纳米TiO_2光催化剂的掺杂及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti02光催化材料由于具备活性高、价格低廉、性质稳定等特性已经成为21世纪在环境净化、水体处理等方面开发应用比较有价值的材料。但是具有较高活性的锐钛矿晶型二氧化钛的禁带宽度约为3.2eV,使得活性二氧化钛在实际中的应用受到了很大限制。另外,由于合成的二氧化钛被光激发所产生的电子和空穴的高重新复合率,使得其对污染物质的光催化效率不高(量子产率低下)。提高Ti02的光催化效率及光响应范围的方法及手段很多,主要有半导体复合、染料敏化、贵金属沉积、离子掺杂和双元素共掺杂。由此,本论文通过不同的方法合成不同掺杂二氧化钛光催化材料,以一些分析手段来评价掺杂二氧化钛的物理化学性质。具体研究内容和结果如下:
     (1)以钛醇盐的水解法和溶胶-凝胶法合成纯二氧化钛和掺杂二氧化钛,且研究加水量对凝胶形成的影响。通过正交实验的方法研究了加水量对钛醇盐水解及形成凝胶的影响,确定了凝胶-凝胶法合成纳米Ti02光催化材料的最优配比为:M钛酸丁酯:M无水乙醇:M冰醋酸:M去离子水=1:18:2:3.5(摩尔比),并以同样的方法确定了钛酸丁酯的水解条件。
     (2)利用钛醇盐的水解法制备了一系列Nd和I掺杂Ti02光催化材料,Nd和I掺杂二氧化钛光催化材料的物理性质通过X射线衍射(XRD)、紫外-可见(UV-vis)漫反射、扫描电镜(SEM)和X射线能谱(EDS)分析,在合成过程中考虑了Nd和I掺杂比例和煅烧温度对二氧化钛光催化活性的影响;以亚甲基蓝(MB)和牛血清白蛋白(BSA)考察合成掺杂二氧化钛的光催化活性,以大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)为考察对象考察所制备光催化材料的抗菌性能。结果表明,Nd掺杂能够阻止Ti02晶粒生长,并使Ti02在可见光区有几个很强的吸收峰谱(528、587 683、750、808、881 nm),这主要是由于Nd的4f电子结构所引起的。I掺杂可以极大的扩展TiO2在可见光区的响应,通过Nd和I共掺杂可以使掺杂Ti02在可见光区的能带最小扩展到2.82ev(MNd:MI:MTi=5:10:100(摩尔比))。在300W碘钨灯下对MB光催化降解和对BSA损伤有最高光催化活性掺杂Ti02掺杂比例为MNd:MI:MTi=5:10:100(摩尔比),其对MB的降解速率为3.86×10-2min-1约是纯TiO2(2.28×10-3min-1)的17倍;最佳掺杂比例材料的抗菌性主要是通过破坏E.coli和S.aureus的表面细胞膜而杀死E.coli和S.aureus.
     (3)利用溶胶-凝胶法制备一系列Nd和F掺杂Ti02光催化材料,Nd和F掺杂二氧化钛光催化材料的性质表征与(2)中所用方法一致,在合成过程中考虑了Nd和F掺杂比例和煅烧温度对二氧化钛光催化活性的影响;以亚甲基蓝(MB)考察合成掺杂二氧化钛分别在紫外光和可见光下的光催化活性。结果表明,Nd掺杂在Ti02中所起的作用与(2)中一样;F掺杂可以使TiO2晶型生长和结晶完整,且可以使Ti02吸收带隙红移和增强其在紫外光区的吸收,其中TiF5Nd0.5发生了最大红移,通过计算其能带为2.91eV。在紫外光激发下,对MB的光催化降解速率最高的材料为TiF5Nd0.5,其降解反应速率常数约为纯Ti02的1.76倍;在可见光激发下,对MB的光催化降解速率最高的材料同样为TiF5Nd0.5,其降解反应速率常数约为纯Ti02的1.45倍。
Because of high activity, low prices and stable of TiO2 photocatalytic material, it has become more valuable materials in the 21st century. It can be applicated in the purification, water treatment and other aspects in our environment. But the band gap of titanium dioxide is about 3.2eV, this result the practical application of it has been greatly restricted. In addition, titanium dioxide could produce electron and hole by excitate of light, but the recombination rate of electron and hole are very high which decreased the photocatalytic efficiency to pollutants (the low rate of quantum yield). Many methods can improve the photocatalytic efficiency such as semiconductor compound, dye sensitization, noble metal deposition, ion doping and double element doping, thus, we synthesized different doped titanium dioxide photocatalyst by different methods in our study. At the same time, we evaluate the physical and chemical properties of doping titanium dioxide. The specific contents and results are as follows:
     (1) pure titanium dioxide and doped titanium dioxide are synthesis by Hydrolysis of titanium alkoxide and sol-gel method; Moreover, we also study the relation between the amount of water and the gel formation time. The amount of water on the titanium alkoxide solution and the formation of the gel were study by orthogonal experimental method. The optimal ratio of nano-TiO2 photocatalyst was determined by sol-gel synthesis, and the result is that Mn-butyl titanate:Methanol:Macetic acid:Mdeionized water= 1:18:2:3.5 (molar ratio). Meanwhile, the hydrolysis of butyl titanate was determined by the same method.
     (2) A series of Nd and I doped TiO2 photocatalyst were synthesized by the hydrolysis of titanium alkoxide. The characteristics of neodymium and iodine doped TiO2 were evaluated by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, scanning electronic microscope (SEM) and Energy Dispersive X-Ray Spectroscop-y (EDS). In the synthesis process, Nd:I:TiO2 with different doping content (molar ratios) calcined at different temperature was designed. The photocatalysis activity was evaluated by methylene blue (MB) and bovine serum albumin (BSA), and the mold resistance was evaluated by colibacillus (E.coli) and Staphylococcus aureus (S.aureu- s). The results show that Nd doped TiO2 can prevent the growth of it, and has intense absorption at 528,587,683,750,808, and 881 nm, this phenomenon mainly due to the 4f electron structure of Nd. I doping can extended the response vastly of TiO2 in visible region, Nd and I co-doped TiO2 can extend the band of TiO2 to 2.82 eV (MNd:MI:MTi=5:10:100 (Molar ratio)). MNd:MI:MTi=5:10:100 (molar ratio) has highest photocatalysis activity by photocatalytic degrade MB and BSA in 300 W tungsten, and the degradation rate of MB (3.86×10-2 min-1) is about 17 times compared to pure TiO2 (2.28×10-3 min-1). The mold resistance of optimum photo-catalyst could kill E.coli and S.aureus through damaging their outer membrane (even deteriorated completely) by their radiation of light.
     (3) A series of Nd and F doped TiO2 photocatalyst were synthesized by the sol-gel method. The characteristics of neodymium and fluorine doped TiO2 were evaluated by the same method with the above (2). In the synthesis process, Nd:F:TiO2 with different doping content (molar ratios) calcined at different temperature was designed. The photocatalysis activity was investigated by methylene blue (MB) under ultraviolet and visible light, respectively. The results show that Nd doping has the same effect with the above (2). F doping can makes crystal growth and crystallization complete of TiO2, and it also can make the band gap red shift of TiO2. TiF5Nd0.5 has the maximum redshift, and it band gap was calculated about 2.91 eV. In the UV-irradiation, TiF5Ndo.5 has the highest photocatalytic degradation rate to MB, and it degradation reaction rate constant was about 1.76 times than pure TiO2; in the visible light motivate, TiF5Nd0.5 also has the highest photocatalytic degradation rate to MB, and it degradation reaction rate constant was about 1.45 times than pure TiO2.
引文
[1]李芳柏,古国榜,柏中文,等.纳米Ti02晶体的制备及光催化性能[J].华南理工大学学报(自然科学版),1999,27(12):38-42.
    [2]Keshmiri M, Mohseni M, Troczynski T, et al. Development of TiO2 sol-gel-derived compoite and its photocatalytic activities for trichloroethylene oxidation[J]. Applied Catalysis B: Envirome- ntal,2004,53:209-219.
    [3]解宪英.纳米级Ti02的制备及其应用进展[J].上海化工,2001,3:372-381.
    [4]岳林海,水淼,徐铸德,等.稀土掺杂Ti02的相变和光催化活性[J].浙江大学学报(理学版),2000,27(1):69-74.
    [5]Moserj, Punchihewas, Pierrep, et al. Surface complexation of colloidal semiconductors stron gly enhances interfacial electron-transfer rates[J]. Langmuir,1991,7(12):3012-3018.
    [6]Li XW. Surface Modification of TiO2 Nanoparticles by Polyani line[J]. Applied Surface Science,2003, (217):16-22.
    [7]林玉兰.钛酸酯偶联剂对包硅铝钛白粉表面的有机改性[J].物理化学报,2001,17(2):169-172.
    [8]曹茂盛,关长斌,徐甲强,等.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001,6-13.
    [9]余家国,熊建锋,程蓓.高活性Ti02光催化剂的低温水热合成[J].催化学报,2005,26(9):745-749.
    [10]范林.纳米Ti02(钛白粉)粉体制备及应用[J].中国粉体工业,2006,2.
    [11]Cho Y M, Cho W Y. Visible light-induced degradation of carbon etrachloride on dye-sensitiz ed TiO2[J]. Environ Sci Technol,2001,35(5):966-970.
    [12]周时凤,洪樟连,王民权.Ti02光催化降解有机污染物机理和影响因素[J].材料学报,2004,18(27):80-82.
    [13]雷闫盈,俞行.均匀沉淀法制备纳米二氧化钛工艺条件研究[J].无机盐工业,2001,33(2):3-5.
    [14]Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air[J]. J Photochem Photo biol A:Chem,1998,116:63-67.
    [15]郭文华,张军剑,李钢.溶胶-凝胶法及其制备纳米Ti02粉体的原理和研究进展[J].中国陶瓷工业,2006,13(5):26-29.
    [16]李俊华.金属离子掺杂的Ti02粉末的制备及其光催化降解甲苯的性能[J].催化学报.2006,6:58-62.
    [17]高恩勤,张莉,杨迈之,等.水热法合成纳米TI02及其在Gratzel电池中的应用[J].物理化学学报,2001,17(2):177-180.
    [18]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J.Photoch Photobio C: Photochem Revi,2000,1(1):1-7.
    [19]徐顺,杨鹏飞,杜宝石,等.掺杂Ti02的光催化性能研究进展[J].化学研究与应用,2003,15(2):146-150.
    [20]Jiagao Yu, Guohong Wang, Bei Cheng, et al. Effects of hydro thermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders[J]. Applied Catalysis B:Environmental,2007,69:171-180.
    [21]Bessekhouad, Y Robert, D Weber, et al. Effect of alkaline-doped TiO2 on photocatalytic efficiency Photochem[J]. Photobiol. A.2004,167(1),49-51.
    [22]Shiojiri Susumu, Hirai Takayuki, Komasawa Isao. Prepaeation and photocatalytic reactions of titanium dioxdeultrafine particles in revese micellar systoles[J]. Journal of Chemical Engineering of Japan,1997,30(1):137-145.
    [23]沈伟韧,赵文宽,贺飞,等.Ti02光催化反应及其在废水中的应用[J],化学进展,1998,10(4):349-361.
    [24]Li D, et al. visible light driven N-F codoped TiO2 Photocatalysts.1:Synthesis by spray pyrolysis and surface characterization[J]. Chemistey of Materials,2005,17(10):2588-2595.
    [25]Schiavello, M. Heterogeneous Photoeatalysis[M]. Wiley Series in Photoscience and Photo engineering. Wiley, chichester,1997,3.
    [26]张喜梅,陈玲,李琳,等.纳米材料制备研究现状及其发展方向[J].现代化工,2000,20(7):13-16.
    [27]Tawkaew, Fujishiro Y, Yin S, et al. Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation[J]. Colloids and surfaces A:physicochemical and Engineering Aspects,2001,179:139-144.
    [28]Vogel R, Hoyer P, Weter H. Quantun-sized PbS, CdS, Ag2S, Sb2B3 and Bi2S3 particles as sensitizers for various nanoporous wide-band gap semiconductors[J]. J. phys. Chem,1994, 98(12):3183-3188.
    [29]Fu X Z, ClarK L A, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2[J]. Environ. Sci. Technol.1996, 30(2):647-653.
    [30]尚华美,王承遇,王继红,等.CdS复合Ti02薄膜的制备及其太阳光光催化性能[J].大连轻工业学院学报,2001,20(3):157-160.
    [31]李芳柏,古国榜,黎永津.WO3/TiO2复合半导体的光催化性能研究[J].环境科学,1999,20:75-78.
    [32]刘平,周廷云,林华香,等.复合TiO2/SnO2光催化剂的耦合效应[J].物理化学学报,2001,7(3):273-277.
    [33]郑晓红,陈立勤,陈日耀,等.a-Fe2O3-Ti02复合晶膜的制备及光催化特性的研究[J].分子催化,2003,17(2):91-95.
    [34]Donia B, Ror A, Gary L, et al. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. Journal of molecular catalysis A:Chemical, 2002,180:193-200.
    [35]Vaclav Stengl, Snejana Bakardjieva, Natallya Murata, et al. Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis[J]. Microporous and Mesoporous Materals,2008,110:370-378.
    [36]Bessekhouad Y, Robert D, Weber J V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photo-catalytic degradation of organic pollution[J]. Journal of photochemistry and photobiology A:chemistry,2004,163:569-580.
    [37]Liu S X, Qu Z P, Han X W, et al. A mechanism for enhanced photocatalytic activity of Silver loaded titanium dioxide[J]. Catalysis Today,2004,93-95:877-884.
    [38]Loddo V, Marci G, Martin C, et al. Preparation and characterisation of TiO2(anatase) support-ed on TiO2(rutile)catalysts employed for 4-nitrophenol photodegradation in aqueous medium and comparison with TiO2(anatase)supported on A12O3[J]. Appl Catal B,1999,20:29-45.
    [39]籍宏伟,马万红,黄应平,等.可见光诱导Ti02光催化的研究进展[J].科学通报,2003,48(21):2199-2204.
    [40]Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutants V:Self-photosensitiz-ed oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J]. J Phys Chem B,1998,102:5845-5851.
    [41]Liu G, Zhao J. Photocatalytical degradation of dye sulforhodamine B:A comparative study of photocatalysis with photo-sensitization[J]. New J Chem,2002,24:411-417.
    [42]Zhang F, Zhao J, Shen T, et al. Photoassisted degradation of dye pollutants Ⅱ:adsorption and degradation kinetics of eosin in TiO2 dispersion under visible light irradiation[J]. Appl Catal B:Environ,1998,15:147-156.
    [43]Sato S. Photoelectro chemical PreParation of Pt/TIO2 catalysis[J]. Journal of Catalysis,1985, 92:1116.
    [44]沈毅,任富建,刘红娟.掺杂Ti02的光催化性能研究[J].稀有金属材料与工程,2006,35(11):1841-1845.
    [45]余家国,赵修建.掺银Ti02复合薄膜的制备和光催化性能的研究[J].稀有金属材料与工程,2000,29:390-393.
    [46]王传义,刘春艳,沈涛.Au/TiO2复合纳米粒子的研究制备与表征[J].科学通报,1998,43(3):268-272.
    [47]Ranjit K T, Varadarajan T K, Viswannathan B. photocatalytic reduction of dinitrogen to alnlnonia over noble-metal-loaded TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry,1996,96:181-185.
    [48]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271.
    [49]阮广福,叶勤.掺氮可见光响应TiO2-xNx光催化薄膜的制备及性能初探[J].暨南大学学报(自然科学版),2007,2:88-91.
    [50]S. Livraghi, A. M. Czoska, M. C. Paganini, et al. Preparation and Spectroseopic Characteriza tion of visible light sensitized N doped TiO2(rutile)[J]. Journal of Solid State Chemistry,2009, 182:160-164.
    [51]Wang J, Yin S, Zhang Q, et al. Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties[J].Chem Lett.2003,32:540-541.
    [52]Ohno T,Mitsui T,Matsumura M.Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chem Lett,2003,32:364-365.
    [53]Luo H, Takata T, Lee Y, et al. Photocatalytic aetivity enhancing for titanium dioxide by co-doping with bromine and chlorine[J]. Chemistry of materials,2004,16(5):846-849.
    [54]Khan S U M, Al-shahry M, lngler J W B. Efficient photo-chemical water splitting by achemically modified n-TiO2[J]. Science,2002,297:2243-2245.
    [55]R. Priya, K. V. Baiju, S. Shukla, et al. Enhanced Solar-Radiation Induced Photocatalytic Activity of Surface-Modified Nanocrystalline Anatase-Titania[J]. Catal Lett,2009,128: 137-143.
    [56]Chio W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-Sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem.1994,98(51):13669-13679.
    [57]Vaclav Stengle, Snejana Bakardjieva, Nataliya Murafa, et al. PreParation and photocatalytic activity of rare earth doped TiO2 nanoparticles[J]. Materials chemistry and physics,2009,114: 217-226.
    [58]An Wu Xu, Yuan Gao, Han Qin Liu, et al. the preparation, characterization, and their photocatalytic activities of rare earth doped TiO2 nanoparticles[J]. Journal of catalysis,2002, 207:151-157.
    [59]闰俊萍,唐子龙,张中太,等.Mg2Ni型储氢合金电极材料研究进展[J].稀有金属材料与工程,2005,34(3):429-432.
    [60]王剑波,张景来,卢寿慈.金属共掺杂对Ti02光催化性能的影响[J].安徽理工大学学报(自然科学版),2004,24(3):61-64.
    [61]Yang p, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis[J]. Mater Lett,2002,57:794-801.
    [62]Wei H, Wu Y, Lun N, et al. Preparation and photocatalysis of TiC>2 nanoparticles co-doped with nitrogen and lanthanum[J]. Mater. Sci.2004,39(4):1305-1308.
    [63]Chang J T, Lai Y F, He J L. Photocatalytic performance of chromium or nitrogen doped arc ion plated-TiO2 films Sur[J]. Coat. Technol.2005,200(5-6):1640-1644
    [64]E. pelizeti, C. Minero. Mechanism of the Photo-oxidative degradation of organic Pollutants over TiO2 Partieles[J]. Electroehimica Acta,1993,38(1):47-55.
    [65]Mohammad, R, R. Sara, H. Saeed, et al. Apatite-coated Ag/AgBr/TiO2 visible-light photo-catalyst for destruction of bacteria[J]. J. Am. Chem. Soc.2007,129,9552-9553.
    [66]AKhtar M K, Yun X O, Pratsinis S E. Vapor synthesis of titania powder by titanium tetrachloride oxidation[J]. Aiche J.1991,37:1561-1570.
    [67]张鹏.纳米二氧化钛抗菌性能研究[D].北京:北京化工大学.2005年.
    [68]W. Chang, Y. L. Wen, Z. Zulkarnain, Baetericidal activity of TiO2 Photocatalyst in aqueous media:towards solar-assisted water disinfection system[J]. Environmental Science and Technology,1994,28:934-938
    [69]Burda C, Lou Y, Chen X, et al. Enhanced Nitrogen Doping in TiO2 Nanoparticles[J]. Nano Lett.2003,3(8),1049-1051.
    [70]Chae S. Y, Park M. K, Lee S. K, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films[J]. Chem. Mater.2003,15(17): 3326-3331.
    [71]黄艳娥,据行松.纳米二氧化钛光催化降解有机污染物的研究进展[J].化工环保,2002,22(1):23-27.
    [72]李小平.纳米Ti02光催化降解水中有机污染物的研究进展[J].功能材料,1999,30(3):242-248.
    [73]Kumar S. Adiabatic Solution Tranmaission in Fibers with LumPed AmPIifiers[J]. Water Envir. Rea,1997,69:1238-1245.
    [74]李田,严煦世,黄伟星.固定模光催化氧化反应器深度净化自来水研究[J].中国给排水,1996,12(3):7-10.
    [75]方晓明,陈焕钦.纳米二氧化钛的液相合成.化工进展,2001,9:17-21.
    [76]Cai R, Hashimoto K, Kubota Y, et al. Induction of cytotoxicity by photoexcited TiO2 particle s[J]. Cancer Res.1992,52(8):2346.
    [77]胡娟,邓建刚,何水样,等.纳米级二氧化钛制备方法的比较研究[J].材料科学与工程,2001,19(4):71-74.
    [78]http://baike.baidu.com/view/292855.htm
    [79]Li J L, Zhu Y, Wu, et al. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft[J]. polymerization Polymer,2006, 47(21):1-7.
    [80]A. F. Wells. Structural Inorganic Chemistry[J]. Clarendon Press:Oxford,1975.
    [81]O. d'Hennezel, O. D. E. Helv. Surface prechlorination of anatase TiO2 for enhanced photocatalytic oxidation of toluene and hexane[J]. Chim. Acta.2001,84(11):3511-3518.
    [82]Wang D, Wang Y, Li X, et al. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by in situ method[J]. Catalysis Communications,2008,9: 1162-1166.
    [83]M. I. Litter, J. A. Navio. Photocatalytic properties of iron-doped titania semiconductors[J]. J. Photochem. Photobiol. A Chem.1996,98:171.
    [84]Choym, Choiwy. Visible light-induced degradation of carbon etrachloride on dye-sensitized TiO2[J]. Environ Sci Technol,2001,35(5):966-970.
    [85]Jimmyc, Yu J G, Howk, et al. effects of F doping on the photocatalytic activity and micro structures of nanocrystalline TiO2 powders[J]. Chem Mater,2002,14:3803-3816.
    [86]Wenyue Su, Yongfan Zhang. Multivalency iodine doped TiO2 preparation, characterization. theoretical studies, and visible-light photocatalysis[J]. J Phys Chem,1994,98(51): 13669-13679.
    [87]S. Tojo, T. Tachikawa, M. Fujitsuka, et al. Iodine-doped TiO2 photocatalysts:correlation between band structure and mechanism[J]. J. Phys. Chem. C,2008,112:14948.
    [88]W. Zhao, W. H. Ma, C. C. Chen, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. J. Am. Chem. Soc.2004,126:4782.
    [89]Z. Q. He, X. Xu, S. Song, et al. A visible light-driven titanium dioxide photocatalyst codoped with lanthanum and iodine:an application in the degradation of oxalic acid[J]. J. Phys. Chem. C,2008,112:16431.
    [90]Zhang Liuxue, Liu Peng, Su Zhixing. Photocatalysis anatase thin film coated PAN fibers prepared at low temperature[J]. Materials Chemistry and Physics,2006,98(1):111-115.
    [91]H. Kato, A. Kudo. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. J. Phys. Chem. B.2002,106(19): 5029-5034.
    [92]Wong C C, Chu W. The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources[J]. Chemosphere,2003,50(8):981-987.
    [93]杨桂芹,李朝晖,王章祥,等.Ti02对牛血清白蛋白的光催化降解的研究.光谱学与光谱分析,2005,125(8):61-66.
    [94]Xiaoting Hong, Zhengpeng Wang, Weimin Cai, et al. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide[J]. Chem. Mater,2005,17 (6):1548-1552.
    [95]K.V. Baiju, P. Periyat, W. Wunderlich, et al. Enhanced photoactivity of neodymium doped mesoporous titania synthesized through aqueous sol-gel method[J]. J Sol-Gel Sci Technol, 2007,43:283-290.
    [96]Andrew Burns, G. Hayes, W. Li, et al. Neodymium ion dopant effects on the phase transfor-mation in sol-gel derived titania nanostructures[J]. Materials Science and Engineering B, 2004,111:150-155.
    [97]Gang Liu, Zhigang Chen, Chunlei Dong, et al. Visible Light Photo- catalyst:Iodine-Doped Mesoporous Titania with a Bicrystalline Framework[J]. J. Phys. Chem. B,2006,110 (42): 20823-20828.
    [98]王君,赵红丹,张朝红,等.二氧化钛催化超声波损伤牛血清白蛋白的研究.无机化学学报,2007,3:439-444.
    [99]G. F. Fu, P. S. Vary, and C. T. Lin. Anatase TiO2 nanocomposites for antimicrobial coatings[J]. J. Phys. Chem. B.2005,109:8889-8898.
    [100]K. Sunada, Y. Kikuchi, K. Hashimoto, et al. Bactericidal and detoxification effect of TiO2 thin film photobiology[J]. Sci. Technol.1998,32:726-728.
    [101]李红.二氧化铁纳米晶的溶胶法低温制备机理及共掺杂研究[M].浙江大学博士学位论文.
    [102]魏凤玉.掺杂纳米Ti02材料的制备及光催化性能研究[M].合肥工业大学博士学位论文.
    [103]徐凌.金属非金属共掺杂Ti02的理论与实验研究[M].华中科技大学博士学位论文.
    [104]Yuhong Zhang, Hailiang Xu, Yongxi Xu. The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution[J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,170:279-285.
    [105]N. Todorova, T. Giannakopoulou, T. Vaimakis, et al. Structure tailoring of fluorine-doped TiO2 nanostructured powders[J]. Materials Science and Engineering B,2008,152:50-54.
    [106]A. M. Czoska, S. Livraghi, M. Chiesa, et al. Nature of Defects in Fluorine-Doped TiO2[J]. J. Phys. Chem. C,2008,112:8951-8956.
    [107]章少华,王建军,胡江峰,等.钕氟复合掺杂二氧化钛纳米线阵列的光催化性能[J].硅酸盐通报,2009,28(5):926-929.
    [108]Shaohong Liu, Xudong Sun, JiGuang Li, et al. Fluorine-and Iron-Modified Hierarchical Anatase Microsphere Photocatalyst for Water Cleaning:Facile Wet Chemical Synthesis and Wave length-Sensitive Photocatalytic Reactivity[J]. Langmuir,2010,26(6):4546-4553.
    [109]Fa-tang Li, Rui-hong Liu, Di-shun Zhao, et al. Preparation and photocatalytic activity of nano-TiO2 codoped with fluorine and ferric[J]. Tran. Nonferrous Met. Soc. China,2007,17: 713-715.
    [110]Ryuhei Nakamura, Akihiro Okamoto, Hitoshi Osawa, et al. Design of All-Inorganic Molecular-Based Photocatalysts Sensitive to Visible Light:Ti(IV)-O-Ce(III) Bimetallic Assemblies on Mesoporous Silica[J]. J. Am. Chem. Soc,2007,129 (31):9596-9597.
    [111]C. Di Valentin, E. Finazzi, G. Pacchioni. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2[J]. Chem. Mater.2008, 20:3706-3714.
    [112]Guangxiu Cao, Yaogang Li, Qinghong Zhang, et al. Synthesis and characterization of La2O3/TiO2-xFx and the visible light photocatalytic oxidation of 4-chlorophenol[J]. Journal of Hazardous Materials,2010,178:440-449.
    [113]Chen Wen, Yu-Jie Zhu, Takaki Kanbara, et al. Effects of I and F codoped TiO2 on the photocatalytic degradation of methylene blue[J]. Desalination,2009,249:621-625.
    [114]J. Wang, D. N. Tafen, J. P. Lewis, et al. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts[J]. J. Am. Chem. Soc,2009,131(34):12290-12297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700