突变型DJ-1蛋白对细胞线粒体功能、基因表达谱的影响和AREP基因型与表型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分突变型DJ-1蛋白对细胞线粒体功能和基因组表达谱的影响
     DJ-1基因是常染色体隐性遗传早发性帕金森综合征(autosomalrecessive early-onset parkinsonism,AREP)的致病基因之一,目前在PD发病机制中的作用仍不清楚。前期工作中,本研究小组发现一种新的DJ-1基因突变——L10P。为探讨DJ-1基因的L10P突变在帕金森病(Parkinson's disease,PD)发病机制中的作用,我们从以下3个方面进行了研究:
     1.应用G418进行稳定表达pCMV-Tag 2A-Flag、pCMV-Tag2A-Flag-DJ-1、pCMV-Tag 2A-Flag-DJ-1-L10P的HEK293单克隆细胞株的筛选,并在DNA、RNA和蛋白质三个水平上进行鉴定,证实获得稳定表达空载体、野生型DJ-1蛋白、L10P突变型DJ-1蛋白的HEK293单克隆细胞株。
     2.应用流式细胞仪、分光光度计、电镜等技术对稳定表达空载体、野生型DJ-1蛋白、L10P突变型DJ-1蛋白的HEK293单克隆细胞株的生长活力、活性氧、膜电位、线粒体复合体酶Ⅰ活性及线粒体形态进行分析,结果发现与空载体组相比较,L10P突变型DJ-1组细胞内活性氧增高,细胞活力、膜电位、线粒体复合体Ⅰ活性降低,线粒体含量减少,出现线粒体肿胀,甚至线粒体空泡变性,特别是在鱼藤酮的诱导下更明显;野生型DJ-1组细胞内野生型DJ-1组中活性氧均较低,细胞活力、膜电位、线粒体复合体Ⅰ活性均较高,特别是在鱼藤酮的诱导下更明显,提示L10P突变型DJ-1蛋白存在细胞毒性作用,丧失了野生型DJ-1蛋白的抗氧化应激能力,并对线粒体的正常功能存在影响。
     3.为明确L10P突变型DJ-1蛋白是否可能通过转录调控活性的变化导致相关基因表达异常而参与PD的发病机制,我们应用基因表达微珠芯片对稳定表达空载体、野生型DJ-1蛋白、L10P突变型DJ-1蛋白的HEK293单克隆细胞株进行差异表达基因筛选,结果发现与空载体组比较,野生型DJ-1组有14个基因表达上调,28个基因表达下调;L10P突变型DJ-1组有14个基因表达上调,9个基因表达下调。L10P突变型DJ-1组与野生型型DJ-1组比较发现有59个基因表达上调,27个基因表达下调。进一步分析发现这些表达差异基因分别参与信号转导、细胞粘附、基因转录调控、细胞周期、蛋白修饰、细胞凋亡、氧化应激等生物学过程,提示L10P突变型DJ-1蛋白可能通过直接或间接方式对这些差异基因进行表达调控,进而影响这些通路的正常功能,参与PD的发病机制。
     第二部分常染色体隐性遗传早发性帕金森综合征基因型与表型分析
     AREP有3种基因型(PARK2、PARK6和PARK7),致病基因分别是:parkin、PINK1和DJ-1基因。为探讨AREP的基因型与表型是否相关,我们从以下3个方面进行了研究:
     1.建立了应用实时荧光定量PCR技术检测parkin基因外显子重排突变的技术平台和应用DNA直接测序检测ATP13A2基因突变的技术平台,完善了30个AREP家系的parkin、PINK1、DJ-1和ATP13A2基因的突变分析,结果发现在该组AREP家系中parkin、PINK1、DJ-1和ATP13A2基因的突变率分别为46.7%、6.7%、3.3%、0%,而PINK1和DJ-1双基因突变的频率为3.3%。
     2.分别对一个携带parkin、PINK1、DJ-1基因突变的AREP家系进行以~(11)C-CFT标记多巴胺转运体蛋白的PET分析,发现所有的患者多巴胺转运体显像信号明显减低,与临床症状严重程度呈负相关;对家系杂合子的研究发现parkin、PINK1基因突变携带者多巴胺转运体显像信号双侧对称性减低,而DJ-1基因突变携带者多巴胺转运体显像信号双侧对称,无明显减低,提示parkin和PINK1基因的杂合子突变可能具有致病性。
     3.详细分析了30个AREP家系患者的临床资料,并根据基因突变检测结果对各亚型进行临床分析,结果未发现具有明显基因型指向的临床表型。
PartⅠThe effect of mutated DJ-1 protein to cellular mitochondrial function and expression profiles of genes
     DJ-1 gene is one of the pathogenic genes that are responsible for autosomal recessive early-onset parkinsonism(AREP)and its effect to the pathogenesis of Parkinson's disease(PD)is still unknown.In our prophase works,a novel DJ-1 mutation(L10P)was found.To elucidate the effect of L10P mutated DJ-1 protein to the pathogenesis of PD,we investigated the function of DJ-1 on the following three aspects:
     1.To generate HEK293 monoclone cell lines which are stably expressing Flag-tagged wild-type and L10P mutated DJ-1 protein, G418(800μg/ml)was used when pCMV-Tag 2A-Flag-DJ-1、pCMV-Tag 2A-Flag-DJ-1-L10P were transfected.To confirm the HEK293 monoclone cell lines which can stably express Flag-tagged wild-type and L10P mutated DJ-1 protein,we identified the transfected plasmids were conformed in the gDNA,could be transcripted in the RNA level and expressed protein with the Flag tag.We got the HEK293 monoclone cell lines which were stably expressing empty vector,Flag-tagged wild-type and L10P mutated DJ-1 protein successfully.
     2.Using spectrophotometer,flow cytometry and electron microscope to investigate cell viability,reactive oxygen species(ROS), mitochondrial transmembrane potential,complexⅠactivity and mitochondfial morphous of the HEK293 monoclone cell lines which are stably expressing wild-type and L10P mutated DJ-1 protein.Compared with the cell lines expressing empty vector,we found the ROS was increased,the cell viability,mitochondrial transmembrane potential, complexⅠactivity were reduced in these cell expressing L10P mutated DJ-1 protein.We also found mitochondria in these cells were swelling and some mitochondria were vacuolar degeneration.These phenomena were more obvious when rotenone was used.But in the cell expressing wild-type DJ-1,ROS was lower,the cell viability,mitochondrial transmembrane potential,complexⅠactivity were higher than other cell lines,especially under the induction of rotenone.It suggested that L10P mutated DJ-1 protein probably loss the ability of anti-oxidative stress and affect the normal function of mitochondria.
     3.To identify genes for which expressions are abnormally regulated by L10P mutated DJ-1 protein,DNA microarray analyses were carried out using HEK293 monoclone cell lines which are stably expressing empty vector,wild-type and L10P mutated DJ-1 protein.Compared with the cell lines expressing empty vector,we found expression levels of 14 and 28 genes in expressing wild-type DJ-1 protein cells and expression levels of 14 and 9 genes in expressing L10P mutated DJ-1 protein cells increased and decreased,respectively.Compared with the cell lines expressing wild-type DJ-1 protein,we found expression levels of 59 and 27 genes in expressing L10P mutated DJ-1 protein cells increased and decreased,respectively.These genes were classified genes related to signal transduction,cell adhesion,regulation of transcription,regulation of cell cycle,protein modification,apoptosis,oxidative stress and neurotoxicity.It suggested that L10P mutated DJ-1 protein probably affects the normal function of these pathways via changing these associated gene express level to participate the pathogenesis of PD.
     PartⅡThe correlation analysis of genotype and phenotype of autosomal recessive early-onset parkinsonism
     Three loci,for autosomal recessive early-onset parkinsonism(AREP) have been mapped thus far(PARK2,PARK6 and PARK7)and all the three pathogenic genes have been cloned,that is parkin,PINK1 and DJ-1. To elucidate the correlation between genotype and phenotype of AREP, we investigated the following three aspects:
     1.After establishing the methods of real-time PCR to screen parkin gene rearrangement and DNA direct sequencing to detect the ATP13A2 gene mutation,we consummated the mutation analysis of parkin,PINK1, DJ-1 and ATP13A2 gene in 30 families with AREP.In our study, mutations in the parkin,PINK1,DJ-1 and ATP13A2 genes account for up to 46.7%,6.7%,3.3%of Chinese families with AREP,respectively.The digenic inheritance of PINK1 and DJ-1 genes accounts for up to 3.3%.
     2.We studied three families with the mutations of parkin、PINK1 and DJ-1 gene respectively,with a dopamine transporter ligand ~(11)C-CFT positron emission tomography(PET).A marked bilaterally and symmetrically decrement of ~(11)C-CFT uptake was found in all these patients,and putamen as well as caudate nucleus was affected.We also found asymptomatic parkin and PINK1 heteroygotes showed a mild but significant decreae in ~(11)C-CFT uptake,suggesting a sub-clinical disease process in parkin and PINK1-heterozygotes,but this phenomenon was not found in the DJ-1-heteroygotes.
     3.Detailed analyse the clinic feature of the patients in the 30 families with AREP and then compare the clinic feature according to the genotype.No significant feature was found to differentiate the genotype.
引文
[1] Forno LS. Neuropathology of Parkinson's disease.J Neuropathol Exp Neurol, 1996, 55(3): 259-272
    [2] Jellinger KA. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis,2008,5(3-4): 118-121
    [3] Zhang ZX, Roman GC, Hong Z, et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet, 2005,365(9459) 595-597
    [4] Klein C, Lohmann-Hedrich K. Impact of recent genetic findings in Parkinson's disease. Curr Opin Neurol,2007,20(4):453-464
    [5] Klein C, Schlossmacher MG. Parkinson disease, 10 years after its genetic revolution. Multiple clues to a complex disorder. Neurology.2007,69(22): 2093-2104
    [6] Wood-Kaczmar A, Gandhi S, Wood NW. Understanding the molecular causes of Parkinson's disease. Trends Mol Med,2006,12(11):521-528
    [7] Jenner P. Olanow CW. Understanding cell death in Parkinson's disease. Ann. Neurol, 1998,44 (3 Suppl 1):S72-84
    [8] Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson's disease. Neurobiol Dis, 2000, 7(4): 240-250
    [9] Sherer TB, Betarbet R, Greenamyre JT. Environment, mitochondria, and Parkinson's disease. Neuroscientist,2002, 8(3): 192-197
    [10] Schapira AH, Gu M, Taanman JW, et al. Mitochondria in the etiology and pathogenesis of Parkinson's disease. Ann Neurol, 1998,44(3): 89-98
    
    [11] Orth M, Schapira AH. Mitochondrial involvement in Parkinson's disease. Neurochem Int,2002,40(6):533-541
    
    [12] Dawson TM. New animal models for Parkinson's disease.Cell,2000,101(2): 115-118
    [13] Schulz JB, Matthews RT, Klockgether T, et al. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative disease.Mol Cell Biochem, 1997,174(1-2): 193-197
    [14] Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther,1999,81(3):163-221
    [15] Staropoli JF, McDermott C, Martinat C,et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron,2003, 37(5):735-749
    [16] Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases.Nat Rev Neurosci,2003,4(5):365-375
    [17] Thiruchelvam M, Richfield EK, Baggs RB,et al.The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci,2000,20(24): 9207-9214
    [18] Sherer TB, Kim JH, Betarbet R,et al. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. ExpNeurol,2003,179(1):9-16
    [19] Sveinbjornsdottir S,Hicks AA,Jonsson T. Familial aggregation of Parkinson's disease in Iceland. N Engl J Med,2000,343(24):1765-1770
    [20] Payami H,Zareparsi S, James D,et al. Familial aggregation of Parkinson disease: a comparative study of early-onset and late-onset disease. Arch Neurol,2002, 59(5): 848-850
    [21] Marder K, Levy G, Louis ED,et al. Familial aggregation of early- and late-onset Parkinson's disease. Ann Neurol,2003,54(4):507-513
    [22] Marder K, Tang M-X,Meijia H, et al.Risk of Parkinson's disease among first degree relatives: a community-based study.Neurology,1996,47(1): 155-160
    [23] Rybicki BA, Johnson CC, Peterson EL,et al.A family history of Parkinson's disease and its effect on other PD risk factors.Neuroepidemio, 1999,18(5): 270-278
    [24] Elbaz A,Grigoletto F, Baldereschi M,et al.Familial aggregation of Parkinson's disease. A population-based casecontrolstudy in Europe.Neurol, 1999,52(9): 1876-1882
    [25] Duvoisin RC, Johnson WG. Hereditary Lewy-body parkinsonism and evidence for a genetic etiology of Parkinson's disease.Brain Pathol,1992, 2(4): 309-320
    [26] Tanner CM, Ottman R, Goldman SM, et al. Parkinson disease in twins: an etiologic study. JAMA, 1999, 281(4): 341-346
    [27] Marras C, Tanner CM. Epidemiology of Parkinson's disease.In: Watts RL and Koller WC ed. Movement Disorders:Neurological Principles and Practice.2nd ed.McGraw-Hill Companies,Inc.2004.177-195
    [28] Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science, 1996,274 (5290): 1197-1199
    [29] Matsumine H, Saito M, Shimoda-Matsubayashi S, et al. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27.Am J Hum Genet,1997, 60 (3):588-596
    [30] Gasser T, Miiller-Myhsok B, Wszolek ZK, et al. A susceptibility locus for Parkinson's disease maps to chromosome 2pl3. Nat Genet,1998, 18(3): 262-265
    [31] Farrer M, Gwinn-Hardy K, Muenter M. et al. A chromosome 4p haplotype segregating with Parkinson's disease and posturaltremor. Hum Mol Genet, 1999, 8(1): 81-85
    [32] Valente EM, Bentivoglio AR, Dixon PH, et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet, 2001, 68(4):895-900
    [33] van Duijn CM, Dekker MC, Bonifati V, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet, 2001, 69(3):629-634
    [34] Funayama M, Hasegawa K, Kowa H, et al. A new locus for Parkinson's disease (PARK8) maps to chromosome 12pll.2-ql3.1.Ann Neurol,2002 , 51(3):296-301
    [35] Hampshire DJ, Roberts E, Crow Y, et al. Kufor-Rakeb syndrome, pallido- pyramidal degeneration with supranuclear upgaze paresis and dementia,maps to 1p36. J Med Genet 2001, 38(10):680-682
    [36] Li YJ, Scott WK, Hedges DJ, et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet,2002, 70(4): 985-993
    [37] Hicks A.A, Petursson H, Jonsson T, et al. A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol,2002, 52(5): 549-555
    [38] Pankratz N, Nichols WC, Uniacke SK, et al. Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet 2002, 71(1): 124-135
    [39] Pankratz N, Nichols WC, Uniacke SK, et al. Significant linkage of Parkinson disease to chromosome 2q36-37. Am J Hum Genet, 2003, 72(4):: 1053-1057
    [40] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science,1997,276(5321):2045-2047
    [41] Singleton AB, Fairer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science,2003,302(5646): 841
    [42] Chartier-Harlin MC, Kachergus J, Roumier C, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet,2004,364(5): 1167-1169
    [43] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392(6676):605-608
    [44] Leroy E, Boyer R,Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature,1998,395(6701):451-452
    [45] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science, 2004, 304(5674): 1158-1160
    [46] Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science,2003, 299(5604): 256-259
    [47] Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron,2004, 44(4): 601-607
    [48] Paisan-Ruiz C, Jain S, Evans EW, et al.Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease.Neuron,2004, 44(4): 595-600
    [49] Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet,2006, 38(10): 1184-1191
    [50] Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.Hum Mol Genet. 2005,14(15):2099-2111
    [51] Forloni G, Bertani I, Calella AM, et al. Alpha-synuclein and Parkinson's disease: selective neurodegenerative effect of alpha-synuclein fragment on dopaminergic neurons in vitro and in vivo. Ann Neurol,2000 ,47 (5):632-640
    [52] Auluck PK,Chan HY,Trojanowski JQ, et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science,2002,295(5556): 865-868
    [53] Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK. Stabilization of alpha-synuclein protein with aging and familial parkinson's disease-linked A53T mutation. J Neurosci, 2004 , 24(33): 7400-7409
    [54] Li W, West N, Colla E, et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proc Natl Acad Sci U S A,2005 , 102:2162-2167
    [55] Martin LJ, Pan Y, Price AC, et al.Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci, 2006, 26(1): 41-50
    [56] Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem, 2002, 277(49): 47870-47877
    [57] Imai Y, Soda M, Murakami T, et al. A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death. J Biol Chem,2003, 278(51): 51901-51910
    [58] Shimura H, Schlossmacher MG,Hattori N,et al. Ubiquitination of a new form of α-synuclein by parkin from human brain:implications for Parkinson's disease.Scienc,2001, 293(5528): 263-269
    [59] Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med, 2001, 7(10): 1144-1150
    [60] Ardley HC, Scott GB, Rose SA, et al. UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease. J Neurochem. 2004, 90(2): 379-391
    [61] Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet, 2005, 14(22): 3477-3492
    [62] Moore DJ, Zhang L, Troncoso J, et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet, 2005,14(1): 71-84
    [63] Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O'Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M.. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet,2006, 15(2): 223-232
    [64] Hoepken HH, Gispert S, Morales B, et al. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 2007,25(2):401-411
    [65] Muftuoglu M, Elibol B, Dalmizrak 0, et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004, 19(5): 544-548
    [66] Pesah Y, Pham T, Burgess H, et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004,131(9): 2183-2194
    [67] Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 2003, 100(7): 4078-4083
    [68] Whitworth AJ, Theodore DA, Greene JC, et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc Natl Acad Sci USA 2005,102(22): 8024-8029
    [69] Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004, 279(18): 18614-18622
    [70] Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441(7097): 1162-1166
    [71] Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441(7097): 1157-1161
    [72] Yang Y, Gehrke S, Imai Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin.Proc Natl Acad Sci USA 2006,103(28): 10793-10798
    [73] Wang D, Qian L, Xiong H, et al. Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci USA 2006, 103(36): 13520-13525.
    [74] Olzmann JA, Bordelon JR, Muly EC, et al. Selective enrichment of DJ-1 protein in primate striatal neuronal processes: implications for Parkinson's disease. J Comp Neurol,2007,500(3):585-599
    [75] Yanagida T, Takata K, Inden M, Kitamura Y, et al. Distribution of DJ-1, Parkinson's disease-related protein PARK7,and its alteration in 6-hydroxydopamine-treated hemiparkinsonian rat brain.J Pharmacol Sci,2006102(2):243-247
    [76]Bai Q,Mullett SJ,Garver JA,et al.Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons.Brain Res,2006,1113(1):33-44
    [77]Bandopadhyay R,Miller DW,Kingsbury AE,et al.Development,characterisation and epitope mapping of novel monoclonal antibodies for DJ-1(PARK7)protein.Neurosci Lett.2005,383(3):225-230
    [78]Bader V,Ran Zhu X,Lubbert H,et al.Expression of DJ-1 in the adult mouse CNS.Brain Res.2005,1041(1):102-111
    [79]Bandopadhyay R,Kingsbury AE,Cookson MR,et al.The expression of DJ-1(PARK7)in normal human CNS and idiopathic Parkinson's disease.Brain.2004,127(Pt 2):420-430
    [80]Park J,Kim SY,Cha GH,et al.Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction.Gene,2005,361,133-139
    [81]Yang Y,Gehrke S,Haque ME,et al.Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling.Proc Natl Acad Sci U S A,2005,102(38):13670-13675
    [82]Pisani A,Martella G,Tscherter A,et al.Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment:role of Na+/K+ATPase.Neurobiol Dis,2006,23(1):54-60
    [83]Zhong N,Kim CY,Rizzu P,et al.DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor.J Biol Chem,2006,281(30):20940-20948
    [84]Xu J,Zhong N,Wang H,et al.The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis.Hum Mol Genet,2005,14(9):1231-1241
    [85]Jeong H,Kim MS,Kwon J,et al.Regulation of the transcriptional activity of the tyrosine hydroxylase gene by androgen receptor.Neurosci Lett,2006,396(1):57-61
    [86]Clements CM,McNally RS,Conti BJ,et al.DJ-1,a cancer- and Parkinson's disease-associated protein,stabilizes the antioxidant transcriptional master regulator Nrf2.Proc Natl Acad Sci U S A,2006,103(41):15091-15096
    [87]肖彬.应用实时荧光定量PCR技术结合DNA直接测序技术检测DJ-1基因突变:[硕士学位论文].长沙:中南大学,2007
    [88]Azzam T,Domb AJ.Current developments in gene transfection agents.Curr Drug Deliv,2004,1(2):165-93
    [89]Kirby AJ,Camilleri P,Engberts JB,et al.Gemini surfactants:new synthetic vectors for gene transfection.Angew Chem Int Ed Engl,2003,42(13):1448-1457
    [90]Liu D,Ren T,Gao X.Cationic transfection lipids.Curr Med Chem.2003,10(14):1307-1315
    [91]Kumar VV,Singh RS,Chaudhuri A.Cationic transfection lipids in gene therapy:successes,set-backs,challenges and promises.Curr Med Chem,2003,10(14):1297-1306
    [92]Nicolazzi C,Garinot M,Mignet N,et al.Cationic lipids for transfection.Curr Med Chem,2003,10(14):1263-1277
    [93]Pedroso de Lima MC,Neves S,Filipe A,et al.Cationic liposomes for gene delivery:from biophysics to biological applications.Curr Med Chem,10(14):1221-1231
    [94]Dtizgtines N,De Ilarduya CT,Simoes S,et al.Cationic liposomes for gene delivery:novel cationic lipids and enhancement by proteins and peptides.Curr Med Chem,2003,10(14):1213-1220
    [95]Townsend-Nicholson A.Approaches to the stable transfection of G protein-coupled receptors.Methods Mol Biol,1997,83:45-54
    [96]Honma K,Miyata T,Ochiya T.The role of atelocollagen-based cell transfection array in high-throughput screening of gene functions and in drug discovery.Curr Drug Discov Technol,2004,1(4):287-294
    [97]Recillas-Targa F.Multiple strategies for gene transfer,expression,knockdown,and chromatin influence in mammalian cell lines and transgenic animals.Mol Biotechnol,2006,34(3):337-354
    [98]Mitsumoto A,Nakagawa Y.DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin.Free Radic Res,2001,35(6):885-893
    [99]Mitsumoto A,Nakagawa Y,Takeuchi A,et al.Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat.Free Radic Res,2001,35(3):301-310
    [100]Janssen AJ,Trijbels FJ,Sengers RC,et al.Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem,2007,53(4):729-734
    [101] Guarente L. Mitochondria--a nexus for aging, calorie restriction, and sirtuins?Cell.2008,132(2): 171 -176
    [102] Knudson CM, Brown NM. Mitochondria potential, bax "activation," and programmed cell death.Methods Mol Biol.2008;414:95-108
    [103] Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease.LancetNeurol,2008,7(1):97-109
    [104] James D, Parone PA, Terradillos O, et al. Mechanisms of mitochondrial outer membrane permeabilization.Novartis Found Symp,2007,287:170-176
    [105] Emerit J, Edeas M, Bricaire F.Neurodegenerative diseases and oxidative stress. Biomed Pharmacother,2004,58(1):39-46
    
    [106] Green DR.Apoptotic pathways: the roads to ruin. Cell,1998, 94(6):695-698
    [107] Susin SA, Lorenzo HK, Zamzami N,et al.Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999,397(6718) :441-446
    [108] Orth M,Schapira AH.Mitochondrial involvement in Parkinson's disease. Neurochem Int,2002,40:533-541
    [109] Parker WD Jr, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson's disease frontal cortex.Brain Res,2008,l 189:215-8
    [110] Tretter L, Sipos I, Adam-Vizi V. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease.Neurochem Res,2004, 29(3):569-577
    [111] Chinopoulos C, Adam-Vizi V.Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson's disease.JNeurochem,2001,76(1):302-206
    [112] Mizuno Y, Yoshino H, Ikebe S, Mitochondrial dysfunction in Parkinson's disease.Ann Neurol, 1998,44(3 Suppl 1):S99-109
    [113] Bindoff LA, Birch-Machin M, Cartlidge NE,et al. Mitochondrial function in Parkinson's disease. Lancet, 1989,2(8653):49
    [114] Janetzky B, Hauck S, Youdim MB, et al.Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson's disease. Neurosci Lett,1994,169(1-2):126-128
    [115] Mann VM, Cooper JM, Krige D, et al.Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson's disease. Brain, 1992, 115 (Pt2):333-342
    [116] Schapira AH, Cooper JM, Dexter D,et al.Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem,1990,54(3):823-827
    [117] Mizuno Y, Ohta S, Tanaka M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun, 1989,163(3):1450-1455
    [118] Benecke R, Strumper P, Weiss H. Electron transfer complexes I and IV of platelets are abnormal in Parkinson's disease but normal in Parkinson-plus syndromes. Brain, 1993,116(Part 6):1451-1463
    [119] Gu M, Cooper JM, Taanman JW,et al. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann Neurol,1998,44(2):177-186
    [120] Haas RH, Nasirian F, Nakano K, et al. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol,1995,37(6):714-722
    [121] Krige D, Carroll MT, Cooper JM, et al.Platelet mitochondrial function in Parkinson's disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol,1992,32(6):782-788
    [122] Parker WDJ, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol,1989,26(6):719-723
    [123] Yoshino H, Nakagawa-Hattori Y, Kondo T, et al. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson's disease. J Neural Transm,1992,4(1):27-34
    [124] Bindoff LA, Birch-Machin MA, Cartlidge NE, et al. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J Neurol Sci,1991,104(2):203-208
    [125] Blin O, Desnuelle C, Rascol O, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson's disease and multiple system atrophy. J Neurol Sci,1994,125(1):95-101
    [126] Cardellach F, Marti MJ, Fernandez-Sola J, et al. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson's disease. Neurology, 1993,43(11):2258-2262
    [127] Shoffner JM, Watts RL, Juncos JL, et al.Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann Neurol, 1991, 30(3):332-339
    [128] Winkler-Stuck K,Kirches E,Mawrin C,et al.Re-evaluation of the dysfunction of mitochondrial respiratory chain in skeletal muscle of patients with Parkinson's disease. J Neural Transm,2005,l 12:499-518
    [129] Mitsumoto A, Nakagawa Y, Takeuchi A, et al. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res,2001, 35(3): 301-310
    [130] Kinumi T, Kimata J, Taira T, et al. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun,2004, 317(3):722-728
    [131] Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A,2004,101(24):9103-9108
    [132] Choi J, Sullards MC, Olzmann JA, et al.Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases.J Biol Chem,2006,281(16): 10816-10824
    [133] Zhou W, Freed CR. DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. J Biol Chem,2005, 280(52):43150-43158
    [134] Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA, 2005,102(14): 5215-5220
    [135] Ved R, Saha S, Westlund B, et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem. 2005,280(52): 42655-42668
    [136] Yokota T, Sugawara K, Ito K, et al . Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun,2003,312(4): 1342 - 1348
    [137] Ooe H, Taira T, Iguchi-Ariga SM, et al. Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicol Sci,2005 ,88(1):114-126
    [138] Gresham D, Dunham MJ, Botstein D. Comparing whole genomes using DNA microarrays.Nat Rev Genet,2008,9(4):291-302
    [139] Tang Y, Bernaudin M. Brain on a chip: a method to detect novel neuroprotective candidate targets.Methods Mol Biol,2007,3 99:153-166
    [140] Bier FF, von Nickisch-Rosenegk M, Ehrentreich-Forster E, et al. DNA microarrays.Adv Biochem Eng Biotechnol,2008,109:433-453
    [141] Goring HH, Curran JE, Johnson MP, et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet,2007,39(10): 1208-1216
    [142] Stranger BE, Nica AC, Forrest MS, et al. Population genomics of human gene expression. Nat Genet ,2007,39(10): 1217-1224
    [143] Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes.Science,2007,315(5813): 848-853
    [144] Diego VP, Rainwater DL, Wang XL, et al. Genotype x adiposity interaction linkage analyses reveal a locus on chromosome 1 for lipoprotein-associated phospholipase A2, a marker of inflammation and oxidative stress.Am J Hum Genet,2007,80(1): 168-177
    [145] Welford SM, Gregg J, Chen E, et al. Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleic Acids Res,1998,26(12):3059-65
    [146] Wang K, Gan L, Jeffery E, et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene, 1999,229(1-2): 101-108
    [147] Kaur M, Agarwal R. Transcription factors: molecular targets for prostate cancer intervention by phytochemicals. Curr Cancer Drug Targets,2007, 7(4):355-367
    [148] Liu C, Rangnekar VM, Adamson E, et al. Suppression of growth and transformation and induction of apoptosis by EGR-1. Cancer Gene Ther.1998, 5(1):3-28
    [149] Abdulkadir SA. Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1. Ann N Y Acad Sci. 2005,1059:33-40
    [150] Silverman ES, Collins T. Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol. 1999,154(3):665-670
    [151] Yan SF, Lu J, Zou YS, et al. Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem,1999,274(21):15030-15040
    [152] Yan SF, Fujita T, Lu J, et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med,2000,6(12): 1355-1361
    [153] Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15.Appl Physiol Nutr Metab,2007,32(5):833-839
    [154] Yamamura Y, Hattori N, Matsumine H, et al. Autosomal recessive early-onset parkinsonism with diurnal fluctuation: clinicopathologic characteristics and molecular genetic identification.Brain Dev,2000,Suppl 1:S87-91
    [155] Li Y, Tomiyama H, Sato K, et al. Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism.Neurology,2005,64(11): 1955-1957
    [156] Ephraty L, Porat 0, Israeli D, et al. Neuropsychiatric and cognitive features in autosomal-recessive early parkinsonism due to PINK1 mutations. Mov Disord,2007,22(4):566-569
    [157] Bonifati V, Dekker MC, Vanacore N, et al. Autosomal recessive early onset parkinsonism is linked to three loci: PARK2, PARK6, and PARK7.Neurol Sci,2002,Suppl 2:S59-60
    [158] Nisipeanu P, Inzelberg R, Abo Mouch S, et al. Parkin gene causing benign autosomal recessive juvenile parkinsonism.Neurology,2001,56(11): 1573-1575
    [159] Yamamura Y, Kohriyama T, Kawakami H, et al. Autosomal recessive early-onset parkinsonism with diurnal fluctuation (AR-EPDF)—clinical characteristics. Rinsho Shinkeigaku,1996,36(8):944-950
    [160] Periquet M,Latouche M,Lohmann E,et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism.Brain,2003,126(6): 1271-1278
    [161] Lucking CB, Durr A, Bonifati V, et al. Association between Early-Onset Parkinson's Disease and Mutation in the Parkin Gene. N Engl J Med ,2000, 342(21):1560-1567
    [162] Hedrich K, Eskelson C, Wilmot B, et al. Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord. 2004 ,9(10): 1146-1157
    [163] Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol,2004,56(3): 336-341
    [164] Bonifati V, Rohe CF, Breedveld GJ, et al. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and Phenotypes. Neurology,2005, 65(1): 87-95
    [165]Rogaeva E,Johnson J,Lang AE,et al.Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease.Arch Neurol,2004,61(12):1898-1904
    [166]Hatano Y,Sato K,Elibol B et al.PARK6-linked autosomal recessive early-onset parkinsonism in Asian populations.Neurology 2004,63(8):1482-1485
    [167]Hatano Y,Li Y,Sato K,et al.Novel PINK1 mutations in early-onset parkinsonism.Ann Neurol,2004,56(3):424-427
    [168]Hague S,Rogaeva E,Hernandez D,et al.Early-onset Parkinson's disease caused by a compound heterozygous DJ-1 mutation.Ann Neurol,2003,54(2):271-274
    [169]Abou-Sleiman PM,Healy DG,Quinn N,et al.The role of pathogenic DJ-1mutations in Parkinson's disease.Ann Neurol,2003,54(3):283-286
    [170]Hedrich K,Djarmati A,Schafer N,et al.DJ-1(PARK7)mutations are less frequent than Parkin(PARK2)mutations in early-onset Parkinson disease.Hum Genet,2004,62(3):389-394
    [171]Najim al-Din AS,Wriekat A,Mubaidin A,et al.Pallido-pyramidal degeneration,supranuclear upgaze paresis and dementia:Kufor-Rakeb syndrome.Acta Neurol Stand,1994,89(5):347-352
    [172]Williams DR,Hadeed A,al-Din AS,et al.Kufor Rakeb disease:autosomal recessive,levodopa-responsive parkinsonism with pyramidal degeneration,supranuclear gaze palsy,and dementia.Mov Disord,2005,20(10):1264-1271
    [173]Hampshire DJ,Roberts E,Crow Y,et al.Kufor-Rakeb syndrome,pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia,maps to 1p36.J Med Genet,2001,38(10):680-682
    [174]Lees AJ,Singleton AB.Clinical heterogeneity of ATP13A2 linked disease (Kufor-Rakeb)justifies a PARK designation.Neurology,2007,68(19):1553-1554
    [175]Di Fonzo A,Chien HF,Socal M,et al.ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease.Neurology,2007,68(19):1557-1562
    [176]郭纪锋.应用荧光半定量PCR方法检测AREP和散发EOP患者parkin基因外显子重排突变分析:[硕士学位论文].长沙:中南大学,2005
    [177]郭纪锋,唐北沙,李静,等.荧光半定量PCR在散发早发性帕金森综合征parkin基因外显子重排突变分析中的应用.中华医学杂 志,2006,86(21):1447-1449
    [178]郭纪锋,唐北沙,夏昆,等.应用荧光半定量聚合酶链反应方法检测常染色体隐性遗传早发性帕金森综合征parkin基因外显子重排突变分析.中华神经科杂志,2006.39(6):364-368
    [179]郭纪锋,唐北沙,张玉虎,等.三个常染色体隐性遗传性青少年型帕金森综合征家系的基因型与表型分析.中华医学遗传学杂志,2006,23(1):70-73
    [180]李静,唐北沙,郭纪锋,等.应用变性高效液相色谱技术检测parkin基因突变.中华医学遗传学杂志,2007,24(4):449-452
    [181]申亚巍,唐北沙,严新翔,等.青少年型帕金森综合征一个家系的临床及遗传学分析.中华内科杂志,2005,44(5):360-362
    [182]张玉虎.常染色体隐性遗传早发性帕金森综合征DJ-1、PINK1基因的突变分析及PINK1基因功能研究:[博士学位论文].长沙:中南大学,2005
    [183]廖冰.应用实时荧光定量PCR技术结合DNA直接测序技术检测PINK1基因突变:[硕士学位论文].长沙:中南大学,2006
    [184]Tang BS,Xiong H,Sun P,et al.Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease.Hum Mol Genet,2006,15(11):1816-1825
    [185]郭纪锋,唐北沙,张玉虎,等.常染色体隐性遗传性早发型帕金森综合征DJ1基因突变研究.中华医学遗传学杂志,2005,22(6):641-643
    [186]张玉虎,唐北沙,郭纪锋,等.常染色体隐性遗传早发性帕金森综合征6型PINK1基因的突变分析.中华医学杂志,2005,85(22):1538-1541
    [187]严新翔,张玉虎,郭纪锋,等.常染色体隐性遗传早发性帕金森综合征致病基因的突变分析.中华神经科杂志,2005,38(6):351-354
    [188]张玉虎,唐北沙,王丽娟,等.帕金森病PINK1基因R492X突变分析.中风与神经疾病杂志,2006,23(5):523-524
    [189]Hughes AJ,Daniel SE,Kilford L,et al.Accuracy of clinical diagnosis of idiopathic Parkinson's disease:a clinico-pathological study of 100 cases.J Neurol Neurosurg Psychiatry,1992,55(3):181-184
    [190]Hedrich K,Kann M,Lanthaler AJ,et al.The importance of gene dosage studies:Mutational analysis of the parkin gene in the early-onset parkinsonism.Hum Mol Genet,2001,10(16):1649-1656
    [191]Abbas N,Lucking CB,Ricard S,et al.A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe.Hum Mol Genet,1999,8(4):561-571
    [192] Leroy E, Anastasopoulos D, Konitsiotis S,et al. Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease. Hum Genet, 1998,103(4):424-427
    [193] Nisipeanu P, Inzelberg R, Blumen SC, et al. Autosomal-recessive juvenile parkinsonism in a Jewish Yemenite kindred: mutation of Parkin gene. Neurology,1999,53(7):1602-1604
    [194] Munoz E, Pastor P, Marti MJ, Oliva R, Tolosa E. A new mutation in the parkin gene in a patient with atypical autosomal recessive juvenile parkinsonism. Neurosci Lett,2000,289(1):66-68
    [195] Lucking CB, Abbas N, Durr A, et al. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. Lancet,1998,352(9137): 1355-1356
    [196] Hedrich K,Marder K,Harris J,et al. Evaluation of 50 probands with early-onset Parkinson's disease for Parkin mutatuins. Neurology, 2002,58(8): 1239-1246
    [197] Hattori N, Kitada T, Matsumine H, et al. Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol,1998,44(6):935-941
    [198] Illarioshkin SN, Periquet M, Rawal N, et al. Mutation Analysis of the parkin Gene in Rassian Families with Autosomal Recessive Juvenile Parkinsonism. Mov Disorders,2003,18(8)914-919
    [199] Healy DG, Abou-Sleiman PM, Gibson JM,et al. PINK1 (PARK6) associated Parkinson disease in Ireland. Neurology, 2004,63:1486-1488
    [200] Marongiu R, Ferraris A, Ialongo T, et al. PINK1 heterozygous rare variants: prevalence, significance and phenotypic spectrum.Hum Mutat,2008,29(4):565
    [201] Deng H, Le W, Shahed J, et al. Mutation analysis of the parkin and PINK1 genes in American Caucasian early-onset Parkinson disease families. Neurosci Lett,2008,430(1): 18-22
    [202] Weng YH, Chou YH, Wu WS,et al. PINK1 mutation in Taiwanese early-onset parkinsonism : clinical, genetic, and dopamine transporter studies. J Neurol,2007,254(10):1347-1355
    [203] Zadikoff C, Rogaeva E, Djarmati A, et al. Homozygous and heterozygous PINK1 mutations: considerations for diagnosis and care of Parkinson's disease patients. Mov Disord,2006,21(6):875-879
    [204] Ibanez P, Lesage S, Lohmann E, et al. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain,2006,129(Pt 3):686-694
    [205] Fung HC, Chen CM, Hardy J, et al. Analysis of the PINK1 gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan.Neurosci Lett,2006,394(1):33-36
    [206] Tan EK, Yew K, Chua E, et al. Analysis of PINK1 in Asian patients with familial parkinsonism.Clin Genet,2005,68(5):468-470
    [207] Clark LN, Arridi S, Mejia-Santana H, et al. Analysis of an early-onset Parkinson's disease cohort for DJ-1 mutations. Mov Disord, 2004, 19(7):796-800
    [208] Ibanez P, De Michele G, Bonifati V, et al. Screening for DJ-1 mutations in early onset autosomal recessive parkinsonism. Neurology,2003, 61(10): 1429-1431
    [209] Healy DG, Abou-Sleiman PM, Valente EM, et al. DJ-1 mutations in Parkinson's disease. J Neurol Neurosurg Psychiatry,2004,75(1): 144-145
    [210] Pankratz N, Pauciulo MW, Elsaesser VE, et al. Mutations in DJ-1 are rare in familial Parkinson disease. Neurosci Lett. 2006,408(3):209-213
    [211] Lockhart P J, Bounds R, Hulihan M,et al. Lack of Mutations in DJ-1 in a Cohort of Taiwanese Ethnic Chinese With Early-Onset Parkinsonism. Mov Disord, 2004,19(9): 1065-1069
    [212] Tan E K,Tan C, Zhao Y,et al. Genetic analysis of DJ-1 in a cohort Parkinson's disease patients of different ethnicity. Neurosci Lett, 2004,367(1): 109- 112
    [213] Kajiwara K, Berson EL, Dryja TP.Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and R0M1 loci.Science,1994, 264(5165): 1604-1608
    [214] Katsanis N, Ansley SJ, Badano JL,et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder.Science,2001,293(5538):2256-2259
    [215] Ming JE, Muenke M.Multiple hits during early embryonic development: digenic diseases and holoprosencephaly.Am J Hum Genet,2002 ,71(5): 1017-1032
    [216] Gu WJ, Corti O, Araujo F, et al. The C289G and C418R missense mutations cause rapid sequestration of human Parkin into insoluble aggregates. Neurobiol Dis,2003,14(3):357-364
    [217] Cookson MR, Lockhart PJ, McLendon C, et al. RING finger 1 mutations in Parkin produce altered localization of the protein. Hum Mol Genet,2003,12 (22): 2957-2965
    [218] Hilker R, Klein C, Hedrich K, et al. The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci Lett, 2002,323(1):50-54
    [219] Hilker R, Klein C, Ghaemi M, et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol,2001,49(3):367-376
    [220] Khan NL, Brooks DJ, Pavese N, et al.Progression of nigrostriatal dysfunction in a parkin kindred: an [18F]dopa PET and clinical study. Brain,2002, 125(10):2248-2256
    [221] Khan NL, Scherfler C, Graham E, et al.Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation. Neurology,2005, 64(1): 134-136
    [222] Oliveira SA, Scott WK, Martin ER,et al.Parkin mutations and susceptibility alleles in late-onset Parkinson's disease. Ann Neurol,2003,53(5):624-629
    [223] Foroud T, Uniacke SK, Liu L, et al.Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease. Neurology,2003,60(5):796-801
    [224] Waterhouse RN, Zhao J. In vivo tomographic imaging studies of neurodegeneration and neuroprotection: a review. Methods Mol Biol,2007,399:215-233
    [225] Margolis DJ, Hoffman JM, Herfkens RJ, et al. Molecular imaging techniques in body imaging. Radiology,2007,245(2):333-356
    [226] Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson's disease: a metabolic network approach. Lancet Neurol,2007,6(10):926-932
    [227] Ceravolo R, Sgado P, Frosini D, et al. Assessing neuroprotection in Parkinson's disease: from the animal models to molecular neuroimaging in vivo.J Neural Transm Suppl,2006,(71):133-141
    [228] Berg D. Marker for a preclinical diagnosis of Parkinson's disease as a basis for neuroprotection. J Neural Transm Suppl,2006,(71):123-132
    [229] Ravina B, Eidelberg D, Ahlskog JE, et al. The role of radiotracer imaging in Parkinson disease.Neurology,2005,64(2):208-215
    [230] Piccini P, Whone A. Functional brain imaging in the differential diagnosis of Parkinson's disease.Lancet Neurol,2004,3(5):284-290
    [231] Brooks DJ, Frey KA, Marek KL, et al. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson's disease.Exp Neurol,2003 ,184 (Suppl l):S68-79
    [232] Sossi V, de la Fuente-Fernandez R, Schulzer M, et al. Dopamine transporter relation to dopamine turnover in Parkinson's disease: a positron emission tomography study .Ann Neurol,2007,62(5):468-474
    [233] David R, Koulibaly M, Benoit M, et al. Striatal dopamine transporter levels correlate with apathy in neurodegenerative diseases A SPECT study with partial volume effect correction. Clin Neurol Neurosurg,2008,l 10(1):19-24
    [234] Shih MC, Hoexter MQ, Andrade LA, et al. Parkinson's disease and dopamine transporter neuroimaging: a critical review.Sao Paulo Med J,2006,124(3): 168-175
    [235] Marshall V, Grosset D. Role of dopamine transporter imaging in routine clinical practice.Mov Disord,2003,18(12):1415-1423
    [236] Poewe W, Scherfler C. Role of dopamine transporter imaging in investigation of parkinsonian syndromes in routine clinical practice.Mov Disord,2003, Suppl 7:S 16-21
    [237] Piccini PP. Dopamine transporter: basic aspects and neuroimaging.Mov Disord,2003,Suppl 7:S3-8
    [238] Khan NL, Valente EM, Bentivoglio AR,et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann Neurol,2002,52(6):849-853
    [239] Dekker M, Bonifati V, van Swieten J et al. Clinical features and neuroimaging of PARK7-linked parkinsonism. Mov Disord ,2003,_18(7): 751-757
    [240] Hering R, Strauss KM, Tao X, et al. Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7). Hum Mutat. 2004,24(4):321-329
    [241] Dekker MC, Eshuis SA, Maguire RP, et al.PET neuroimaging and mutations in the DJ-1 gene. J Neural Transm. 2004,111(12):1575-1581
    [242] Wu RM, Shan DE, Sun CM, et al. Clinical, ~(18)F-dopa PET, and genetic analysis of an ethnic Chinese kindred with early-onset parkinsonism and parkin gene mutations. Mov Disord, 2002, 17(4):670-675
    [243] Broussolle E, Lucking CB, Ginovart N, et al. [~(18)F]-dopa PET study in patients with juvenile-onset PD and parkin gene mutations. Neurology, 2000,55: 877-879
    [244] Binkofski F, Reetz K, Gaser C, et al. Morphometric fingerprint of asymptomatic Parkin and PINK1 mutation carriers in the basal ganglia. Neurology,2007, 69(9):842-850
    [245] Bonifati V, Oostra BA, Heutink P. Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson's disease. J Mol Med. 2004,82(3):163-174
    [246] Bonifati V, Breedveld GJ, Squitieri F, et al. Localization of autosomal recessive early-onset parkinsonism to chromosome 1p36 (PARK7) in an independent dataset. Ann Neurol, 2002,51(2):253-256
    [1]Marras C,Tanner CM.Epidemiology of Parkinson's disease.In:Watts RL and Koller WC ed.Movement Disorders:Neurological Principles and Practice.2nd ed.McGraw-Hill Companies,Inc.2004.177-195
    [2]Zhang ZX,Roman GC,Hong Z,et al.Parkinson's disease in China:prevalence in Beijing,Xian,and Shanghai.Lancet,2005,365(9459)595-597
    [3]Goldman SM,Tanner C:Etiology of Parkinson's disease.In Parkinson's Disease and Movement Disorder.Edited by Jankovic J,Tolosa E.Baltimore:Williams and Wilkins;1998:1333-1358
    [4]Polymeropoulos MH,Higgins JJ,Golbe LI,et al.Mapping of a gene for Parkinson's disease to chromosome 4q21-q23.Science,1996,274(5290):1197-1199
    [5]Matsumine H,Saito M,Shimoda-Matsubayashi S,et al.Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27.Am J Hum Genet, 1997, 60 (3):588-596
    [6] Gasser T, Muller-Myhsok B, Wszolek ZK, et al. A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nat Genet,1998, 18(3):262-265
    [7] Farrer M, Gwinn-Hardy K, Muenter M, et al. A chromosome 4p haplotype segregating with Parkinson's disease and posturaltremor. Hum Mol Genet,1999, 8(1): 81-85
    [8] Valente EM, Bentivoglio AR, Dixon PH, et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet, 2001, 68(4):895-900
    [9] van Duijn CM, Dekker MC, Bonifati V, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet, 2001, 69(3):629-634
    [10] Funayama M, Hasegawa K, Kowa H, et al. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1.Ann Neurol,2002 , 51(3):296-301
    [11] Hampshire DJ, Roberts E, Crow Y, et al. Kufor-Rakeb syndrome, pallido- pyramidal degeneration with supranuclear upgaze paresis and dementia,maps to 1p36. J Med Genet 2001,38(10):680-682
    [12] Li YJ, Scott WK, Hedges DJ, et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet,2002, 70(4): 985-993
    [13] Hicks A.A, Petursson H, Jonsson T, et al. A susceptibility gene for late-onset idiopathic Parkinson's disease. Ann Neurol,2002, 52(5): 549-555
    [14] Pankratz N, Nichols WC, Uniacke SK, et al. Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet 2002, 71(1): 124-135
    [15] Pankratz N, Nichols WC, Uniacke SK, et al. Significant linkage of Parkinson disease to chromosome 2q36-37. Am J Hum Genet, 2003, 72(4):: 1053-1057
    [16] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997,276(5321) :2045-2047
    [17] Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science,2003,302(5646): 841
    [18] Chartier-Harlin MC, Kachergus J, Roumier C, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet,2004,364(5): 1167-1169
    [19] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392(6676):605-608
    [20] Leroy E, Boyer R,Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature,1998,395(6701):451-452
    [21] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science, 2004, 304(5674): 1158-1160
    [22] Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science,2003, 299(5604): 256-259
    [23] Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron,2004, 44(4): 601-607
    [24] Paisan-Ruiz C, Jain S, Evans EW, et al.Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease.Neuron,2004, 44(4): 595-600
    [25] Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet,2006, 38(10): 1184-1191
    [26] Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.Hum Mol Genet. 2005,14(15):2099-2111
    [27] Forloni G, Bertani I, Calella AM, et al. Alpha-synuclein and Parkinson's disease: selective neurodegenerative effect of alpha-synuclein fragment on dopaminergic neurons in vitro and in vivo. Ann Neurol,2000,47 (5):632-640
    [28] Auluck PK,Chan HY,Trojanowski JQ, et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science,2002,295(5556): 865-868
    
    [29] Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK. Stabilization of alpha-synuclein protein with aging and familial parkinson's disease-linked A53T mutation. J Neurosci, 2004 ,24(33): 7400-7409
    [30] Li W, West N, Colla E, et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proc Natl Acad Sci U S A,2005 ,102:2162-2167
    [31] Martin LJ, Pan Y, Price AC, et al.Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci, 2006, 26(1): 41-50
    [32] Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem, 2002, 277(49): 47870-47877
    [33] Imai Y, Soda M, Murakami T, et al. A product of the human gene adjacent to parkin is a component of Lewy bodies and suppresses Pael receptor-induced cell death. J Biol Chem,2003, 278(51): 51901-51910
    [34] Shimura H, Schlossmacher MG,Hattori N,et al. Ubiquitination of a new form of a-synuclein by parkin from human brain:implications for Parkinson's disease.Scienc,2001, 293(5528): 263-269
    [35] Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med, 2001, 7(10): 1144-1150
    [36] Ardley HC, Scott GB, Rose SA, et al. UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease. J Neurochem. 2004,90(2): 379-391
    [37] Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet, 2005, 14(22): 3477-3492
    [38] Moore DJ, Zhang L, Troncoso J, et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet, 2005,14(1): 71-84
    [39] Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O'Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M.. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet,2006, 15(2): 223-232
    [40] Klein C, Lohmann-Hedrich K. Impact of recent genetic findings in Parkinson's disease. Curr Opin Neurol. 2007,20(4):453-464
    [41] Lev N, Roncevic D, Ickowicz D, et al. Role of DJ-1 in Parkinson's disease. J Mol Neurosci.2006,29(3):215-225
    [42]Morris HR.Genetics of Parkinson's disease.Ann Med.2005,37(2):86-96
    [43]Abou-Sleiman PM,Healy DG,Wood NW.Causes of Parkinson's disease:genetics of DJ-1.Cell Tissue Res.2004,318(1):185-188
    [44]Bonifati V,Oostra BA,Heutink P.Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson's disease.J Mol Med.2004,82(3):163-174
    [45]Nagakubo D,Taira T,Kitaura H,et al.DJ-1,a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras.Biochem Biophys Res Commun.1997,231(2):509-13
    [46]Klinefelter GR,Laskey JW,Ferrell J,et al.Discriminant analysis indicates a single sperm protein(SP22)is predictive of fertility following exposure to epididymal toxicants.J Androl.1997,18(2):139-150
    [47]Wagenfeld A,Gromoll J,Cooper TG.Molecular cloning and expression of rat contraception associated protein 1(CAP1),a protein putatively involved in fertilization.Biochem Biophys Res Commun.1998,251(2):545-549
    [48]Hod Y,Pentyala SN,Whyard TC,El-Maghrabi MR.Identification and characterization of a novel protein that regulates RNA-protein interaction.J Cell Biochem.1999,72(3):435-44
    [49]Bonifati V,Breedveld GJ,Squitieri F,et al.Localization of autosomal recessive early-onset parkinsonism to chromosome 1p36(PARK7)in an independent dataset.Ann Neurol,2002,51(2):253-256
    [50]Hering R,Strauss KM,Tao X,et al.Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease(PARK7).Hum Mutat.2004,24(4):321-329
    [51]Abou-Sleiman PM,Healy DG,Quinn N,et al.The role of pathogenic DJ-1mutations in Parkinson's disease.Ann Neurol.2003,54(3):283-286
    [52]Annesi G,Savettieri G,Pugliese P,et al.DJ-1 mutations and parkinsonismdementia-amyotrophic lateral sclerosis complex.Ann Neurol,2005,58(5):803-807
    [53]肖彬.应用实时荧光定量PCR技术结合DNA直接测序技术检测DJ-1基因突变:[硕士学位论文].长沙:中南大学,2007
    [54]Hague S,Rogaeva E,Hernandez D,et al.Early-onset Parkinson's disease caused by a compound heterozygous DJ-1 mutation.Ann Neurol,2003, 54(2):271-274
    [55]Clark LN,Afridi S,Mejia-Santana H,et al.Analysis of an early-onset Parkinson's disease cohort for DJ-1 mutations.Mov Disord,2004,19(7):796-800
    [56]Hedrich K,Djarmati A,Schafer N,et al.DJ-1(PARK7)mutations are less frequent than Parkin(PARK2)mutations in early-onset Parkinson disease.Neurology,2004,62(3):389-394
    [57]Vasquez AA,Sleegers K,Dekker MC,et al.A deletion in DJ-1 and the risk of dementia—a population-based survey.Neurosci Lett.2004,372(3):196-199
    [58]Tang B,Xiong H,Sun P,et al.Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease.Hum Mol Genet.2006,15(11):1816-1825
    [59]Ibanez P,De Michele G,Bonifati V,et al.Screening for DJ-1 mutations in early onset autosomal recessive parkinsonism.Neurology,2003,61(10):1429-1431
    [60]Healy DG,Abou-Sleiman PM,Valente EM,et al.DJ-1 mutations in Parkinson's disease.J Neurol Neurosurg Psychiatry,2004,75(1):144-145
    [61]Pankratz N,Pauciulo MW,Elsaesser VE,et al.Mutations in DJ-1 are rare in familial Parkinson disease.Neurosci Lett.2006,408(3):209-213
    [62]Karamohamed S,Golbe LI,Mark MH,et al.Absence of previously reported variants in the SCNA(G88C and G209A),NR4A2(T291D and T245G)and the DJ-1(T497C)genes in familial Parkinson's disease from the GenePD study.Mov Disord.2005,20(9):1188-1191
    [63]Lockhart P J,Bounds R,Hulihan M,et al.Lack of Mutations in DJ-1 in a Cohort of Taiwanese Ethnic Chinese With Early-Onset Parkinsonism.Mov Disord,2004,19(9):1065-1069
    [64]Tan E K,Tan C,Zhao Y,et al.Genetic analysis of DJ-1 in a cohort Parkinson's disease patients of different ethnicity.Neurosci Lett,2004,367(1):109-112
    [65]郭纪锋,唐北沙,张玉虎,等.常染色体隐性遗传性早发型帕金森综合征DJ1基因突变研究.中华医学遗传学杂志,2005,22(6):641-643
    [66]Eerola J,Hernandez D,Launes J,et al.Assessment of a DJ-1(PARK7)polymorphism in Finnish PD.Neurology,2003,61(7):1000-1002
    [67]Morris CM,O'Brien KK,Gibson AM,et al.Polymorphism in the human DJ-1gene is not associated with sporadic dementia with Lewy bodies or Parkinson's disease. Neurosci Lett, 2003, 352(2): 151-153
    [68] Lucking CB, Durr A, Bonifati V, et al.Association between early-onset Parkinson's disease and mutations in the parkin gene. French Parkinson's Disease Genetics Study Group. N Engl J Med 2000, 342(21):1560-1567;
    [69] Bentivoglio AR, Cortelli P, Valente EM, et al. Phenotypic characterization of autosomal recessive PARK6-linked parkinsonism in three unrelated Italian families. Mov Disord ,2001,16(6): 999-1006;
    [70] Khan NL, Valente EM, Bentivoglio AR, et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann Neurol, 2002, 52(6): 849-853;
    [71] Dekker M, Bonifati V, van Swieten J et al. Clinical features and neuroimaging of PARK7-linked parkinsonism. Mov Disord ,2003,18(7): 751-757;
    [72] Anderson KE, Weiner WJ.Psychiatric symptoms in Parkinson's disease. Curr Neurol Neurosci Rep,2002, 2(4): 303-309
    [73] Tassin J, Durr A, de Broucker T, et al. Chromosome 6-linked autosomal recessive early-onset Parkinsonism: linkage in European and Algerian families, extension of the clinical spectrum, and evidence of a small homozygous deletion in one family. Am J Hum Genet,1998, 63(1):88-94;
    [74] Khan NL, Graham E, Critchley P, et al. Parkin disease: a phenotypic study of a large case series. Brain,2003,126(Pt 6): 1279-1292
    [75] Dekker MC, Eshuis SA, Maguire RP, et al.PET neuroimaging and mutations in the DJ-1 gene. J Neural Transm. 2004,111(12):1575-1581
    [76] Hilker R, Klein C, Ghaemi M, et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol,2001,49(3): 367-376
    [77] Hilker R, Klein C, Hedrich K,et al.The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci Lett, 2002,323(1):50-54
    [78] Khan NL, Brooks DJ, Pavese N,et al.Progression of nigrostriatal dysfunction in a parkin kindred: an [~(18)F]dopa PET and clinical study. Brain,2002,125(Pt 10):2248-2256
    [79] Khan NL, Scherfler C, Graham E,et al. Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation. Neurology,2005, 64(1): 134-136
    [80] Wu RM, Shan DE, Sun CM, et al. Clinical, ~(18)F-dopa PET, and genetic analysis of an ethnic Chinese kindred with early-onset parkinsonism and parkin gene mutations. Mov Disord, 2002,17(4):670-675
    [81] Broussolle E, Lucking CB, Ginovart N, et al. [~(18)F]-dopa PET study in patients with juvenile-onset PD and parkin gene mutations. Neurology, 2000,55:877-879
    [82] Binkofski F, Reetz K, Gaser C, et al. Morphometric fingerprint of asymptomatic Parkin and PINK1 mutation carriers in the basal ganglia. Neurology,2007, 69(9):842-850
    [83] Olzmann JA, Bordelon JR., Muly EC, et al. Selective enrichment of DJ-1 protein in primate striatal neuronal processes: implications for Parkinson's disease. J Comp Neurol,2007,500(3):585-599
    [84] Yanagida T, Takata K, Inden M, Kitamura Y, et al. Distribution of DJ-1, Parkinson's disease-related protein PARK7, and its alteration in 6-hydroxydopamine-treated hemiparkinsonian rat brain. J Pharmacol Sci, 2006 102(2):243-247
    [85] Bai Q, Mullett SJ, Garver JA, et al. Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons. Brain Res,2006 ,1113(1):33-44
    [86] Bandopadhyay R, Miller DW, Kingsbury AE, et al. Development, characterisation and epitope mapping of novel monoclonal antibodies for DJ-1 (PARK7) protein. Neurosci Lett. 2005 ,383(3):225-230
    [87] Bader V, Ran Zhu X, Liibbert H, et al. Expression of DJ-1 in the adult mouse CNS. Brain Res. 2005,1041(1):102-111
    [88] Bandopadhyay R, Kingsbury AE, Cookson MR,et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain. 2004,127(Pt2):420-430
    [89] Gaiter D, Westerlund M, Belin AC, et al. DJ-1 and UCH-L1 gene activity patterns in the brains of controls, Parkinson and schizophrenia patients and in rodents. Physiol Behav. 2007,92(1-2):46-53
    [90] Kumaran R, Kingsbury A, Coulter I, et al. DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. Neurobiol Dis,2007,28(1):122-132
    [91] Ooe H, Iguchi-Ariga SM, Ariga H. Establishment of specific antibodies that recognize C106-oxidized DJ-1. Neurosci Lett. 2006,404(1-2): 166-169
    [92] Kotaria N, Hinz U, Zechel S, et al. Localization of DJ-1 protein in the murine brain. Cell Tissue Res. 2005,322(3):503-507
    [93] Miller DW, Wilson CR, Kaleem MA, et al. Identification of the epitope of a monoclonal antibody to DJ-1. Neurosci Lett. 2005 ,374(3):203-206
    [94] Yoshida K, Sato Y, Yoshiike M, et al. Immunocytochemical localization of DJ-1 in human male reproductive tissue. Mol Reprod Dev. 2003,66(4):391-397
    [95] Shang H, Lang D, Jean-Marc B, Kaelin-Lang A. Localization of DJ-1 mRNA in the mouse brain. Neurosci Lett. 2004,367(3):273-277
    [96] Neumann M, Miiller V, Gorner K, et al. Pathological properties of the Parkinson's disease-associated protein DJ-1 in alpha-synucleinopathies and tauopathies: relevance for multiple system atrophy and Pick's disease. Acta Neuropathol (Berl). 2004 ,107(6):489-496
    [97] Rizzu P, Hinkle DA, Zhukareva V, et al. DJ-1 colocalizes with tau inclusions: a link between parkinsonism and dementia. Ann Neurol. 2004,55(1): 113-118
    [98] Mori H, Kondo T, Yokochi M, et al. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q.Neurology ,1998, 51(3):890-892
    [99] Warrenburg BP van de, Lammens M, Lucking CB, et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology, 2001, 56(4): 555-557
    [100] Huai Q, Sun Y, Wang H, et al. Crystal structure of DJ-l/RS and implication on familial Parkinson's disease. FEBS Lett. 2003,549(1-3):171-175
    [101] Lee SJ, Kim SJ, Kim IK, et al. Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J Biol Chem. 2003 ,278(45):44552-44559
    [102] Tao X, Tong L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson's disease. J Biol Chem,2003,278(33):31372-31379
    [103] Honbou K, Suzuki NN, Horiuchi M, et al. The crystal structure of DJ-1, a protein related to male fertility and Parkinson's disease. J Biol Chem,2003,278(33):31380-31384
    [104] Wilson MA, Collins JL, Hod Y, et al. The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson's disease. Proc Natl Acad Sci U S A. 2003,100(16):9256-9261
    [105] Macedo MG, Anar B, Bronner IF, et al. The DJ-1 L166P mutant protein associated with early onset Parkinson's disease is unstable and forms higher order protein complexes. Hum Mol Genet ,2003,12(21):2807-2816;
    [106] Miller DW, Ahmad R, Hague S, et al. L166P mutant DJ-1, causative for recessive Parkinson's disease, is degraded through the ubiquitin-proteasome system. J Biol Chem,2003, 278(38):36588-36595;
    [107] Lee SJ, Kim SJ, Kim IK, et al. Crystal structures of human DJ-1 and Escherichia coli Hsp31 that share an evolutionarily conserved domain. J Biol Chem ,2003, 278(45): 44552-44559
    [108] Macedo MG, Anar B, Bronner IF, et al. The DJ-1 L166P mutant protein associated with early onset Parkinson's disease is unstable and forms higher order protein complexes.Hum Mol Genet ,2003,12(21):2807-2816
    [109] Takahashi-Niki K, Niki T, Taira T, et al. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients. Biochem Biophys Res Commun. 2004,320(2):389-397
    [110] Bross P, Corydon TJ, Andresen BS, et al. Protein misfolding and degradation in genetic diseases. Hum Mutat,1999,14(3):186-198
    [111] Orth M, Schapira AH. Mitochondrial involvement in Parkinson's disease. Neurochem Int.2002,40(6):533-541
    [112] Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet. 2005,14(14):2063-2073
    [113] Mitsumoto A, Nakagawa Y . DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin.Free Radic Res,2001, 35(6): 885-893
    [114] Mitsumoto A, Nakagawa Y, Takeuchi A, et al. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res,2001, 35(3): 301-310
    [115] Li HM, Taira T, Maita C, Ariga H, Iguchi-Ariga SM. Protection against nonylphenol-induced cell death by DJ-1 in cultured Japanese medaka (Oryzias latipes) cells. Toxicology,2006,228(2-3):229-38
    [116] Kinumi T, Kimata J, Taira T, et al. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun,2004, 317(3):722-728
    [117] Ooe H, Maita C, Maita H, et al. Specific cleavage of DJ-1 under an oxidative condition. Neurosci Lett,2006,406(3): 165-168
    [118] Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A,2004,101 (24):9103-9108
    [119] Choi J, Sullards MC, Olzmann JA, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases.J Biol Chem,2006,281(16): 10816-10824
    [120] Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep.2004,5(2):213-218
    [121] Yokota T, Sugawara K, Ito K, et al . Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun,2003,312(4): 1342 - 1348
    [122] Zhou W, Freed CR. DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. J Biol Chem,2005, 280(52):43150-43158
    [123] Martinat C, Shendelman S, Jonason A, et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary Parkinsonism. PLoS Biol,2004, 2(11):e327
    [124] Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA, 2005,102(14): 5215-5220
    [125] Ved R, Saha S, Westlund B, et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem. 2005,280(52):42655-42668
    [126] Ooe H, Taira T, Iguchi-Ariga SM, et al. Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicol Sci,2005 ,88(1):114-126
    
    [127] Cookson MR. Pathways to Parkinsonism.Neuron,2003 ,37(1): 7-10
    [128] Harding HP, Zhang Y, Zeng H , et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 2003, 11(3): 619-633
    [129] Trotter EW, Kao CM, Berenfeld L, et al. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem,2002, 277(47): 44817-44825
    [130] Kapteyn JC, ter Riet B, Vink E, et al. Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol ,2001,39(2): 469-479
    [131] Quigley PM, Korotkov K, Baneyx F, et al. The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc Natl Acad Sci U S A,2003,100(6): 3137-3142
    [132] Goswami A, Dikshit P, Mishra A, et al. Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun,2006,342(1): 184-190
    [133] Li HM, Niki T, Taira T, et al. Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radic Res,2005,39(10):1091-1099
    [134] Zhou W, Zhu M, Wilson MA, Petsko GA, Fink AL. The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol. 2006 Mar 3;356(4):1036-48;
    [135] Zhong N, Kim CY, Rizzu P, et al. DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem,2006,281(30):20940-20948
    [136] Xu J, Zhong N, Wang H, et al.The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum Mol Genet,2005,14(9):1231-1241
    [137] Jeong H, Kim MS, Kwon J, et al. Regulation of the transcriptional activity of the tyrosine hydroxylase gene by androgen receptor. Neurosci Lett,2006,396(1):57-61
    [138] Clements CM, McNally RS, Conti BJ, et al. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A,2006,103(41):15091-15096
    [139] Nishinaga H, Takahashi-Niki K, Taira T, et al. Expression profiles of genes in DJ-1-knockdown and L 166 P DJ-1 mutant cells.Neurosci Lett,2005,390(1):54-59
    [140] Long X, Griffith LC. Identification and characterization of a SUMO-1 conjugation system that modifies neuronal calcium/calmodulin-dependent protein kinase II in Drosophila melanogaster. J Biol Chem,2000, 275(52): 40765-40776
    [141] Chan HY, Warrick JM, Andriola I, et al. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet,2002, 11(23): 2895-2904
    [142] Kim KI, Baek SH, Chung CH. Versatile protein tag, SUMO: its enzymology and biological function. J Cell Physiol,2002, 191(3): 257-268
    [143] Takahashi K, Taira T, Niki T, et al. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J Biol Chem,2001,276(40): 37556-37563
    [144] Shinbo Y, Niki T, Taira T, et al. Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ,2006,13(1):96-108
    [145] Fan J, Ren H, Jia N, et al. DJ-1 decreases Bax expression through repressing p53 transcriptional activity. J Biol Chem,2008,283(7):4022-4030
    [146] Fan J, Ren H, Fei E, et al. Sumoylation is critical for DJ-1 to repress p53 transcriptional activity. FEBS Lett. 2008. [Epub ahead of print]
    [147] Chen L, Jin J, Davis J, et al. Oligomeric alpha-synuclein inhibits tubulin polymerization. Biochem Biophys Res Commun,2007,356(3):548-553
    [148] Yang Y, Gehrke S, Imai Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A, 2006,103(28):10793-10798
    [149] Junn E, Taniguchi H, Jeong BS, Zhao X, Ichijo H, Mouradian MM. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc Natl Acad Sci U S A,2005 ,102(27):9691-9696
    [150] Karunakaran S, Diwakar L, Saeed U, et al. Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson's disease: protection by alpha-lipoic acid. FASEB J,2007,21(9):2226-2236
    [151] Shinbo Y, Taira T, Niki T, et al. DJ-1 restores p53 transcription activity inhibited by Topors/p53BP3. Int J Oncol,2005,26(3):641-648 the androgen receptor to exert its transcription activity that has been impaired by androgen antagonists. Biol Pharm Bull,2004,27(4):574-577
    [164] Menzies FM, Yenisetti SC, Min KT. Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Curr Biol, 2005, 15(17): 1578-1582
    [165] Park J, Kim SY, Cha GH, et al. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene,2005,361,133-139
    [166] Yang Y, Gehrke S, Haque ME, et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci U S A,2005,102(38): 13670-13675
    [167] Meulener MC, Xu K, Thomson L, et al. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc Natl Acad Sci U S A,2006,103(33):12517-12522
    [168] Meulener M, Whitworth AJ, Armstrong-Gold CE, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol, 2005,15(17): 1572-1577
    [169] Lavara-Culebras E, Paricio N. Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene,2007,400( 1 -2): 15 8-165
    [170] Chen L, Cagniard B, Mathews T, et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem, 2005, 280(22): 21418-21426
    [171] Andres-Mateos E, Perier C, Zhang L, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A,2007,104(37):14807-14812
    [172] Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron, 2005, 45(4):489-496
    [173] Pisani A, Martella G, Tscherter A, et al. Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment: role of Na+/K+ATPase. Neurobiol Dis,2006,23(1):54-60
    [174] Inden M, Taira T, Kitamura Y, et al. PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson's disease rat model. Neurobiol Dis,2006,24(1):144-158
    [175]Paterna JC,Leng A,Weber E,et al.DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice.Mol Ther,2007,15(4):698-704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700