等离子弧焊接SiCp/6061Al基复合材料工艺与合金化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC颗粒增强铝基复合材料(简称SiCp/Al基复合材料)具有比强度高、比模量高、膨胀系数低、耐磨性良好等优异的综合性能,在航天、航空结构件、发动机耐热和耐磨部件等方面有着广阔的应用前景。然而由于SiCp/Al基复合材料的特殊组织结构导致其焊接性很差,难以形成高强度焊接接头,成为该种材料走向实用化的严重障碍,因此铝基复合材料的焊接技术是其走向工业化必须解决的问题。
     本文以SiCp/6061Al MMCs为研究对象,采用添加药芯焊丝的方式对其进行等离子弧(以Ar+N2为离子气、Ar为保护气)焊接。借助于金相显微镜、扫描电镜、X射线衍射分析仪、能谱仪及透射电子显微镜等微观分析手段,研究了不同成分药芯焊丝对焊接接头组织与性能的影响,并对焊接熔池内大片状Al3Ti的形成机理以及细化工艺进行了系统的分析。
     基于Ti元素在焊接SiCp/6061Al MMCs时的作用,本试验研制了SiCp/6061Al MMCs熔化焊接专用富Ti药芯焊丝。药芯焊丝以其药粉易调节,制作工艺简单等优点,为SiCp/6061Al MMCs的焊接性能的研究提供了有利的条件。
     本文选用了Ti-Si-Al、Ti-Mg-Al和Ti-Si-Mg-Al三种不同成分的药芯焊丝分别对SiCp/6061Al MMCs进行焊接试验。在填加Ti-Si-Al和Ti-Mg-Al两种药芯焊丝的试验中,焊丝内部Ti元素的成分比例为固定值,通过改变Si和Mg的成分比例,分别对SiCp/6061Al MMCs进行焊接试验,进而分析出Si和Mg对焊缝性能的影响。在对前面试验结果分析的基础上制作Ti-Si-Mg-Al药芯焊丝,对SiCp/6061Al MMCs进行焊接试验,并对试验结果进行分析。试验结果表明填加15Ti-5Si-5Mg-Al药芯焊丝等离子弧焊接SiCp/6061Al MMCs的焊接接头强度最高,其最高值为267Mpa达到母材强度的83.4%。
     焊接熔池内适当的Ti元素能够抑制脆生相Al4C3的生成,但是过多的Ti元素会导致焊缝内部形成大片状的Al3Ti相,降低焊缝性能。本试验通过对焊缝内部大片状Al3Ti相微观形貌从200倍至50000倍的逐次放大观察,结合对Al3Ti颗粒形成机理的研究,分析得知焊缝内部大片状Al3Ti相是由细小棒状Al3Ti颗粒聚集而成。通过提高熔池液态金属运动的剧烈程度和改善熔池内部合金元素的比例等方式可以抑制细小棒状Al3Ti颗粒的聚集,从而达到消除大片状Al3Ti相,提高焊接接头性能的目的。
SiC particle reinforced aluminum metal matrix composites(SiCp/Al MMCs), which exhibit excellent combinations of high specific strength, high specific stiffness, low coefficient of thermal expansion and excellent wear resistance, have more and more widely application in aerospace-flight, aviation structure, and heat resistant wearable parts of engine. However, Aluminum metal matrix composites is not applied widely in industry duo to its poor weldability. The welding technique is the key to wide industry applicaton for Aluminum metal matrix composites.
     The effects on microstructures and mechanical properties and the alloying mechanism of weld by plasma arc "in-situ" welding (Ar and N2 as ionized gas, Ar as fielded gas) of SiCp/6061Al MMCs filling with flux-cored wires were investgated with the help of OM (optics microscopy), SEM (scanning microscopy), TEM (Transmission electron microscopy), EDS (Energy Disperse Spectroscopy) and XRD (X-ray diffraction) in the present work. A systemic analysis was also carried out on the formation mechanism and refinement technology of the long strip Al3Ti phase.
     Based on the analysis of the role of Ti in the weld, which can inhibit the harmaful phase and inprove the performance of the weld. The rich-Ti flux-cored wire was produced specialized for welding of SiCp/Al MMCs, which have the advantage of simply producting process and easily adjusting ratio of the powder.
     Three kind of flux-cored wires were used for the SiCp/Al MMCs welding test, that is Ti-Si-Al, Ti-Mg-Al and Ti-Si-Mg-Al wires. The content of Ti in the Ti-Si-Al and Ti-Mg-Al flux-cored wires is unchanged all the time, so that the role of Si and Mg in the motlen pool can be analyzed by changing the ratio of them repectively in the flux-core wires during welding. The Ti-Si-Mg-Al flux-cored wire was prepared on the base of the research of Si and Mg. The test results show that the highest tensile strength of the weld joints was getting by plasma arc welding of SiCp/Al MMCs with 15Ti-5Si-5Mg-Al flux-cored wire as filler and the maximum value of the joint is 267 MPa up to 83.4% of the base metal.
     As the formation of long strip Al3Ti phase, the tensile strength of the joint will decreased when too much Ti fusing into the pool, although the need like brittle phase Al4C3 is inhibited. Combined the observation of microstructure with the molding mechanism of Al3Ti particles, we can get the conclusion that the long strip Al3Ti phase in the weld is an aggregates, which is consist of fine Al3Ti particles. The tensile strength of the weld can be improved by suppressing the formation of the long strip Al3Ti phase, while the formation of the long strip Al3Ti phase can be inhibited by increasing the movement of the molten pool or improving the ratio of the alloy elements in the flux-cored wires.
引文
[1]李降盛.铸造合金及熔炼[M]北京:机械工业出版社,1989.
    [2]Feest E A, Kyong R M. Who Can Profit From The Use of Metal Matrix Composites [J]. Metallurgic.1996,3:113-119.
    [3]Lioyd D J. Particle Reinforced Aluminum Magnesium Composites[C]. International Materials Reviews.1994,39(1):1-22.
    [4]Chen Yonglai,ShangMinjia,Yu Ligen, et al. Laser beam welding of SiC Particle reinforced 6061 aluminum alloy metal matrix composite[J]. Appl.Lasers,1999,13(5):289-292.
    [5]Klimowig T F. The Large-scale Commercialization of Aluminum Matrix Composites [J]. 1994,46:49-53.
    [6]吴人杰.下世纪我国复合材料的发展机遇与挑战[J].复合材料学报.2000,17(1):1-4.
    [7]Liu Y L. A Study on Flow Stress of Al-SiC Composite Deformated in a Large Range of Strain. Scripta Materialia[J].1996,35 (2):253-259.
    [8]Wan F L, Sun Z M, Kobsyashi T. Monotonic and Cyclic Deformation Behavior of a SiCw/6061Al Composite at Elevated Temperature. Scripta Materialia.1996,35 (8):973-978.
    [9]牛济泰刘黎明铝基复合材料焊接研究现状及展望[J]哈尔滨工业大学学报1999,31(1):130-136.
    [10]Ells M B D. Joining of aluminum based metal matrix composites [J]. International Materials Reviews.1996.41 (2):41-58.
    [11]Kenndy J R. Microstructural observations of arc welded boron-aluminum composites. Welding Jourual[J],1973.3:120-124.
    [12]林丽华等.金属基复合材料焊接技术及其发展动向[J].材料科学与工程,1997(3):23-28.
    [13]Tom Miller. B/Al composite is stiffer light. Advanced Materials & Process[J],1997(2):2.
    [14]M. ADAMIAK,.J. B. FOGAGNOLO, E.M. RUIZ-NAVAS, L. A. DOBRZANSKI, J. T. TORRALBA Mechanically milled AA6061/(Ti3Al)p MMC reinforced with intermetallics-the structure and properties[J], Journal of Materials Processing Technology, Vol.155-156, 2004, p.:2002-2006.
    [15]Mosnier W C. Interaction of Al-Si,Al-Ce,and Zn-Al Enteatil Alloys With SiC/Al Discontinuously Reinforced Metel Matrix Composites. Journal of Materials Science [J].1987.22:115-122.
    [16]刘红霞,王少刚,季小辉.碳化硅颗粒增强铝基复合材料的钎焊连接研究进展[J].热加工工艺.2007,36(7):65-67.
    [17]李敬勇,赵勇颗粒增强铝基复合材料的焊接性及其搅拌摩擦焊[J].材料开发与应用2004,19(6):30-33.
    [18]Midling 0 T. A Process Model for Friction Welding of Al-Si-Mg Alloys and Al-Sic MMCs[J]. Act a Metall Mater.1994,42(5):1595-1622.
    [19]Onzawa T,Suzumura A, Hkim J, etal. Joining of Titanium matrix Composites Reinforced With SiC-CVD Fiber[J]. Welding International.1992,6 (99):707-712.
    [20]M. B.D.Ellis. Joining of aluminum based metal matrix composites[J]. International Matrials Reviews.1995,12:153-158.
    [21]崔江涛.Al203/6061Al复合材料TLP焊接接头力学性能和微观组织的分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2003:4-5.
    [22]THOMAS F. KLIMOWIZ. The large-scale commercialization of aluminum-matrix composites [J]. JOM,1994,(11):49-53.
    [23]Ahearn.J.S.Mart in marietta laboratories[C],NSWC Contract No.N60921-80-c-0064, 1981.
    [24]林丽华,唐逸明,顾明元等.金属基复合材料焊接技术及其发展动向[J].材料科学与工程,1997,59(3):23-28.
    [25]唐逸民.金属基复合材料焊接的研究进展问题及对策[J].焊接研究与生产.1998.(1):5-12.
    [26]腾原力.复合材料とろの接合技术[J].溶接学会志.1991,60(1):43-49.
    [28]广赖明夫.金属基复合材料。结合[J].溶接学会志.1996.65(4):1692-1698.
    [29]桃野正,西川浩司,圆成敏男,池内建二SiC/Al纤维强化复合材料。扩散熔接[J].轻金属学会第71回秋季大会讲演概要.1986.89-94. 文集.1987.5(3):317-322.
    [31]牛济泰.利用Gleeble1500热/力模拟试验机研究扩散焊参数对镁基复合材料接头性能的影响[J].哈尔滨工业大学学报.1996.(28):89-92.
    [32]杜兴春.碳化硅晶须增强铝基复合材料扩散焊的研究[D].哈尔滨工业大学硕士学位论文.1991:81-85.
    [33]A.Urena.Diffusion Bonding of Discontinuously Reinforced SiC/Al Composite:The Role of Interlayers[J]. Key Engineering Materials.1995.(5):104-107.
    [34]A.Urena.Diffusion Bonding of an Aluminum-Copper Alloy Reinforced with Silicon Carbide Particles (AA2014/SiC/13p) Using Metallic Interlayers[J]. Scripta Materialia.1996. 35(11):1285-1293.
    [35]Goddard D M, Pepper R T,et al. Feasibility of brazing and welding aluminum-graphite composites[J]. Welding Journal,1972(4):178-182.
    [36]Shirzard A A, Wallach E R. New approaches for transient liquid phase diffusion bonding of Al based MMC[J]. Materials Science & Technology,1987(2):135-142.
    [37]牛济泰,刘黎明,孟庆昌,刘兴秋.Al2O3/6061Al复合材料焊接工艺参数的优化及接头组织[J].焊接学报.1999,20(1):28-33.
    [39]杜敬磊,李路明,张雁军,等.焊接过程中电弧超声对细化晶粒的影响[J].电焊机.2002,32(3):6-8.
    [40]陈彦宾,张德库,牛济泰,冀国娟.激光焊接铝基复合材料钛的原位增强作用[J].应用激光,2002;22(3):320-338.
    [41]陈永来,于利根,王华明.合金化填充材料Ni对SiCp/6061复合材料激光焊接焊缝显微组织的影响[J].复合材料学报,2000;17(4):63-65.
    [42]雷玉成,袁为进,朱飞,等.等离子弧焊接SiCp/Al基复合材料焊缝“原位”合金化分析[J].焊接学报,2005,26(12):13-16。
    [43]雷玉成,朱飞,袁为进,等Ti对SiCp/Al等离子弧焊焊缝组织的影响[J]材料科学与工艺2006,14(6):565-567。
    [44]袁为进.合金化填充材料Ti及其它工艺参数对SiCp/6061Al等离子弧焊焊缝组织及性能的影响[D].镇江:江苏大学硕士学位论文.2005:3-20.
    [45]冀国娟,谢建刚,薛文涛SiCp/101铝基复合材料的填加焊丝TIG焊[J]有色金属2003,55(4):21-23.
    [46]郭绍庆,袁鸿,谷卫华等SiCp/Al的熔化焊及高能束焊研究现状[J]宇航材料工艺2005 35(4):19-24.
    [47]LEI Yu-cheng,YUAN Wei-jin,CHEN Xi-zhang et.al.In-stu weld-alloying plasna arc welding of SiCp/Al MMCs [J]. Trans. Nonferrous Met. Soc. China,2007,17(2):313-317
    [48]黄恢元主编.铸造手册:铸造非铁合金[M].北京:机械工业出版社,1983.233.
    [49]韩媛媛,武高辉,李凤珍等热处理过程中SiCP/2024Al复合材料的热应力分析[J]材料科学与工艺200412(3):288-302.
    [50]赵玉厚;严文,周敬恩,Si、Mg对原位铝基复合材料中增强体Al3Ti形貌的影响[J].兵器材料科学与工程2001,24(2):34-37.
    [51]张永俐,罗素华SiC-Al界面Al4C3的生成及其控制[J].材料科学与工程,1998,16(1):32-35.
    [52]D.J. Lloyd, et al, Stability of SiC in Molten Aluminum,Advanced Structrual Malerials [J], Edited by D.S.Wilkinison,pergamon Press,71.
    [53]候增寿金属学原理[M].上海:上海科学技术出版社,1990.
    [54]谭敦强,黎文献Al-Ti-C晶粒细化剂对工业纯铝的晶粒细化[J].特种铸造及有色合金200324(2):1-3.
    [55]王学政,赵明,房建强,薛卫京SiCp/ZL109复合材料热处理工艺优化[J]复合材料2005年中国压铸、挤压铸造、半固态加工学术年会专刊.2005:97-99.
    [56]陈彦宾,张德库,牛济泰等.激光焊接铝的复合材料钛的原位增强作用[J].应用激光,2002,22(3):320-322.
    [57]A.Hirose. Joining process for structure application of continuous fiber reinforced MMC[J].Key Engi Mater.1995,104-107.
    [58]Yu Huashun, J.D. Kim, S.B. Kang, The formation of AlN and TiN particles during nitrogen bearing gas injection into Al-Mg-Ti melt[J]. Materials Science and Engineering A 386 2004:318-325.
    [59]王慕珍,孙永.SiCw/6061Al激光焊规范参数对接头强度的影响[J].航天工艺.1991.(6):1-5.
    [60]潘龙修.SiCw/6061Al复合材料激光焊[D],哈尔滨:哈尔滨工业大学硕士学位论 文.1992:81-87.
    [61]王旭.YCJ601Ni-QL低合金高强度钢药芯焊丝的研制[D].武汉:武汉理工大学硕士学位论文.2009:5-12.
    [62]张振.SiCp/6061Al基复合材料等离子弧原位焊接工艺研究[D].镇江:江苏大学硕士学位论文.2007:22-28.
    [63]杨林,王立军,张辉.钢带成型法生产药芯焊丝的成型工艺及设备[J].轧钢.2010,27(2):43-45.
    [64]Lee jae-chul, Byun Ji-young, Oh Chang-seok et al.Effect of various processing methods on the interfacial reactions in SiCp/2024 Al composites[J].Acta mater,1997,45(12):5303-5315.
    [65]Lee Jae-chul, Park Sung-Bea, Seok Hyun-kwang et al. Prediction of Si content to suppress the interfacial reaction in the SiCp/2014Al composite[J]. Acta mater,1998,46(8):2635 2643.
    [66]Narciso,C Garcia-Cordvilla, E. Louis. Reactivity of thermally oxidized and unoxidized SiC particulate with aluminum-silicon alloys[J]. Mater Sci Eng B,1992,15:148-155.
    [67]张永俐,罗素华.SiC-Al界面Al4C3的生成及其控制[J].材料科学与工程,1998,16(1):32-35
    [68]D.J. Lloyd, et al, Stability of SiC in Molten Aluminum[J], Advanced Structrual Malerials, Edited by D.S.Wilkinison,pergamon Press,71.
    [69]陈建,潘复生.合金元素影响铝/陶瓷界面润湿性的研究现状[J].兵器材料科学与工程.1999,22(4):55-57.
    [70]郭宏,李义春,石力开.原始SiC颗粒表面及SiCp/Al复合材料界面化学状态的研究[J].复合材料学报,1997,14(4):42-47
    [71]钟锐.镁基复合材料(TiCp/AZ91)TIG接头组织与力学性能[D].吉林:吉林大学硕士学位论文.2007:27-28.
    [72]谭敦强,黎文献,余琨,等.SiC铝基复合材料的制备和界面问题[J].铝合金组织与性能,2000,23(3):39-42.
    [73]姜瑞姣,姜龙涛,孙利听,等。亚微米A12O3p/Al-Mg-Si复合材料时效行为[J].复合材料学报,2009,26(2):1-5.
    [74]JIANG Longtao,WU Gaohui, SUN Dongli, et al. Microst ructure and mechanical behavior of sub-micro particulate reinforced Al matrix composites [J].J Mater, Sci Lett, 2002,21 (8):609-611.
    [75]Wu Jie-jun. WANG Dian-bin. Analysis of casting defects in SiCp reinforced aluminum matrix composites [J].Acta Metallurgica Sinica.1999.35(1):103-108.(in chinese)
    [76]雷玉成,邵奇栋,张振,聂佳俊.Ti-Al合金对SiCp/6061Al基复合材料等离子弧焊焊缝组织的影响[J].中国有色金属学报.2009,19(2):241-246.
    [77]雷玉成,张振,陈希章,聂佳俊.热处理对SiCp/6061Al基复合材料等离子弧焊接头性能的影响[J].焊接学报.2008,29(11):9-12.
    [78]李培杰,叶益聪,何良菊.Sc和Ti对纯铝细化机理的价电子结构分析[J].科学通报.2008,53(11):1345-1349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700