多磺化聚芳醚质子交换膜材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磺化聚芳醚作为燃料电池用质子交换膜材料被广泛研究,当前传统的磺化聚芳醚膜材料表现出质子传导率和水溶胀率难以平衡的问题。为了获得高传导率低水溶胀率的聚芳醚材料,研究人员把目光投向对聚合物的微结构的改良方面。
     本文通过设计聚合物分子结构的方法,在不改变磺化聚芳醚芳香型碳氢结构的基础上,通过调整聚合物微结构的手段达到改善聚合物性能的目的。设计了聚合物亲水链段和疏水链段结构。首先,制备了四磺化的双氟单体,较之二磺化的磺化氟酮和磺化双氯,此单体的磺酸基团密度高,有利于聚合物内部的磺化链段聚集。同时在相同磺酸基团含量下,聚合物的疏水链段也相应的增加一倍,有利于提高聚合物的机械性能。为了进一步增加聚合物疏水链段的稳定性,将含氟的双酚(六氟双酚A)作为聚合物的双酚单体引入聚合物链段。
     我们详尽的研究了聚合物的结构和性能。结构表征数据证明所制得的产物为预期的产物。性能数据显示所制备的多磺化聚芳醚材料具有较大的分子量、低的水溶胀行为、和高的质子传导率。实现了高传导率低溶胀率的性能指标。
     综上,本文从聚合物结构设计出发设计、合成了一类新型聚芳醚质子交换膜材料。并对材料进行了详尽的性能评价,结果显示磺化聚芳醚材料的微相结构是影响材料性能的关键因素。本文的研究为优化聚芳醚质子交换膜材料提供了有利的借鉴。为磺化聚芳醚质子交换膜材料的广泛应用提供了研究基础。
Proton exchange membrane fuel cells (PEMFCs) have attracted particular interest due to their wide range of potential applications in areas such as portable and stationary power generation, personal electronic devices (e.g., mobile phones, laptop computers),and automobiles. As the key component in PEMFCs,the proton exchange membrane (PEM) must possess several characteristics including high proton conductivity, low electrical conductivity, low permeability to fuel and oxidant, oxidative and hydrolytic stability, balanced water transport, good mechanical properties, and the capability to be assembled into a membrane electrode assembly (MEA) at low cost. The ability of a PEM to mediate the transport of protons, typically via acid-bearing functionalities (e.g., sulfonic acid groups),is essential in order to achieve high levels of power generation.Under moderate operating conditions (temperature (T)<90℃, relative humidity (RH)≈100%), state-of-the-art membrane based on perfluorosulfonic acid (PFSA) ionomer(e.g., Nafion,117) as opposed to hydrocarbon ionomers (e.g.,sulfonated poly(ether ether ketone), SPEEK), and exhibit high levels of proton conductivity, water transport, and durability. However, under the more stringent operating conditions requested by industry (T>100℃, RH<50%), proton conductivity for PFSA membranes drops significantly, leading to a decrease in fuel cell performance. Thus, there is considerable interest in the development of new membranes with greatly improved levels of proton conduction for high T and low RH operation, but this requires a greater understanding of the factors that affect proton transport in these materials.
     In this thesis, we attempt to used multi-sulfonated segment to improve the morphology for improved performance of sulfonated poly(arylene ether)s. The first, we design and synthesis of four sulfonated difluoro-monomer(TSFDK).the monomer structure was confirm by NMR and FT-IR instrument. The results prove that we got objective component. Then corresponding poly(arylene ether)(SPAE) was also prepared by copolymerization form above monomer and commercial monomers. The obtained sulfonated polymers have a high viscosity properties reveal in the polymers have molecular weight. The transparent and tough membrane was obtained by solution casting method, and thick about 100μm.
     We also study on polymer properties in detail. Water uptake of sulfonated polymer is very closely related to conductivity and mechanical strength of polymer. Those sulfonated polymer exhibited moderate water uptake is below 30%and low swelling ratio at high temperature and high sulfoned degree. High sulfonated polymer exhibited high proton conductivity above 10-2 S/cm at room temperature, and low methanol permeability and excellent mechanical properties.
引文
[1]Warshay M, Prokopius P R. The fuel cell in space:yesterday,today and tomorrow[J]J. Power Sources,1990,29,193-200.
    [2]Ralph T, Hards G A, Keating J E, et al.Low Cost Electrodes for Proton Exchange Membrane Fuel Cells[J] J.Electrochem.Soc.,1997,144,3845-3850.
    [3]Dhar H P,On solid polymer fuel cells[J].J.Electroanal.Chem.1993,357,237-250.
    [4]Shoesmith J P,Collins R D,Oakley M J,Stevensonet D K. Status of solid polymer fuel cell system development[J].J.Power Source,1994,49,129-142.
    [5]Yoshida N,Ishisaki T,Watanabe A,et al.Characterization of Flemion membranes for PEFC.Electrochimica Acta,1998,43,3749-3754.
    [6]Wakizoe M,Velev O A,Srinivasan S.Anaiysis of Proton exchange membrane fuel cell performance with alternate membranes.Electrochimica Aeta,1995,40,335-344.
    [7]Yoshitake M,Tamura M,Yoshida N,etal.Studies of perfluorinated ion exchange membranes for polymerelecrtolyte fuel cells.Denki Kagaku,1996,64,727-736.
    [8]Gierke T D,Munn G E,Wilson F C,The morphology in nafion perfluorinated membraneproducts,as determined by wide-and small-angle x-ray studies[J].Journal of Polymer Seience:Polymer Physics Edition 1981,19,1687-1704.
    [9]Yang, C, P Costamagna, et al. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells[J]. Journal of Power Sources 2001, 103(1):1-9.
    [10]Hamnett, A.Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catalysis Today 1997,38(4):445-457.
    [11]Robertson G P,Mikhailenko S D,Wang K P,et al.Casting solvent interactions with sulfonated poly(ether ether ketone)during proton exchange membrane fabrication[J] Journal of Membrane Science,2003,219,113-121.
    [12]Daoust D,Devaux J,Godard P.Mechanism and kinetics of poly(ether ether ketone) (PEEK)sulfonation in concentrated sulfuric acid at room temperature Part 1.Qualita comparison between polymer and monomer model compound sulfonation[J].Polym Int.,2001,50,917-924.
    [13]Daoust D,Devaux J,Godard P.Mechanism and kinetics of poly(ether ether ketone) (PEEK)sulfonation in concentrated sulfuric acid at room temperature Part 2. Quantitative interpretation of model compound sulfonation[J].Polym.Int.,2001,50,925-931
    [14]Daoust D,Devaux J,Godard P.Mechanism and kinetics of poly(ether ether ketone) (PEEK)sulfonation in concentrated sulfuric acid at room temperature Part 3.Genera kinetic model of the sulfonation of PEEK fluoroarylketone chain-end repeat unit[J]. Polym.Int.,2001,50,932-936.
    [15]Wang, F, M Hickner, et al. Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes[J]. Journal of Membrane Science 2002,197(1-2):231-242.
    [16]Xing, P, G P Robertson, et al. Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes[J]. Journal of Membrane Science 2004,229(1-2):95-106.
    [17]Gil, M, X Ji, et al. Direct synthesis of sulfonated aromatic poly (ether ether ketone) proton exchange membranes for fuel cell applications [J]. Journal of Membrane Science 2004,234(1-2):75-81.
    [18]Wang F,Hickner M,Kim,Y S,et al.Direct polymerization of sulfonated poly(arylene ether sulfone)random(statistical)copolymers:candidates for new proton exchange membranes [J]. Journal of Membrane Science 197(2002)231-242.
    [19]Harrison W,Wang F,Mecham J B,et al.Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether)copolymers.I[J].J.Polym.Sci.,Part A: Polym.Chem.2003,41,2264-2276.
    [20]Wang F, Chen T,Xu J.Sodium sulfonate-functionalized poly(ether ether ketone)s[J]. Macromol.Chem.Phys.1998,199,1421-1426.
    [21]Wang F,Li J,Chen T,et al.Synthesis of poly(ether ether ketone)with high content of sodium sulfonate groups and its membrane characteristics[J].Polymer,1999,40,795-799.
    [22]Xiao G Y,Sun G M,Yan D Y.Polyelectrolytes for Fuel Cells Made of Sulfonated Poly(phthalazinone ether ketone)s[J].Macromol.Rapid Commun.,2002,23,488-492.
    [23]Benoit L,Karlsson L E,Jannasch P.Sulfophenylation of Polysulfones for Proton-Conducting Fuel Cell Membranes[J].Macromol.Rapid Commun.,2002,23, 896-900.
    [25]Zhang, HB; Pang, JH; Wang, D, Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes [J] Journal of membrane science 2005,264,56-64.
    [26]Wang Z, Li X, Zhao C, Ni H, Na H. Sulfonated Poly(ether ether sulfone) Copolymers for Proton Exchange Membrane Fuel Cells[J] Journal of Applied Polymer Science,2007, 104,1443-1450
    [27]Li XF, Zhang G, Xu D, Zhao CJ, Na H.Morphology study of sulfonated poly(ether ether ketone ketone)s (SPEEKK) membranes:The relationship between morphology and transport properties of SPEEKK membranes [J] Journal of power sources 2007,165 (2):701-707
    [28]Pang J, Zhang H, Li X, Jiang Z. Novel Wholly Aromatic Sulfonated Poly(arylene ether) Copolymers Containing Sulfonic Acid Groups on the Pendants for Proton Exchange Membrane Materials. [J] Macromolecules 2007,40,9435-9442
    [29]Lee K, Jeong M, Lee J, Kim Y, Lee J.synthesis and characterization of highly fluorinated cross-linked aromatic polyethers for polymer electrolytes [J].Chem. Mater.,2010,22(19), 5500-5511.
    [30]Kim D, Guiver M. Comparative Effect of Phthalazinone Units in Sulfonated Poly(arylene ether ether ketone ketone) Copolymers as Proton Exchange Membrane Materials.[J] Journal of Polymer Science:Part A:Polymer Chemistry,2008,46,989-1002
    [31]Alcaide, F, G elvarez, et al. Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications [J]. Polymer bulletin 2009,62(6):813-827.
    [32]Vallejo E,Pourcelly G,Gavach C,et al.Sulfonated polyimides as proton conductor exchange membranes.Physicochemical properties and separation H+/Mz+.by electrodialysis comparison with a peruorosulfonic membrane[J]Journal of MembraneScience,1999,160,127-137.
    [33]Genies C,Mercier R,Sillion B,et al.Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J].Polymer,2001,42,5097-5105.
    [34]Genies C,Mercier R,Sillion B,et al.Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes[J].Polymer.2001,42,359-373.
    [35]Kreuer K D,On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J] Journal of Membrane Science,2001,185,29-39.
    [36]Kim Y S,Wang F,Hickner M,et al.Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonatedpoly(arylene ether sulfone)copolymer composite membranes for higher temperature fuel cell applications [J] Journal of Membrane Science,2003,212,263-282.
    [37]Fang, J., X. Guo, et al. (2002). "Novel sulfonated polyimides as polyelectrolytes for fuel cell application.1. Synthesis, proton conductivity, and water stability of polyimides from 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid." Macromolecules 35(24): 9022-9028.
    [38]Li, Q, J O Jensen, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science 2009,34(5):449-477.
    [39]Glipa X, Haddad M, Jones D J, et al.synthesis and characterisation of sulfonated polybenzimidazole highly proton conducting polymer [J].Solid State Ionics,1997,97, 323-331.
    [40]Gieselman M, Reynolds J R. Water-Soluble Polybenzimidazole-Based Polyelectrolytes Macromolecules 1992,25,4832-4834
    [41]Wycisk, R and P Pintauro. Polyphosphazene membranes for fuel cells.[J]"Fuel Cells Ⅱ: 2009,157-183.
    [42]Allcock, H R and R M Wood. Design and synthesis of ion(?)\conductive polyphosphazenes for fuel cell applications:Review[J]. Journal of Polymer Science Part B:Polymer Physics 2006,44(16):2358-2368.
    [43]Andrianov, A K,. Marin, et al. Novel Route to Sulfonated Polyphosphazenes: Single-Step Synthesis Using Noncovalent Protection of Sulfonic Acid Functionality [J]. Macromolecules 2004,,37(11):4075-4080.
    [44]Allcock H R, Fitzpatrick R J, Salvati L. Sulfonation of(aryloxy)-and (arylamino)phosphazenes:small-molecule compounds,polymers,and surfaces[J].Chem. Mater.,1991,3,1120-1132.
    [45]Tang H, Pintauro P N, Guo Q, O'Connor S Polyphosphazene membranes.Ⅲ.Solid-state characterization and properties of sulfonated poly[bis(3-methylphenoxy)phosphazene] [J].J.Appl.Polym.Sci.1999,71,387-399.
    [46]Guo Q, Pintauro P N, ang H, et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J] Journal of Membrane Science,1999,154,175-181.
    [47]Wycisk, R and P N Pintauro.Sulfonated polyphosphazene ion-exchange membranes [J] Journal of Membrane Science 1996,119(1):155-160.
    [48]Guo, Q Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J]. Journal of Membrane Science 1999,154(2):175-181.
    [49]Allcock, H R. Crosslinking Reactions for the Conversion of Polyphosphazenes into Useful Materials[J]. Chemistry of Materials 1994,6(9):1476-1491.
    [50]张海博,磺化聚芳醚酮聚合物系列质子交换膜材料的hech及性能研究。吉林大学博士学位论文[D].长春:吉林大学化学学院,2005.
    [51]赵成吉,嵌段型磺化聚芳醚类质子交换膜材料的结构与性能研究[D].长春:吉林大学化学学院,2007.
    [52]Warshay M,,Prokopius P R.The fuel cell in space:yesterday,today and tomorrow[J].J. Power Sources,1990,29,193-200.
    [53]Ralph T,Hards G A,Keating J E,et al.Low Cost Electrodes for Proton Exchange Membrane Fuel Cells[J].J.Electrochem.Soc.,1997,144,3845-3850.
    [54]Dhar H P,On solid polymer fuel cells[J].J.Electroanal.Chem.1993,357,237-250.
    [55]Merz, H and G Zundel. Proton conduction in bacteriophodopsin via a hydrogen-bonded chain with large proton polarizability[J]. Biochemical and Biophysical Research Communications 1981,101(2):540-546.
    [56]Lorrain, Y, G Pourcelly, et al. Transport mechanism of sulfuric acid through an anion exchange membrane[J]. Desalination 1997,109(3):231-239.
    [57]Siu, A, J Schmeisser, et al. Effect of water on the low temperature conductivity of polymer electrolytes[j]. The Journal of Physical Chemistry B 2006,110(12):6072-6080.
    [58]Kreuer, D, A Rabenau, et al. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors [J]. Angewandte Chemie International Edition in English 1982 21(3):208-209.
    [59]Hinokuma, K and M Ata. Fullerene proton conductors [J]. Chemical physics letters 2001,341(5-6):442-446.
    [60]Ramani, V., H. Kunz, et al. Investigation of Nafion(?)/HPA composite membranes for high temperature/low relative humidity PEMFC operation[J]. Journal of Membrane Science 2004,232(1-2):31-44.
    [61]Guha, A, W Lu, et al. Surface-modified carbons as platinum catalyst support for PEM fuel cells[J]. Carbon 2007,45(7):1506-1517.
    [62]Pavlov, M, P E M Siegbahn, et al. Mechanism of HH activation by nickel-iron hydrogenase[J]. Journal of the American Chemical Society 1998,120(3):548-555.
    [63]Kazim, A, H Liu, et al. Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields[J]. Journal of Applied Electrochemistry 1999,29(12): 1409-1416.
    [64]Shoesmith J P, Collins R D, Oakley M J, Stevensonet D K. Status of solid polymer fuel cell system development [J].J. Power Source,1994,49,129-142.
    [65]Yoshida N, T Ishisaki, et al. Characterization of Flemion membranes for PEFC [J].Electrochimica Acta 1998,43(24):3749-3754.
    [66]Ghassemi, H, J E McGrath, et al. Multiblock sulfonated-fluorinated poly (arylene ether) for a proton exchange membrane fuel cell [J]. Polymer 2006,47(11):4132-4139.
    [67]Roy, A, M A Hickner, et al. Influence of chemical composition and sequence length on the transport properties of proton exchange membranes [J]. Journal of Polymer Science Part B:Polymer Physics 2006,44(16):2226-2239.
    [68]Sone, Y, P Ekdunge, et al. Proton Conductivity of Nafion 117 as Measured by a Four(?)\Electrode AC Impedance Method[J]. Journal of the Electrochemical Society 1996,143:1254.
    [69]Nakabayashi, K, K Matsumoto, et al. Influence of adjusted hydrophilic Chydrophobic lengths in sulfonated multiblock copoly (ether sulfone) membranes for fuel cell application[J]. Journal of Polymer Science Part A:Polymer Chemistry 2008,46(22): 7332-7341.
    [70]Norsten, T B, M D Guiver, et al.Highly Fluorinated Comb Shaped Copolymers as Proton Exchange Membranes (PEMs):Improving PEM Properties Through Rational Design[J].Advanced Functional Materials 2006,16(14):1814-1822.
    [71]Kim, D S, Y S Kim, et al. Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs):Fuel cell performance [J]. Journal of Power Sources 2008,182(1):100-105.
    [72]Matsumoto, K, T Higashihara, et al. Star-shaped sulfonated block copoly (ether ketone)s as proton exchange membranes. Macromolecules 2008,41(20):7560-7565.
    [73]Lafitte, B and P Jannasch. Proton Conducting Aromatic Polymers Carrying Hypersulfonated Side Chains for Fuel Cell Applications [J]. Advanced Functional Materials 2007,17(15):2823-2834.
    [74]Miyatake, K, H Zhou, et al. Proton Conductive Polyimide Electrolytes Containing Fluorenyl Groups:Synthesis, Properties, and Branching Effect [J].Macromolecules 2004, 37(13):4956-4960.
    [75]Matsumura, S, A R Hlil, et al. Synthesis, properties, and sulfonation of novel dendritic multiblock copoly (ether sulfone)[J]. Journal of Polymer Science Part A:Polymer Chemistry 2008,46(19):6365-6375.
    [76]Chikashige, Y, Y Chikyu, et al. Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications[J].Macromolecules 2005,38(16):7121-7126.
    [77]Ramani, V, H Kunz, et al. Investigation of Nafion(?)/HPA composite membranes for high temperature/low relative humidity PEMFC operation [J]. Journal of Membrane Science 2004,232(1-2):31-44.71
    [78]Li, N, D W Shin, et al. Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups[J]. Macromolecules 2010,43(23): 9810-9820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700