黄泛区饱和粉土抗液化试验研究与数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山东省的黄河泛滥影响地区主要由黄河冲积而成,地表沉积了10m左右厚的泛滥沉积物,形成了特殊的黄河泛滥区的地质地貌条件,是我国一种特殊的区域性土,这类沉积物以粉土、粉细砂为主,并夹有软土,结构松散,强度低,是工程建设的不良地基。在黄泛区,高等级公路大量投入使用,但是地下水位的反复升降和交通荷载的振动作用,引起了饱和粉土地基的液化及不均匀沉降,导致路面开裂、破损,严重影响了路面的使用状况,大大增加了养护维修费用,若遇地震作用,液化问题将更加突出,所以,粉土液化成为一个亟待解决的问题。因此,本文针对黄泛区饱和粉土地基的液化问题,展开系统而深入的研究,采用室内试验和现场试验、数值分析相结合的方法,对黄泛区饱和粉土的动力特性和饱和粉土地基的液化性能进行了研究。主要工作有以下几个方面:
     (1)介绍了黄河泛滥影响区饱和粉土的工程地质特征。根据黄泛区饱和粉土含水率试验、颗粒级配试验、界限含水量试验和击实试验等的结果,分析了黄泛区粉土特殊的物理力学性质,为研究液化问题奠定了基础。
     (2)通过动三轴试验,研究了黄泛区饱和粉土的动力强度特性,分析得出密实度、粘粒含量的多少是影响黄泛区饱和粉土动强度的重要因素。
     (3)运用FLAC-3D软件对在地震荷载作用下的黄泛区饱和粉土地基进行数值模拟,地基的表层粉土层发生液化的可能性较小,沿地基深度的增大发生液化的可能性增大,这说明地基强夯加固深度范围内,因为动力压实的作用,密实度增大,提高了该区域的动强度,从而提高了该土层的抗液化能力,为强夯法地基处理技术在黄泛区的普及提供了理论基础。
     本论文的研究成果对黄河泛滥影响地区的高速公路在地震、车辆动荷载作用下的地基液化发展过程与变形的科学预测具有一定的指导意义,对道路的地基处理具有工程实践意义,对车辆动荷载作用下的地基变化研究具有促进作用。
The Yellow River flood area in Shandong Province whose surface is deposited by flood sediments which is about ten meters thick is formed mainly alluvial deposits of Yellow River. The flood sediments is mainly constituted of silt and fine sand, forming special geological conditions in this area. The regional foundation which is loose and low intensity is bad in construction.The highways are widely applied in the Yellow River flood area,but some of their sueface crake and fail to work because of the liquefaction and differential settlement induced by variation of groundwater level and impaction of vehicle'vibration.In case of earthquake, liquefaction will become more prominent.Therefore,it seriously influences application and increases maintaining expenses.The liquefaction of silt is a serious problem to be solve.In this paper,the liquefaction of saturated silt ground was studyed systemly and deeply.The dynamic characteristics of saturated silt in the Yellow River flood area was also studyed. The laboratory test, field test,and the numerical analysis methods were used in the article. The primary studies listed bellow were carried out:
     (1)The engineering geological characteristics of saturated silty soil was introduced.The special physical and mechanical properties of silt in the Yellow River flood area was analyzed which is the basis to study the liquefaction by the moisture test,particle size distribution test,limit water test and compaction test we had done in the Laboratory.
     (2)This paper introduced the dynamic characteristics of saturated silt in the Yellow River flood area were studyed by triaxial test. From the results we knew that the density and the amount of clay content were important factors that affected the dynamic strength of saturated silty soil in this area.
     (3)The saturated silt ground in this area which was exerted by seismic loads was simulated numerically by using FLAC-3D. Liquefaction in surface of powder foundation occurred less likely and with the increasing depth of foundation it occurred more likely. The density of soil in upper layer increased because of the role of dynamic compaction. And as density increased, the dynamic strength of soil in this region improved,thus improving the soil liquefaction resistance.It provides a theoretical basis for the popularity of dynamic compaction in the Yellow River flood areas.
     The paper has some guidance significance for the liquefaction of foundation under the effect of vehicle dynamic load in in the Yellow River flood areas and scientific forecast of transmutation, possesses engineering practice importance for road foundation treatment, and is provided with promotion effect for the study of foundation soil changes under the effect of vehicle dynamic load.
引文
[1]成国栋,薛春汀.黄河三角洲沉积地质学[M].北京:地质出版社,1997
    [2]王小花.黄河三角洲饱和地基土地震液化判别综合方法研究[D].硕士学位论文,青岛:中国海洋大学,2005
    [3]冯秀丽,沈渭锉,杨荣民等.现代黄河口水下三角洲软土沉积物工程地质特性[J].青岛海洋大学学报,1994(9):132~137
    [4]郑继民,沈渭牲,陆念祖.黄河口及渤海中南部沉积物工程特性及其机理[J].青岛海洋大学学报,1994,24(2):232~238
    [5]许国辉,单红仙,贾永刚.黄河水下三角洲沉积物在循环荷载作用下土体中孔压变化试验研究[J].青岛海洋大学学报,2003,33(1):80~86
    [6]单红仙.黄河水下三角洲表层工程地质环境动态变化研究[D].博士学位论文,青岛:青岛海洋大学,2003
    [7]陈希哲.土力学地基基础[M].北京:清华大学出版社,2004,4
    [8]Hwang, J. H., Yang, C. W. Verification of critical cyclic strength curve by Taiwan Chi earthqua Ke data[J].Soil Dynamics and Earthquake Engineering 2001,21(3):237~257
    [9]石兆吉,郁寿松,王余庆,杨石红.饱和轻亚粘土地基液化可能性判别[J].地震工程与工程振动,1984,4(3):71~81
    [10]Hwang, J. H., Yang, C. W. Verification of critical cyclic strength curve by Taiwan Chi earthqua Ke data[J].Soil Dynamics and Earthquake Engineering,2001,21(3):237~257
    [11]李静琪.深覆盖层上面板堆石坝静动力特性及坝基地震液化研究[D].硕士学位论文,南京:河海大学,2007
    [12]H.B.Seed et al,Simplified procedure for evalvations of soil liquefaction potential[J].SM, ASCE, vol.97, No SM9,1971
    [13]H.B.Seed et al,Pore-Pressure change during soil liquefaction[J]. Soil and Foundations, Vol.17,1972.6
    [14]Finn,Effect of strain history on liquefaction of sand[J]. Journal of the soil mechanics and foundation,ASCE,NO.96
    [15]Finn,W.D.Liam et al,Sand liquefaction in triaxial and simple shear tests[J]. Jour.of the Soil Mech.and Found.Div,ASCE,Vol.97
    [16]I.Ishihara and M.A.Sherif,Soil liquefaction of saturated sand in triaxial torsion shear test[J]. Soils and Foundation,vol.18,No.4
    [17]汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962,2期
    [18]魏汝龙.往复荷载下饱和粉砂中的孔隙压力[J].土木工程学报,1983.3
    [19]谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力变化机理与计算模型[J].土木工程学报,1990.5,vol.23 No.2
    [20]谢定义,巫志辉.不规则动荷脉冲波对砂土液化特性的影响[J].岩土工程学报,1987.9
    [21]沈珠江.复杂荷载下砂土液化变形的结构性模型,第五届全国土动力学学术会议论文集[C].大连,1998,53-63
    [22]崔杰,门福录.砂土循环剪切液化物理机制[C].第四届全国土力学会议论文选集,1983
    [23]崔杰,门福录.砂土振动液化过程的动力分析[C].第四届全国岩土力学数值分析与解析方法讨论会文集,1991.4
    [24]Men Fulu and Cui Jie,Dynamic analysis of sand liquefaction[J].Proc.9th ECEE,Vol.4b,1990
    [25]Men Fulu,Roles of water in soil dynamics problems[J].ASME,80-C21/PVP-61,1980
    [26]张克绪.饱和非粘性土坝坡地震稳定性的分析[J].岩土工程学报,1980.9
    [27]张克绪.饱和砂土的液化应力条件[J].地震工程与工程振动,1984.3
    [28]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力模型[J].地震工程与工程振动,1985.5
    [29]徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限元法动力分析[J].华东水利学院学报,1981.4
    [30]何广讷,李万民.振动能量下砂土的体变与孔隙水压力[J].地震工程与工程振动,1987.7
    [31]罗强.和粉土动力特性试验研究[D].硕士学位论文,哈尔滨:中国地震局工程力学研究所,2005
    [32]衡朝阳.含粘粒砂土抗液化性能的实验研究[J].工程地质学报,2001.9
    [33]A.Yamamuro M.Covert,Monotonic and cyclic liquefaction of Very loose sands with silt content[J].Geotechnical and Geoenvironmental Engineering,2001.4 Vol.127 No.4
    [34]P.Polito and R.Martin,Effects of nonplastic fines on the liquefaction resistance of sands[J].Geotechnical and Geoenvironmental Engineering,2001.3 Vol.127 No.5
    [35]T.L.Yond et.al,Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of solis[J]. Geotechnical and Geoenvironmental Engineering,2001.10
    [36]S.Thevanayagam,Undrained fragility of clean sands,silty sands and sandy silts[J].Geotechnical and Geoenvironmental Engineering,2002.10 Vol.128 No.10
    [37]F.Amini,Liquefaction testing of stratified silty sands[J]. Geotechnical and Geoenvironmental Engineering,2000.3 Vol.126 No.3
    [38]景立平,崔杰等.徐州市堂张镇饱和粉土液化性能试验研究[J].地震工程与工程振动,2004.12
    [39]石兆吉等.轻亚粘土液化特性及现场判别[J].水文地质工程地质,1982(3)
    [40]刘颖.再论抗震规范的砂土液化判别方法[R].工程力学研究所研究报告,1982
    [41]王余庆等.预测轻亚粘土液化势的统计公式[J].岩土工程学报,1980(3)
    [42]钟龙辉.轻亚粘土地震液化判定方法的分析[J].岩土工程学报,1980.9
    [43]郁寿松等.水平土层液化势的判别方法[J].地震工程与工程振动,1980(1)
    [44]程超.黄河口粉质土液化判别标准研究[D].硕士学位论文,青岛:中国海洋大学,2007
    [45]刘福臣.对粉土定名的商榷[J].岩土工程技术,1999(1)
    [46]唐延钦.低液限粉土的特性与压实技术研究[D].硕士学位论文,济南:山东大学,2006
    [47]Xueyu Wang,Xiankun Ke,1997,Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast[J].China, Sedimentary Geology,112:105-122
    [48]薛允传,尹延鸿,高抒.黄河三角洲北部潮间带沉积物的粒度特征[J].海洋科学,2001,25(5),50-54
    [49]成国栋,薛春汀.黄河三角洲沉积地质学[M].北京:地质出版社,1997,36-40
    [50]杜红庆.粉性土路基变形沉降的有限元分析[D].硕士学位论文,济南:山东大学,2005
    [51]薛守义.高等土力学[M].北京:中国建材工业出版社,1997,3
    [52]赵慧.循环荷载作用下粉土的破坏标准和动力特性的试验研究[D].硕士学位论文,南京:河海大学
    [53]孙晋.加筋土动力特性试验研究[D].硕士学位论文,太原:太原理工大学
    [54]汤馥郁,迟海燕,赵元丽.雷泽湖水库动三轴试验资料整理及成果分析[C].山东水利学会第九届优秀学术论文集,2004
    [55]廖红建,王铁行.岩土工程数值分析[M].机械工业出版社.2006
    [56]刘波,韩彦辉.FLAC原理、实例与应用指南[M].人民交通出版社,2006.5
    [56]李学宁、刘惠珊、周根寿等,液化层减震机理研究[J].地震工程与工程振动,12(3),1992,84-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700