卡维地洛对阿霉素心肌病兔室性心律失常的影响和作用机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察氧化应激对阿霉素心肌病兔电生理参数及电稳定性的影响,探讨二者之间的关系;观察卡维地洛对阿霉素心肌病氧化应激和心室结构的影响,检测肌浆网钙释放通道RyR2表达,探讨心律失常发生的机制。
     方法日本长耳白兔随机分为空白对照组、阿霉素组、阿霉素+倍他乐克组(倍他乐克组)和阿霉素+卡维地洛组(卡维地洛组)。采用耳缘静脉注射阿霉素(lmg.kg-1IV每周两次,共16次)建立阿霉素心肌病模型,空白对照组耳缘静脉注射等量生理盐水。3周后,倍他乐克组和卡维地洛组分别给予倍他乐克(5mg.kg-1.d-1)和卡维地洛(5mg.kg-1.d-1)灌胃,空白对照组和阿霉素组每日以等体积生理盐水灌胃。1)两月后,采用超声心动图观察每组心脏结构的变化,检测兔血清中丙二醛(MDA)、超氧化物岐化酶(SOD)和NT-脑钠肽(NT-proBNP)水平。2)制备兔左室楔形心肌块的灌注模型,同步记录心内、外膜动作电位、容积心电图及跨室壁离散度(TDR),并记录快频率程序刺激条件下触发活动和室性心律失常的发生率。3)采用胶原酶消化法分离单个心肌细胞,应用膜片钳技术记录动作电位(AP),并记录延迟后除极(DADs)和触发活动(TA)的发生率。4)采用Western blotting测定RyR2蛋白表达水平。结果1)与空白对照组比较,阿霉素组左室舒张末径(LVEDd)增大、射血分数(LVEF)降低(P<0.05),血清SOD活性降低、NT-proBNP和MDA浓度升高(P<0.05)。阿霉素组与倍他乐克组LVEDd、LVEF、SOD、NT-proBNP和MDA无显著性变化;与阿霉素组比较,卡维地洛组LVEDd降低、LVEF升高(P<0.05),血清SOD活性增加、NT-proBNP和MDA浓度降低(P<0.05)。2)空白对照组、阿霉素组、倍他乐克组和卡维地洛组触发活动发生率分别为0/10、10/10、9/10和4/10,室性心律失常发生率分别为0/10、9/10、7/10和2/10。与阿霉素组比较,倍他乐克组触发活动和室性心律失常无显著性变化,卡维地洛组触发活动和室性心律失常显著性降低。3)与空白对照组比较,阿霉素组单细胞动作电位时程(APD)延长,RyR2和SERCA2a蛋白的表达水平下降,延迟后除极(DADs)和触发活动(TA)的发生率明显增加;阿霉素组和倍他乐克组APD、RyR2和SERCA2a蛋白的表达水平无明显变化,DADs和TA发生率也无显著性差异;卡维地洛组单细胞APD降低,RyR2蛋白的表达水平增加,DADs和TA的发生率明显降低(P<0.05)。
     结论阿霉素组兔氧化应激增强,心脏结构和功能明显受损;倍他乐克不能降低阿霉素心肌病兔的氧化应激,而卡维地洛能降低其氧化应激,改善心功能;阿霉素心肌病心衰时,氧化应激增强,RyR2功能失调,心肌细胞钙泄漏增加,卡维地洛通过降低氧化应激,改善心肌RyR2功能抑制钙泄漏,从而降低TA和心律失常。
Objections:To investigate the effects of oxidative stress on cardiac structure and electrical stability in rabbits with adriamycin cardiomyopathy, and explore the relationship between oxidative stress and adriamycin cardiomyopathy. To investigate the effects of carvedilol on ventricular arrhythmias and the expression of ryanodine receptors2in rabbits with adriamycin cardiomyopathy and discuss mechanism of ventricular arrhythmias.
     Methods:Japanese white rabbits were randomly divided into four groups:the control group, the adriamycin group, the metoprolol group and the carvedilol group. Rabbits in the adriamycin group, the metoprolol group and the carvedilol group were intravenously injected at auri-edge with adriamycin hydrochloride (1mg.kg-1) twice a week for8weeks, and the control group was injected with equal volumn of saline at the same timepoint.3weeks later, rabbits in the metoprolol group and the carvedilol group were intragastric administration with metoprolol and carvedilol (Smg.kg-1.d-1) respectively, and those in the control group and the adriamycin group were intragastric administration with equal volume of saline.1)2months later, left ventricular end diastolic diameter (LVEDd) and left ventricular ejection fraction (LVEF) were measured by echocardiogram, and plasma levels of amino terminal-pro brain natriuretic peptide (NT-proBNP), superoxide dismutase(SOD) and malondialdehyde(MAD) were measured.2) The wedge preparations from the rabbit heart were perfused with Tyrode's solution, volume electrocardiogram, QT interval, transmural repolarization dispersion (TDR) and the incidences of triggered activity and ventricular arrhythmias were recorded.3) By enzymatic dissociation method single ventricular myocytes were isolated, then ction potentials (APs) were recorded by whole cell patch clamp technique. The incidences of delayed afterdepolarizations (DADs) and triggered activity (TA) were monitored under fast frequency electrical stimulation.4) The ryanodine receptor2and SERCA2a were measured by Western blotting.
     Results1) Compared the control group, adriamycin significantly increased serum MDA, NT-proBNP and LVEDd, and decreased SOD and LVEF.(P<0.05). There was no significant difference in MDA, NT-proBNP, SOD, LVEF and LVEDd between the adriamycin group and the metoprolol group. Carvedilol markedly increased serum MDA and LVEF, decreased SOD, TNP and LVEDd compared with adriamycin group (P<0.05)2) No triggered activity and ventricular arrhythmias was induced in control group. The incidences of triggered activity and ventricular arrhythmias occurred in10/10and9/10rabbits in adriamycin group, in9/10and7/10rabbits in the metoprolol group, and in4/10and2/10rabbits in the carvedilol group respectively. The incidences of triggered activity and ventricular arrhythmias in the adriamycin group were significantly higher than those in the control group. However, the incidences were significantly lower in the carvedilol group when compared with those in the adriamycin group.3) Compared with the control group, single cell action potential duration (APD) was prolonged, RyR2and SERCA2a protein expression were reduced, the incidences of DADs and TA were obviously increased in the adriamycin group (P<0.05). There was no difference of APD, RyR2and SERCA2A protein expression level, and the incidences of DADs and TA between the adriamycin group and the metoprolol group. Compared with the adriamycin group, carvedilol can short APD, increase protein expression level of RyR2and SERCA2a and decrease the incidences of DADs and TA (P<0.05)
     Conclusions:Oxidative stress was increased, and heart structure and function was significantly impaired in the adriamycin group. Carvedilol can improve abnormal cardiac structure and inhibit ventricular arrhythmias in rabbit with adriamycin cardiomyopathy. Carvedilol can inhibit ventricular tachycardia in rabbit with adriamycin cardiomyopathy and protect adriamycin-induced cardiotoxicity through decreasing oxygen free radial production, which is related to dysfunction of RyR2.
引文
1. Chatterjee, K, Zhang, J, Honbo, N, Karliner, J. S. Doxorubicin cardiomyopathy. Cardiology,2010.115(2):p.155-62.
    2. Hiroyuki Tsutsui, M.S.K., MD; Shouji Matsushima, MD, Oxidative Stress and Mitochondrial DNA Damage in Heart Failure. Circ J,2008. Suppl A:p.31-37.
    3. Jean-Christophe Charniot, Noelle Vignat, Jean-Paul Albertini, Vera Bogdanova, Khaled Zerhouni, Jean-Jacques Monsuez, Alain Legrand, Jean-Yves Artigou, and Dominique Bonnefont-Rousselot. Oxidative Stress in Patients with Acute Heart Failure. Rejuvenation Research,2008.11(2):p.393-398.
    4. Mike Seddon, Yee H Looi, Ajay M Shah, Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart,2007.93(8):p.903-907.
    5. Vittorio Calabrese, Cesare Mancuso, Maria Sapienza, Eduardo Puleo,Stella Calafato, Carolin Cornelius, Manuela Finocchiaro, Andrea Mangiameli, Maurizio Di Mauro,Anna Maria Giuffrida Stella,Pietro Castellino. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress & Chaperones 2007.12 (4):p. 299-306.
    6. Douglas P, Zipes MD, Hein J J, Wellens MD. Sudden Cardiac Death. Circulation, 1998.98:p.2334-2351.
    7. Dayue DD. A Leakage Leads to Failure:Roles of Sarcoplasmic Reticulum Ca2+ Leak via RyR2 in Heart Failure Progression. Hypertension,2010.55(4):p.849-851.
    8. Lynda M. Blayney, F. Anthony Lai. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol Ther.,2009 August 123(2):p.151-177.
    9. Zhou Qiang, Xiao, Jianmin Jiang, Dawei Wang, Ruiwu Vembaiyan, Kannan Wang, Aixia Smith, Chris D. Xie, Cuihong Chen, WenqianZhang, Jingqun Tian, Xixi Jones, Peter P. Zhong, Xiaowei Guo, Ang Chen, Haiyan Zhang, Lin Zhu, Weizhong Yang, DongmeiLi, Xiaodong Chen, Ju Gillis, Anne M. Duff, Henry J. Cheng, Heping Feldman, Arthur M. Song, Long-Sheng Fill, Michael Back, Thomas G. Chen, S. R. Wayne. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nature Medicine,2011.17(8):p.1003-1009.
    10. Blayney, Lynda M. Lai, F. Anthony. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacology & Therapeutics,2009.123(2):p.151-177.
    11. Jianmin Xiao, Xixi Tian, Peter P Jones, Jeff Bolstad, Huihui Kong, Ruiwu Wang, Lin Zhang, Henry J. Duff, Anne M. Gillis, Sidney Fleischer, Michael Kotlikoff, Julio A. Copello, S. R. Wayne Chen. Removal of FKBP 12.6 Does Not Alter the Conductance and Activation of the Cardiac Ryanodine Receptor or the Susceptibility to Stress-induced Ventricular Arrhythmias. Journal of Biological Chemistry,2007.282(48):p.34828-34838.
    12. Tsutsui KS, Matsushima S, Oxidative Stress and Heart Failure. Am J Physiol Heart Circ Physiol,2011.301(6):H2181-90
    13. Shoji Fujita MD, Yoshiyuki Ikeda MD, Masaaki Miyata MD, Takuro Shinsato MD, Takuro Kubozono MD, So Kuwahata MD, Narisato Hamada MD, Takahiro Miyauchi MD. Effect of Waon Therapy on Oxidative Stress in Chronic Heart Failure. Circulation Journal,2011.75(2):p.348-356.
    14. Dmitry Terentyev, Inna Gyo"rke, Andriy E. Belevych, Radmila Terentyeva, Arun Sridhar,Yoshinori Nishijima, Esperanza Carcache de Blanco, Savita Khanna, Chandan K. Sen,Arturo J. Cardounel, Cynthia A. Carnes, Sandor Gyo"rke. Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca2+ Leak in Chronic Heart Failure. Circulation Research,2008.103(12):p.1466-1472
    15. DA Eisner, T Kashimura, SC O'Neill, LA Venetucci, AW Trafford. What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis? Journal of Molecular and Cellular Cardiology,2009.46(4):p.474-481.
    1.白永虹,沈兴,余更生,等.兔阿霉素心衰模型的建立[J].重庆医科大学学报,2006.31(6):818-820.
    2.唐健秀,彭志刚.蒽环类药物心脏毒性的研究进展[J].内科,2008.3(5):746-747.
    3.温华知,江洪,鲁志兵,等.美托洛尔和卡维地洛对心肌梗死后交感神经重构和电重构的影响[J].中国心脏起搏与心电生理杂志,2006.20(4):337-340.
    4.陈国雄,卜军,张存泰,等.β受体阻滞剂对动脉粥样硬化兔体内氧化应激的影响[J].临床心血管病杂志,2007 23(12):935-938.
    5. Yan G X, Rial S J, Wu Y, et al. Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization[J]. Am J Physiol Heart Circ Physiol,2001.281(5):H1968-1975.
    6.阮磊,张存泰,全小庆,等.短QT间期综合征发生室性心律失常机制探讨[J].临床心血管病杂志,2009,25(10):773-778.
    7. Duan D D. A Leakage Leads to Failure:Roles of Sarcoplasmic Reticulum Ca2+ Leak via RyR2 in Heart Failure Progression[J]. Hypertension,2010.55(4):849-851.
    8. Chaiswing L, Cole M P, St Clair D K, et al. Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury [J]. Toxicol Pathol,2004. 32(5):536-547
    9.唐泽耀,陈游洲,付雷,等.缬沙坦对家兔梗死心肌MDA、SOD、ATPase活性的影响[J].现代生物医学进展,2009.9(13):2508-2511.
    10.胥晓丽,臧伟进.卡维地洛对阿霉素诱导的CHF大鼠血流动力学的影响[J].现代医药卫生,2008.24(11):1583-1584.
    11.杨辉,吴伟康.阿霉素性心力衰竭模型与氧化应激[J].医学动物防制,2004.20(11):655-657.
    12.刘洪智,高传玉,曹林生,等.定量组织速度成像技术评价阿霉素性心肌病模型 大鼠心功能的价值激[J].中国组织工程研究与临床康复,2007.40(11):8086-8089.
    13. Santos, D L, Moreno, A J, Leino, R L, et al. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy[J]. Toxicol Appl Pharmacol,2002. 185(3):218-27.
    14. Che F, Liu Y, Xu C. Prevention and treatment of doxorubicin-induced cardiotoxicity by dexrazoxane and schisandrin B in rabbits. [J]. Int J Toxicol.2011 Dec;30(6):681-9.
    15. Guangsheng DU, Jiagao LV, Li HE, Yexin MA. Influence of Silencing Soluble Epoxide Hydrolase with RNA Interference on Cardiomyocytes Apoptosis Induced By Doxorubicin. Journal of Huazhong University of Science and Technology,2011.31(3): p.324-328.
    16. Chatterjee K, Zhang J, Honbo N, et al. Doxorubicin cardiomyopathy[J]. Cardiology, 2010.115(2):155-162.
    17.吴卉卉,张琰,陈敏,等.扩张型心肌病大鼠心肌结构与心功能变化的实验研究[J].中华实用诊断与治疗杂志,2009.23(3):247-249.
    18. Liu TC, Ismail S, Brennan O, et al. Encapsulation of cardiac stem cells in superoxide dismutase-loaded alginate prevents doxorubicin-mediated toxicity [J]. J Tissue Eng Regen Med.2011.30.523
    19. Zhou Q, Jianmin X, Dawei J, et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca+ release[J]. Nature Medicine,2011.17(8): 1003-1009.
    20. DiNicolantonio JJ, Hackam DG. Carvedilol:a third-generation P-blocker should be a first-choice β-blocker. [J]. Expert Rev Cardiovasc Ther.2012 Jan; 10(1):13-25.
    1.唐健秀,彭志刚.蒽环类药物心脏毒性的研究进展[J].内科,2008,3(5):746.
    2. Guangsheng DU, Jiagao LV, Li HE, Yexin MA. Influence of Silencing Soluble Epoxide Hydrolase with RNA Interference on Cardiomyocytes Apoptosis Induced By Doxorubicin. Journal of Huazhong University of Science and Technology,2011.31(3): p.324-328.
    3. Mike Seddon, Yee H Looi, Ajay M Shah. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart,2007.93(8):p.903-907.
    4. Yano M, Yamamoto T, Kobayashi S, Matsuzaki M. Role of ryanodine receptor as a Ca2(+) regulatory center in normal and failing hearts. J Cardiol.2009 Feb;53(1):1-7. Epub 2008 Dec 10.
    5. Jianmin Xiao, Xixi Tian, Peter P Jones, et, al. Removal of FKBP 12.6 Does Not Alter the Conductance and Activation of the Cardiac Ryanodine Receptor or the Susceptibility to Stress-induced Ventricular Arrhythmias. Journal of Biological Chemistry,2007.282(48):p.34828-34838.
    6. Dmitry Terentyev, Inna Gyo"rke, Andriy E. et, al. Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca2+ Leak in Chronic Heart Failure. Circulation Research,2008.103(12):p.1466-1472
    7. Blayney L.M, Lai F.A. Ryanodine receptor-mediated arrhythmias and sudden cardiac death[J]. Pharmacology & Therapeutics,2009.123(2):151.
    8. Tao G, Tong Z, Ruben M, et al. Ca2+/Calmodulin-Dependent Protein Kinase Ⅱ Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes[J]. Circulation Research,2006.99(4):398.
    9. Blayney L. M, Jone L.J, Griffiths J, et al. A mechanism of ryanodine receptor modulation by FKBP 12/12.6, protein kinase A, and K201 [J]. Cardiovascular Research, 2010,85:68.
    10. Antoons, G, Sipido K. R. Targeting calcium handling in arrhythmias[J]. Europace,2008, 10(12):1364.
    11. Kushnir, A, Marks, A R. The Ryanodine Receptor in Cardiac Physiology and DiseasefJ]. Adv Pharmacol,2010,59:1.
    12.温华知,江洪,鲁志兵,等.美托洛尔和卡维地洛对心肌梗死后交感神经重构和电重构的影响[J].中国心脏起搏与心电生理杂志,2006.20(4):337.
    13.白永虹,沈兴,余更生,等.兔阿霉素心衰模型的建立[J].重庆医科大学学报,2006.31(6):818.
    14.柯俊,张存泰,马业新,等.钙调蛋白激酶Ⅱ抑制剂对心肌肥厚兔室性心律失常的影响[J].中华心血管病杂志,2007,35(1):33.
    15.任勇,张存泰,吴杰,等.抗心律失常肽对陈旧性心肌梗死兔室性心律失常的影响[J].中华心血管病杂志,2006,34(9):825.
    16.阮磊,张存泰,全小庆,等.钙调蛋白激酶Ⅱ和蛋白激酶A信号转导通路在儿茶酚胺敏感性室性心动过速中的作用[J].华中科技大学学报(医学版),2011,40(3):260.
    17.阮磊,张存泰,全小庆,等.短QT间期综合征发生室性心律失常机制探讨[J].临床心血管病杂志,2009,25(10):773.
    18.全小庆,张存泰,吕家高,等.兔左室楔形心肌组织块对药物致心律失常作用评估的价值[J].中国心脏起搏与心电生理杂志,2008,22(6):527.
    19. Zhou Q, Jianmin X, Dawei J, et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release[J]. Nature Medicine,2011.17(8): 1003..
    20.李荣,易岂建,钱永如,等.卡维地洛对心力衰竭时兰尼碱受体的作用[J].中华儿科杂志,2005,43(8):603.
    1. Yano M, Yamamoto T, Kobayashi S, Matsuzaki M. Role of ryanodine receptor as a Ca2(+) regulatory center in normal and failing hearts. J Cardiol.2009 Feb;53(1):1-7. Epub 2008 Dec 10.
    2. Curran J, Brown KH, Santiago DJ, Pogwizd S, Bers DM, Spontaneous Ca waves in ventricular myocytes from failing hearts depend on Ca2+-calmodulin-dependent protein kinase Ⅱ. J Mol Cell Cardiol.2010 Jul;49(1):25-32. Epub 2010 Mar 29.
    3. Zima AV, Bovo E, Bers DM, Blatter LA. Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol.2010 Dec 1;588(Pt 23):4743-57.
    4. Dulhunty AF, Casarotto MG, Beard NA. The ryanodine receptor:a pivotal Ca+ regulatory protein and potential therapeutic drug target. Curr Drug Targets.2011 May;12(5):709-23.
    5. Blayney L.M, Lai F.A. Ryanodine receptor-mediated arrhythmias and sudden cardiac death[J]. Pharmacology & Therapeutics,2009.123(2):151-177..
    6. Dmitry Terentyev, Inna Gyo'rke, Andriy E. et, al. Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca2+ Leak in Chronic Heart Failure. Circulation Research,2008.103(12):p.1466-1472
    7. Crossman DJ, Ruygrok PN, Soeller C, Cannell MB. Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One.2011 Mar 9;6(3):e17901.
    8. Tao G, Tong Z, Ruben M, et al. Ca2+/Calmodulin-Dependent Protein Kinase Ⅱ Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes[J]. Circulation Research,2006.99(4):398.
    9. Kushnir, A, Marks, A R. The Ryanodine Receptor in Cardiac Physiology and Disease[J]. Adv Pharmacol,2010,59:1.
    10. Antoons, G, Sipido K. R. Targeting calcium handling in arrhythmias[J]. Europace,2008, 10(12):1364.
    11.白永虹,沈兴,余更生,等.兔阿霉素心衰模型的建立[J].重庆医科大学学报,2006.31(6):818.
    12.温华知,江洪,鲁志兵,等.美托洛尔和卡维地洛对心肌梗死后交感神经重构和电重构的影响[J].中国心脏起搏与心电生理杂志,2006.20(4):337.
    13.蔡少艾,刘念,张存泰,等.钙调蛋白激酶Ⅱ信号转导路径在儿茶酚胺敏感性室性心动过速中的作用[J].中国心脏起搏与心电生理杂志,2009,23(4):334
    14.柯俊,张存泰,马业新,等.钙调蛋白激酶Ⅱ抑制剂抗肥厚心肌室性心律失常发生机制的研究[J].华中科技大学学报(医学版),2007,36(2):183
    15. Blayney L. M, Jone L J, Griffiths J, et al. A mechanism of ryanodine receptor modulation by FKBP12/12.6, protein kinase A, and K201[J]. Cardiovascular Research, 2010,85:68.
    16. Jianmin Xiao, Xixi Tian, Peter P Jones, et, al. Removal of FKBP 12.6 Does Not Alter the Conductance and Activation of the Cardiac Ryanodine Receptor or the Susceptibility to Stress-induced Ventricular Arrhythmias. Journal of Biological Chemistry,2007.282(48):p.34828-34838.
    17. Liu Y, Huang H, Xia W, Tang Y, Li H, Huang C. NADPH oxidase inhibition ameliorates cardiac dysfunction in rabbits with heart failure. Mol Cell Biochem.2010 Oct;343(1-2):143-53. Epub 2010 Jun 22.
    18. Zou C, Liu Z, Qu F, Lu W, Han L, Song J, Jiang B, Yang X. Simvastatin prevents decreased SERCA2a activity in non-ischemic heart failure in rabbits via inhibition of β-adrenergic signaling. Biomed Pharmacother.2010 Oct 13
    1. George CH, Sorathia R, Bertrand BM, Lai FA. Anthony LAI, et al. In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6. Biochem. J,2003. 370:p.579-589.
    2. Jones JL, Reynolds DF, Lai FA, Blayney LM, et al. Ryanodine receptor binding to FKBP12 is modulated by channel activation state. Journal of Cell Science,2005. 118(20):p.4613-4619.
    3. Bers, D M. Cardiac ryanodine receptor phosphorylation:target sites and functional consequences. Biochemical Journal,2006.396(1):p. el.
    4. Cerrone M, Noujaim SF, Tolkacheva EG, Talkachou A, et al. Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. Circ Res,2007 101(10):p.1039-1048.
    5. Gyorke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovascular Research,2007.77(2): p.245-255.
    6. Altamirano, J, Bers D M. Voltage Dependence of Cardiac Excitation Contraction Coupling:Unitary Ca2+Current Amplitude and Open Channel Probability. Circulation Research,2007.101(6):p.590-597.
    7. Brette F, Salle L, Orchard CH. Differential Modulation of L-type Ca2+ Current by SR Ca2+ Release at the T-Tubules and Surface Membrane of Rat Ventricular Myocytes. Circulation Research,2004.95(1):p. e1-e7.
    8. Williams GS, Smith GD, Sobie EA, Jafri MS, et al. Models of cardiac excitation-contraction coupling in ventricular myocytes. Mathematical Biosciences, 2010.226(1):p.1-15.
    9. Balasubramaniam R, Chawla S, Grace AA, Huang CL, et al. Caffeine-induced arrhythmias in murine hearts parallel changes in cellular Ca2+ homeostasis. Am J Physiol Heart Circ Physiol 2005.289:p. H1584-H1593.
    10. Izu LT, Means SA, Shadid JN, Chen-Izu Y, Balke CW. et al. Interplay of Ryanodine Receptor Distribution and Calcium Dynamics. Biophysical Journal,2006.91(1):p. 95-112.
    11. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, et al. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest.2008 Jun;118(6):2230-45.
    12. Choi G, Kopplin LJ, Tester DJ, Will ML, et al. Spectrum and Frequency of Cardiac Channel Defects in Swimming-Triggered Arrhythmia Syndromes. Circulation,2004. 110(15):p.2119-2124.
    13. Krishna A, Sun L, Valderrabano M, Palade PT, et al. Modeling CICR in rat ventricular myocytes:voltage clamp studies. Theoretical Biology and Medical Modelling,2010. 7(1):p.43.
    14. van Oort RJ, McCauley MD, Dixit SS, Pereira L, et al. Ryanodine Receptor Phosphorylation by Calcium/Calmodulin-Dependent Protein Kinase II Promotes Life-Threatening Ventricular Arrhythmias in Mice With Heart Failure. Circulation, 2010.122(25):p.2669-2679.
    15. Bare DJ, Kettlun CS, Liang M, Bers DM, et al. Cardiac Type 2 Inositol 1,4,5-Trisphosphate Receptor:INTERACTION AND MODULATION BY CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II. Journal of Biological Chemistry,2005.280(16):p.15912-15920.
    16. Carter S, Colyer J, Sitsapesan R. Maximum Phosphorylation of the Cardiac Ryanodine Receptor at Serine-2809 by Protein Kinase A Produces Unique Modifications to Channel Gating and Conductance Not Observed at Lower Levels of Phosphorylation. Circulation Research,2006.98(12):p.1506-1513.
    17. Chen-Izu Y, Ward CW, Stark W Jr, Banyasz T,et al. Phosphorylation of RyR2 and shortening of RyR2 cluster spacing in spontaneously hypertensive rat with heart failure. Am J Physiol Heart Circ Physiol 2007.293:p. H2409-H2417.
    18. Kirchhefer U, Baba HA, Boknik P, Breeden KM, et al. Enhanced cardiac function in mice overexpressing protein phosphatase Inhibitor-2. Cardiovascular Research,2005. 68(1):p.98-108.
    19. Xiao B, Sutherland C, Walsh MP, Chen SR. Protein Kinase A Phosphorylation at Serine-2808 of the Cardiac Ca2+-Release Channel (Ryanodine Receptor) Does Not Dissociate 12.6-kDa FK506-Binding Protein (FKBP12.6). Circulation Research,2004. 94(4):p.487-495.
    20. Xiao B, Zhong G, Obayashi M, Yang D, et al. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon P-adrenergic stimulation in normal and failing hearts. Biochemical Journal,2006.396(1):p.7.
    21. Ai X, Curran JW, Shannon TR, Bers DM. Ca2+/Calmodulin-Dependent Protein Kinase Modulates Cardiac Ryanodine Receptor Phosphorylation and Sarcoplasmic Reticulum Ca2+Leak in Heart Failure. Circulation Research,2005.97(12):p.1314-1322.
    22. Sag CM,Wadsack DP, Khabbazzadeh S, et al. Calcium/Calmodulin-Dependent Protein Kinase II Contributes to Cardiac Arrhythmogenesis in Heart Failure. Circulation:Heart Failure,2009.2(6):p.664-675.
    23. Kushnir A, Shan J, Betzenhauser MJ, et al. Role of CaMKIIS phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure.2010. 107(22):p.10274-10279.
    24. Diaz ME, O'Neill SC, Eisner DA. Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans. Circulation Research,2004.94(5):p. 650-656.
    25. Song L, Alcalai R, Arad M, et al. Calsequestrin 2 (CASQ2) mutations increase expression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia. Journal of Clinical Investigation,2007.117(7):p. 1814-1823.
    26.Ferrero P, Said M,Sanchez G.Ca2+/calmodulin kinase Ⅱ increases ryanodine binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during β-adrenergic stimulation.J Mol Cell Cardiol,200743(3):p.281-291.
    27.Wong CH,Koo SH,She GQ,et al.Genetic variability of RyR2 and CASQ2 genes in an Asian population.Forensic Science International,2009.192(1-3):p.53-55.
    28.Gergs U,Boknik P,Buchwalow I.Overexpression of the Catalytic Subunit of Protein Phosphatase 2A Impairs Cardiac Function.Journal of Biological Chemistry,2004. 279(39):p.40827=40834.
    29.El-Armouche A,Pamminger T,Ditz D,et al.Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts.Cardiovascular Research,2004.61(1):p.87-93.
    30.Kuster GM,Lancel S,Zhang J,et al.RedoX-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum ca2+ depletion in cardiac myocytes.Free Radical Biology and Medicine,2010.48(9):p.1182-1187.
    31.Beard NA,Casarotto MG,Wei L,et al.Regulation of Ryanodine Receptors by Calsequestrin:Effect of High Luminal Ca2+ and Phosphorylation.Biophysical Journal, 2005.88(5):p.3444-3454.
    32.Gomez AM,Schuster I,Fauconnier J,et al.FKBP 12.6 overexpression decreases ca2+ spark amplitude but enhances[Ca2+]i transient in rat cardiac myocytes.AJP:Heart and Circulatory Physiology,2004.287(5):p.H 1987-H1993.
    33.Fan J,Yu Z.A univariate model of calcium release in the dyadic cleft of cardiac myocytes.2009:p.4499-4503.
    34.Jiang D,Wang R,Xiao B,et al.Enhanced Store Overload-Induced Ca2+ Release and Channel Sensitivity to Luminal Ca2+ Activation Are Common Defects of RyR2 Mutations Linked to Ventricular Tachycardia and Sudden Death.Circulation Research, 2005.97(11):p.1173-1181.
    35. Doi M, Yano M, Kobayashi S, et al. Propranolol Prevents the Development of Heart Failure by Restoring FKBP12.6-Mediated Stabilization of Ryanodine Receptor. Circulation,2002.105(11):p.1374-1379.
    36. Inoue M, Bridge JH. Ca2+ Sparks in Rabbit Ventricular Myocytes Evoked by Action Potentials:Involvement of Clusters of L-Type Ca2+ Channels. Circulation Research, 2003.92(5):p.532-538.
    37. Kobayashi S, Bannister ML, Gangopadhyay JP, et al. Dantrolene Stabilizes Domain Interactions within the Ryanodine Receptor. Journal of Biological Chemistry,2005. 280(8):p.6580-6587.
    38. Marina Cerrone, BC, Massimo Santoro, et al. Bidirectional Ventricular Tachycardia and Fibrillation Elicited in a Knock-In Mouse Model Carrier of a Mutation in the Cardiac Ryanodine Receptor. Circulation Research,2005.96(10):p. e77-e82.
    39. Lehnart SE, Wehrens XH, Laitinen PJ, Reiken SR, et al. Sudden Death in Familial Polymorphic Ventricular Tachycardia Associated With Calcium Release Channel (Ryanodine Receptor) Leak. Circulation,2004.109(25):p.3208-3214.
    40. Katz G, Arad M, Eldar M. Catecholaminergic Polymorphic Ventricular Tachycardia from Bedside to Bench and Beyond. Current Problems in Cardiology,2009.34(1):p. 9-43.
    41. Committees, C.I.a. A Randomized Trial of/-Blockade in Heart Failure The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation,1994.90:p.1765-1773.
    42. Balijepalli RC, Lokuta AJ, Maertz NA, et al. Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovascular Research,2003.59(1):p.67-77.
    43. Bers DM, Eisner DA, Valdivia HH, et al. Sarcoplasmic Reticulum Ca2+ and Heart Failure:Roles of Diastolic Leak and Ca2+ Transport. Circulation Research,2003.93(6): p.487-490.
    44. George CH, Jundi H, Walters N, Anthony Lai, et al. Arrhythmogenic Mutation-Linked Defects in Ryanodine Receptor Autoregulation Reveal a Novel Mechanism of Ca2+ Release Channel Dysfunction. Circulation Research,2005.98:p.88-97.
    45. George CH, Jundi H, Walters N, Thomas NL, et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol,2003.284:p. H1035-H1042.
    46. Vittorini S, Storti S, Parri MS, et al. SERCA2a, Phospholamban, Sarcolipin, and Ryanodine Receptors Gene Expression in Children with Congenital Heart Defects. Molecular Medicine,2007.13(1-2):p.1.
    47. Fauconnier J, Lacampagne A, Rauzier JM, et al. Ca-dependent reduction of I in rat ventricular cells:A novel paradigm for arrhythmia in heart failure? Cardiovascular Research,2005.68(2):p.204-212.
    48. Giordano, F.J. Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation,2005.115(3):p.500-508.
    49. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-Resynchronization Therapy with or without an Implantable Defibrillator in Advanced Chronic Heart Failure. N Engl J Med, 2004.350(21):p.2140-50.
    50. Liu N, Ruan Y, Denegri M, et al. Calmodulin kinase II inhibition prevents arrhythmias in RyR2R4496C+/-mice with catecholaminergic polymorphic ventricular tachycardia. Journal of Molecular and Cellular Cardiology,2011.50(1):p.214-222.
    51. Zhang T, Guo T, Mishra S, et al. Phospholamban Ablation Rescues Sarcoplasmic Reticulum Ca2+ Handling but Exacerbates Cardiac Dysfunction in CaMKII C Transgenic Mice. Circulation Research,2009.106(2):p.354-362.
    52. Zhang T, Guo T, Mishra S, et al. Kinetics of FKBP12.6 Binding to Ryanodine Receptors in Permeabilized Cardiac Myocytes and Effects on Ca Sparks. Circulation Research,2010.106(11):p.1743-1752.
    53. Belevych A, Kubalova Z, Terentyev D, et al. Enhanced Ryanodine Receptor-Mediated Calcium Leak Determines Reduced Sarcoplasmic Reticulum Calcium Content in Chronic Canine Heart Failure☆. Biophysical Journal,2007.93(11):p.4083-4092.
    54. Zissimopoulos S, Docrat N, Lai FA. Redox Sensitivity of the Ryanodine Receptor Interaction with FK506-binding Protein. Journal of Biological Chemistry,2006. 282(10):p.6976-6983.
    55. Ziolo MT, Katoh H, Bers DM, et al. Expression of Inducible Nitric Oxide Synthase Depresses -Adrenergic-Stimulated Calcium Release From the Sarcoplasmic Reticulum in Intact Ventricular Myocytes. Circulation,2001.104(24):p.2961-2966.
    56. Cheng Y, George I, Yi GH, Reiken S, et al. Bradycardic Therapy Improves Left Ventricular Function and Remodeling in Dogs with Coronary Embolization-Induced Chronic Heart Failure. Journal of Pharmacology and Experimental Therapeutics,2007. 321(2):p.469-476.
    57. Kannankeril PJ, Mitchell BM, Goonasekera SA, et al. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proceedings of the National Academy of Sciences,2006.103(32):p. 12179-12184.
    58. Knollmann BC, Chopra N, Hlaing T, Akin B, et al. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+release, and catecholaminergic polymorphic ventricular tachycardia. Journal of Clinical Investigation,2006.
    59. Iyer V, Hajjar RJ, Armoundas AA, et al. Mechanisms of Abnormal Calcium Homeostasis in Mutations Responsible for Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research,2007.100(2):p. e22-e31.
    60. Faber GM, Rudy Y. Calsequestrin Mutation and Catecholaminergic Polymorphic Ventricular Tachycardia:A Simulation Study of Cellular Mechanism. Cardiovasc Res, 2007.75(1):p.79-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700