 贾辉, 李福田. 铝漫反射板 200~300nm 相对双向反射分布函数的实验研究. 光学学报. 2004, 24(2): 230~234
    19 张百顺, 刘文清, 魏庆农. 基于双向反射分布函数实验测量的目标散射特性的分析. 光学技术. 2006, 32(2): 180~182
    20 赵忠义, 齐超, 戴景民. 多光谱 BRDF 测量系统转角装置研制. 光电工程. 2006, 33(11): 61~64
    21 Zhongyi Zhao, Chao Qi, Jingmin Dai. Design of a multi-spectrum BRDF measurement system. Chinese Optics Letters. 2007, 5(3): 168~171
    22 李明华. 稳态卡计法半球向辐射率测定装置. 中国科学院上海硅酸盐所. 1979
    23 S. Seizi, M. Hidetoshi, H. Mitsuo. Simultaneous Measurement of Specific Heat and Total Hemispherical Emissivity of Metals by the Transient Calorimetric Technique. Heat Transfer-Japanese Research. 1994, 23(3): 277~291
    24 H. Masuda, S. Sasaki, M. Higano. Method for the simultaneous measurement of total hemispherical emissivity and specific heat of metals by the transient calorimetric technique. Experimental Heat Transfer. 1991, 4(2): 218~225
    25 A. Cezairliyan, J Laylor. Thermophysical Measurements on 90ti-6al-4v Alloy above 1450 K Using a Transient (Subsecond) Technique. Journal of Research of the National Bureau of Standards, Section A, Physics and Chemistry. 1977, 81(2-3): 251~256
    26 Righini F, Coslovi L, Rosso A. Measurement of Thermophysical Propertiesby a Pulse Heating Method: The Phase Transformation of Zircaloy-2 (800-1400 K). Proc. of the Symposium on Thermophysical Properties. 1982: 51~61
    27 Righini F, Roberts R B, Rosso A. Measurement of Thermophysical Properties by a Pulse-Heating Method: Niobium in the Range 1000-2500 K. International Journal of Thermophysics. 1985, 6(6): 681~693
    28 A. Cezairliyan, S. Krishnan, J. McClure. Simultaneous Measurements of Normal Spectral Emissivity by Spectral Radiometry and Laser Polarimetry at High Temperatures in Millisecond-Resolution Pulse-Heating Experiments: Application to Molybdenum and Tungsten. International Journal of Thermophysics. 1996, 17(6): 1455~1473
    29 Matsumoto T, Ono A. Hemispherical Total Emissivity and Specific Heat Capacity Measurements by Electrical Pulse-Heating Method with a Brief Steady State. Measurement Science and Technology. 2001, 12(12): 2095~2102
    30 Matsumoto T, Cezairliyan A. Combined Transient and Brief Steady-State Technique for Measuring Hemispherical Total Emissivity of Electrical Conductors at High Temperatures: Application to Tantalum. International Journal of Thermophysics. 1997, 18(6): 1539~1556
    31 Matsumoto T, Cezairliyan A, Basak D. Hemispherical Total Emissivity of Niobium, Molybdenum, and Tungsten at High Temperatures Using a Combined Transient and Brief Steady-State Technique. International Journal of Thermophysics. 1999, 20(3): 943~952
    32 Kaschnitz E, Pottlacher G, Jaeger H. New Microsecond Pulse-Heating System to Investigate Thermophysical Properties of Solid and Liquid Metals. International Journal of Thermophysics. 1992, 13(4): 699~708
    33 Dai J M, Fan Y, Chu Z X. Development of a Millisecond Pulse-Heating Apparatus. International Journal of Thermophysics. 2002, 23(5): 1401~1405
    34 Dunkle R V. In Progress in International Research on Thermodynamics and Transport Properties. Asme. 1962: 100~106
    35 F. Righini, J. Spisiak, G. Bussolino. Measurement of Thermophysical Properties by a Pulse-Heating Method: Thoriated Tungsten in the Range 1200 to 3600 K. International Journal of Thermophysics. 1994, 15(6):1311~1322
    36 F. Righini, J. Spisiak, G. Bussolino. Normal Spectral Emissivity of Niobium (at 900 Nm) by a Pulse-Heating Reflectometric Technique. International Journal of Thermophysics. 1999, 20(4): 1095~1106
    37 F. Righini, J. Spisiak, G. Bussolino. Thermophysical Properties by a Pulse-Heating Reflectometric Technique: Niobium, 1100 to 2700 K. International Journal of Thermophysics. 1999, 20(4): 1107~1116
    38 Saunders P, Trotter A. In-Situ Measurement of Catalyst Tube Emissivity by Means of a Portable Solid Integrating Sphere Reflectometer. Meas. Sci. Technol. 2001, 12: 622~626
    39 Fan Yi, Dai Jingmin, Xiao Peng. Measurement of Normal Spectral Emissivity of Niobium (at 633nm) by Pulse-Heating Reflectometric Technique. Source: Proceedings of the Second International Symposium on Instrumentation Science and Technology. 2002, 2: 366~369
    40 Fan Yi, Sun Xiao Gang. A Multi-Wavelength Reflectometric Technique for Normal Spectral Emissivity Measurements by a Pulse-Heating Method. International Journal of Thermophysics. 2003, 24(3): 849~857
    41 Ye Jiafu, Guo Shaoling. Measurement of Material Radiation Emissivity with Optical Ellipse Sphere. Jiguang Yu Hongwai/Laser and Infrared. 2000, 30(6): 370~372
    42 A. Seifter, F. Sachsenhofer, G. Pottlacher. A Fast Laser Polarimeter Improving a Microsecond Pulse Heating System. International Journal of Thermophysics. 2002, 23(5): 1267~1280
    43 Pottlacher G, Seifter A. Microsecond Laser Polarimetry for Emissivity Measurements on Liquid Metals at High Temperatures-Application to Tantalum. International Journal of Thermophysics. 2002, 23(5): 1281~1291
    44 S. Krishnan, S. Hampton, R. James. Spectral Polarization Measurements by use of the Grating Division-of-Amplitude Photopolarimeter. Applied Optics. 2003, 42(7): 1216~1227
    45 刘宝明. 红外加热材料法向光谱发射率测量装置. 上海市计量技术研究所. 1985
    46 Liu Baoming, Chu Zaixiang. Effect of Deviation of Cavity Temperature and Wall Emissivity on Accuracy of Material Emissivity Measurement. 10thEuropean conference on Thermophysical Properties. 1986: 22~26
    47 Levendis Y A. Development of Multicolor Pyrometers to Monitor the Transient Response of Burining Carbonaceous Particles. Rev. Sci. Instrum. 1992, 63(7): 3608~3622
    48 Cezairliyan A. Six-Wavelength Millisecond Resolution Pyrometer. Temp, its Measur. and Contr. in Sci. and Ind.. 1993, 6: 757~762
    49 Ruffino G, Chu Z, Kang S. Multi-Wavelength Pyrometer with Photodiode Array. Temp., its Measur. and Contr. in Sci. and Ind.. 1993, 6(2): 807~810
    50 Coppa P, Dai J M, Ruffino G. The Transient Regime of a Multiwavelength Pyrometer. International Journal of Thermophysic. 1993, 14(3): 599~608
    51 戴景民, 卢小冬, 褚载祥. 具有同步数据采集系统的多点多波长高温计的研制. 红外与毫米波学报, 2000, 19(1): 62~66
    52 Sun Xiao Gang, Dai Jing Min. Development of a Special Multiwavelength Pyrometer for Temperature Distribution Measurements in Rocket Engines. International Journal of Thermophysic. 2002, 23(5): 1293~1301
    53 Cong Dacheng, Dai Jingmin, Sun Xiaogang. Design of Mid-infrared Multi-Wavelength Radiation Thermometer. 红外与毫米波学报. 2000, 19(6): 407~412
    54 孙晓刚, 王雪峰, 戴景民. 基于多光谱法的目标真温及光谱发射率自动识别算法研究. 西安交通大学学报. 2001, 35(12): 1275~1278
    55 C.L.Yang, J. M. Dai, Y. Hu. Optimum Identifications of Spectral Emissivity and Temperature for Multi-Wavelength Pyrometry. Chinese Physics Letters. 2003, 20(10): 1685~1688
    56 X. Qing, L. Qin-Huo. Field Measurement Method of Spectral Emissivity and Research on the Feature of Soil Thermal Infrared Emissivity. Journal of Infrared and Millimeter Waves. 2003, 22(5): 373~378
    57 张建奇, 方小平, 红外物理. 西安电子科技大学出版社. 2004: 206~209
    58 E. Lindermeir, V. Tank, P. Haschberger. Contactless Measurement of the Spectral Emissivity and Temperature of Surfaces with a Fourier Transform Infrared Spectrometer. SPIE. 1992, 1682: 354~364
    59 V. Tank, E. Lindermeir, H. Dietl. Calibration of a Fourier Transform Spectrometer Using Three Black Body Sources. SPIE. 1991, 1575: 241~243
    60 V. Tank. Spectrometric Hot Gas Remote Sensing—Investigations onCalibration Errors. Journal of Molecular Structure. 1999, 482: 545~550
    61 W. Bauer, A. Moldenhauer, H. Oertel. Thermal Radiation Properties of Different Metals. SPIE. 2006, 6205: 1~12
    62 H. Oertel, W. Bauer. Facility for the Measurement of Spectral Emissivities of Bright Metals in the Temperature Range from 200 to 1200 °C. High Temp.-High Press. 1998, 30(5): 531~536
    63 W. Bauer, M. Rink, K. Smit. Determination of Spectral and Total Emissivities of Different New Steel Qualities. SPIE. 2003, 5073: 31~40
    64 W. Bauer, H. Oertel, M. Rink. Spectral Emissivities of Metal Surfaces. SPIE. 2001, 1:301~306
    65 W. Bauer, M. Rink. Device for Spectral Emissivity Measurements of Ceramics Using a FT-IR-Spectrometer. SPIE. 2004, 5532: 340~351
    66 J.R. Markham, K. Kinsella, R.M. Carangelo. A Bench Top FT-IR based Instrument for Simultaneously Measuring Surface Spectral Emittance and Temperature. Rev. Sci. Instrum. 1993, 64(9): 2515-2522
    67 J.R. Markham, W.W. Smith, J.R. Haigis. FT-IR Measurements of Emissivity and Temperature During High Flux Solar Processing. Journal of Solar Energy Engineering, Transactions of the ASME. 1996, 118(1): 20~29
    68 P. Bonzani, J. Elizabeth, H. Florczak. Improvement to a Bench Top Instrument for Measuring Spectral Emittance at High Temperatures. Rev. of Sci. Instr. 2003, 74(6): 3130~3136
    69 N. Ravindra, S. Abedrabbo, Wei Chen. Temperature-Dependent Emissivity of Silicon-Related Materials and Structures. IEEE Transactions on Semiconductor Manufacturing. 1998, 11(1): 30~39
    70 N. Ravindra, S. Abedrabbo, O. Gokce. Radiative Properties of SIMOX. IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part A. 1998, 21(3): 441~449
    71 S. Bharadwaj, F. Modest, R. Riazzi. Medium Resolution Transmission Measurements of Water Vapor at High Temperature. J. Heat Transfer. 2006, 121: 374~381
    72 L. Hanssen, S. Mekhontsev, V. Khromchenko. Infrared Spectral Emissivity Characterization Facility at NIST. SPIE. 2004, 5405: 1~12
    73 L. Hanssen, S. Kaplan. Linearity Characterization of NIST's InfraredSpectral Regular Transmittance and Reflectance Scales. SPIE. 2003, 4826: 21~26
    74 S. Kaplan, L. Hanssen, E. Early. Intercomparison of Regular Spectral Transmittance and Reflectance Measurements with FT-IR and Monochromator-based Spectrophotometers. SPIE. 2000, 4103: 53~61
    75 A. Prpkhprov, L. Hanssen, S. Mekhontsev. Radiation Properties of IR Calibrators with V-Grooved Surfaces. SPIE. 2006, 6205: 1~9
    76 J. Ishii, A. Ono. Fourier Transform Spectrometer for Thermal-Infrared Emissivity Measurements Near Room Temperatures. SPIE. 2000, 4103: 126~132
    77 J. Ishii, A. Ono. Uncertainty Estimation for Emissivity Measurements Near Room Temperature with a Fourier Transforms Spectrometer. Meas. Sci. and Tech. 2001, 12: 2103~2112
    78 D. Yajima, A. Ohnishi, Y. Nagasaka. Simultaneous Measurement Method of Normal Spectral Emissivity and Optical Constants at High Temperatures. The Fifteenth Symposium on Thermophysical Properties. 2003: 22~27
    79 B. Zhang, J. Redgrove, and J. Clark. A Transient Method for Total Emissivity Determination. International Journal Of Thermophysics. 2004, 25(2): 423~438
    80 http://www.npl.co.uk
    81 戴景民, 孙晓刚, 卢小冬. 多光谱辐射测温理论与应用. 高等教育出版社.2002, 4: 1~9
    82 蔡如华, 卢文全, 丁宣浩. 热辐射波长测温法的理论研究. 宇航计测技术. 2003, 23(4): 78~83
    83 田理达, 毕纯辉, 梁斌. 红外光纤式辐射测温技术在发电设备中的应用. 仪器仪器仪表学报. 2003, 22(2): 57~59
    84 邢冀川, 刘广荣, 金伟其, 何玉清. 双波段比色测温方法及其分析. 红外技术. 2002, 24(11): 73~75
    85 周鞠宁, 漆新民, 袁丽华, 高益庆, 朱小进. 红外双色测温的修正方法. 红外技术. 2002, 24(3): 49~54
    86 张继培. 温度计量技术进展近况. 上海计量测试. 2002, 29(1): 4~5
    87 王文革. 辐射测温技术综述. 宇航计测技术. 2005, 25(4): 21~22
    88 戴景民. 辐射测温的发展现状与展望. 自动化技术与应用. 2004, 23(3):2~6
    89 高魁明, 谢植. 红外辐射测温理论与技术. 东北工学院出版社. 1989, 3
    90 谈和平, 夏新林, 刘林华. 红外辐射特性与传输的数值计算: 计算热辐射学. 哈尔滨工业大学传版社. 2006, 10
    91 田裕鹏. 红外检测与诊断技术. 化学工业传版社. 2006
    92 林中范, 世辐. 光谱仪器学. 机械工业传版社. 1989, 10
    93 李全臣, 蒋月娟. 光谱仪器原理. 北京理工大学传版社. 1999
    94 李志刚, 王淑荣, 李福田. 软 X 射线傅里叶变换光谱仪原理及结构特性研究. 仪器仪表学报. 2001, 22(2): 203~206
    95 朱健, 李俊韬, 李鸣. 基于 LED 的透射型傅里叶变换光谱仪的研究. 中山大学学报(自然科学版). 2004, 43(5): 28~34
    96 翁诗甫. 傅里叶变换红外光谱仪. 化学工业传版社. 2005, 7
    97 张宏. 大口见面黑体辐射源及其辐射特性的理论与实验研究. 哈尔滨工业大学博士学位论文. 2006, 10
    98 王汝琳, 王咏涛. 红外检测技术. 化学工业传版社. 2006, 9
    99 张宏, 戴景民. 大口径热管面黑体炉的研制及性能评价. 中国计量学院学报. 2006, 17(2): 95~98
    100 赵旎, 付春仙. 一种基于设定值迁移的模糊温度控制系统. 洛阳工业高等专科学校学报. 2004, 14(3): 15~16
    101 M. Hapke, M. Komosinski, D. Waclawski. Application of Evolutionarily Optimized Fuzzy Controllers for Virtual Robots. Proceedings of the 7th Joint Conference on Information Sciences. 2003: 1605~1608
    102 A. Mandelis, S. Paoloni and L. Nicolaides. Lock-in Common-mode Rejection Demodulation: Measurement Technique and Applications to Thermal-wave Detection: Theoretical. Review of Scientific Instruments. 2000, 71(6): 2445~2459
    103 张宏, 戴景民. 面黑体辐射源温控系统设计与实现. 电机与控制学报. 2006, 10(5): 526~530
    104 J. R. Howell, M. Perlmutter. Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Wall. Journal of Heat Transfer, Trans. ASME, Series C. 1964, 86:116~122
    105 V. I. Saprisky, A. V. Prokhrov. Calculation of the Effective Emissivity of Specular-diffuse Cavities by the Monte Carlo Method. Metrologia. 1992,29:9~14
    106 A. V. Prokhorov, L. M. Hanssen. Effective Emissivity of a Cylindrical Cavity with an Inclined Bottom: I. Isothermal Cavity. Metrologia. 2004, 41: 421~431
    107 H. W. Jensen, N. J. Christensen. Photon Maps In Bidirectional Monte Carlo Ray Tracing Of Complex Objects. Computers and Graphics. 1995, 19(2): 215~224
    108 刘鸿雁, 王一平, 袁兵. 标定红外热像仪的一种新型黑体辐射源. 仪器仪表学报. 2006, 27(5): 533~535
    109 段宇宁, 原遵东, 吴继彧. 温度均匀黑体空腔有效发射率近似计算方法(黑体辐射源研究之一), 现代计量测试. 2000, 4: 3~8
    110 路义萍, 李炳熙, 姜宝成. 等温圆柱型空腔表面辐射传递方向分布特性. 哈尔滨工业大学学报. 2004, 36(6): 714~717
    111 马同泽, 侯琪增. 热管. 科学出版社, 1980: 3~20
    112 李界家, 付萍, 马斌. 模糊神经网络控制在电加热炉温度控制中的应用. 电气自动化. 2004, 26(4): 15~17
    113 丁振良. 误差理论与数据处理. 哈尔滨工业大学出版社. 2002, 5
    114 Y.S. Touloukian, Thermophysical Properties of Matter, Vol. 7: Thermal Radiative Properties, IFI/Plenum, New York, 1970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700