过渡金属氧化物纳米结构的构筑及其储锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于日益凸显的能源危机、环境问题,核能、太阳能等产生的电能需得到高效储存的要求,发展高效、廉价和环境友好的储能装置就成为科学界和工业界面对的重要的挑战和机遇。二次锂离子电池相较于传统的铅酸、镍氢电池,具有高能量密度、电压平稳、自放电率小、持久的循环性能以及绿色环保等优点,在我们日常所用的小型移动电子设备中发挥着重要的作用。目前,随着锂离子电池在电动汽车和智能电网等大功率用电器和储能领域的发展,人们对商业化的锂离子电池提出了更高的要求。而高性能锂离子电池的实现依赖于其中电极材料的结构设计和性能提升。过渡金属氧化物负极材料具有高于传统的碳/石墨基负极材料2-3倍的理论比容量,是实现高容量、高功率、长寿命的锂离子电池的潜在电极材料。但是,其较差的电子电导率及循环过程中的体积效应限制了其应用。研究发现,纳米技术在过渡金属氧化物材料中的应用可以有效的缓解以上缺点。因此,发展过渡金属氧化物纳米电极材料来解决上述问题,对提高锂离子电池的整体性能具有重要的实际意义。
     在本论文中,我们旨在利用简单的方法构筑高性能的锂离子电池纳米电极材料,为锂离子电池负极材料的发展提供有益的探索。本论文的主要内容如下:
     (1)采用水热反应,首次在β-MnO2纳米棒表面成功外延生长α-FeOOH纳米棒。并通过时间演化,研究了该结构的生长过程。该β-MnO2/a-FeOOH枝状结构呈现出四次对称性的新颖特征,经高分辨透射电镜照片证明,主要是由于FeOOH的(010)晶面与Mn02的(100)晶面的晶格匹配。经过高温煅烧,得到结构保持的β-MnO2/a-Fe2O3枝状纳米棒。并且详细考察了β-MnO2纳米棒、α-Fe2O3多孔纳米棒以及β-MnO2/a-Fe2O3枝状纳米棒的电化学性能。β-Mn02/a-Fe2O3枝状结构具有最优异的电化学性能,在1Ag-1的电流密度下,循环200圈后,还能保持1028mAhg-1的比容量;在4Ag-1的电流密度下,比容量还能达到881mAhg-1。 β-MnO2/a-Fe2O3枝状结构具有的较高的比表面积、丰富的多孔性以及β-MnO2与α-Fe2O3之间的协同作用等对提高电极材料的性能起到至关重要的作用。
     (2)采用枝状β-MnO2/a-Fe2O3纳米棒与葡萄糖溶液在190℃下水热反应5小时,制备得到多级核壳α-Fe2O3@C纳米管。该纳米管继承了β-MnO2/a-Fe2O3结构的尺寸、形貌和多级的表面结构。通过调节反应物β-MnO2/a-Fe2O3纳米棒与葡萄糖的比例,得到具有不同碳层厚度的多级核壳a-Fe2O3@C纳米管,并研究了其锂离子电池负极性能。通过锂电测试发现,碳层最薄的样品具有最优的倍率性能和循环稳定性。他们在0.2和1Ag-1电流密度下循环100圈后,还能分别得到1173,1014mAh g-1的比容量。甚至在4Ag-1下循环1000圈,容量还能保持在482mAh g-1.该优异的电化学性能主要得益于多级核壳a-Fe2O3@C纳米管较薄的碳层,可以有效地促进电子、离子传输和抑制充放电过程中的体积效应。
     (3)采用MnOOH纳米棒为模版,利用吡咯单体的聚合反应,合成了MnOOH@PPy同轴纳米棒。MnOOH@PPy同轴纳米棒经过高温还原,得到了氮掺杂的碳包覆MnO同轴纳米棒结构(MnO@C-N)。研究了MnO@C-N与MnO的电化学性能,发现MnO@C-N具有明显增大的比容量、倍率性能和循环性能。Li/MnO@C-N电极在500mAg1电流密度下的循环100圈后,比容量达到982mAh g-1,相比于Li/MnO电极的703mAh g-1有了较大的提高。Li/MnO@C-N电极在1000mAg-1的大电流密度下循环900圈,还能保持679mAh g-1的比容量。该优异的电化学性能可以归结于氮掺杂的碳包覆一维结构,其可以有效地促进电荷转移和抑制体积效应。
One of the most important challenges academia and industries are facing today is to provide high efficient, low cost and environmental friendly energy storage devices to address the problems of environmental pollution, the impending exhaustion of fossil fuels and to support the sustainable usage of green and clean energy sources likenuclear power,solar, etc. Since the practical applications of LIBs highly rely on the performance of electrodes, how to design and achieve high-efficient, low-cost and safe electrode materials turns into a great challenge. Transition metal oxides are promising electrode materials because of their high specific capacity, typically2-3times higher than that of carbon/graphite based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications due to their poor electronic conductivity and large volume expansion during cycling. It is reported that nanoscale materials can greatly increase the performance of the metal oxide electrodes. Therefore, numerous efforts are urgently required to design advanced electrode nanostructures with high performance in the application of electrochemical energy storage devices.
     In this paper, we rationally designed nanostructured electrode materials withexcellent electrochemical performance for the LIBs. The main results are as follows:
     (1) Hierarchical nanocomposites rationally designed in component and structure, are highly desirable for the development of lithium ion batteries, because they can take full advantages of different components and various structures to achieve the superior electro-chemical properties. Here, the branched nanocomposite with β-MnO2nanorods as the back-bone and porous α-Fe2O3nanorods as the branches are synthesized by a high-temperature annealing of FeOOH epitaxially grown on the β-MnO2nanorods. Since the β-MnO2nanorods grow along the four-fold axis, the as-produced branches of FeOOH and a-Fe2O3are aligned on their side in a nearly four-fold symmetry. This synthetic process for the branched nanorods built by β-Mn02/a-Fe2O3is characterized by XRD patterns, SEM, TEM and HRTEM images.
     The branched nanorods of β-MnO2/a-Fe2O3present an excellent lithium-storage performance. They exhibit a reversible specific capacity of1028mAh g-1at a current density of1000mA g-1up to200cycles, much higher than the building blocks alone. Even at4000mA g-1, the reversible capacity of the branched nanorods could be kept at881mAh g-1. The outstanding performances of the branched nanorods are attributed to the synergistic effect of different components and the hierarchical structure of the composite. The disclosure of the correlation between the electrochemical properties and the structure/component of the nanocomposites, would greatly benefit the rational design of the high-performance nanocomposites for lithium ion batteries in the future.
     (2) High-performance anode materials in lithium ion batteries greatly lie on the elaborate controls on their size, shape, structure and surface. However, it is difficult to assemble all the controls within one particle, due to difficulties in synthesis. Here, hierarchical carbon-coated a-Fe2O3nanotubes were prepared by a facile hydrothermal reaction between branched MnO2/Fe2O3nanorods and glucose. The resulting nanotubes realize all these controls in one particle in terms of nanoscale size, one-dimensional shape, hollow structure, hierarchical surface and carbon coating. Meanwhile, the thickness of the carbon layer could be easily controlled by the ratio between different reactants. Electrochemical measurements show that the core-shell nanotubes with a thinnest carbon layer give the best cycling and rate performances. They deliver a specific capacity of1173mAh g-1after100cycles at a current density of0.2A g-1,or1012mAh g-1after300cycles at1A g-1. Even after1000cycles at a current density of4A g-1, the specific capacity could be still kept at482mAh g-1. The excellent lithium-storage performances could be attributed to the well-designed controls in this nanocomposite and a thin carbon layer that increase the electron conductivity of the electrode and keep the carbon content lower simultaneously.
     (3) MnOOH@PPy coaxial nanorods were firstly prepared by the polymerization reaction of pyrrole in the present of MnOOH nanorods. Then, MnOOH@PPy core-shell nanorods tansformed to coaxial MnO@C-N nanorods after treated in Ar/H2at700℃o The Li/MnO@C-N electrode demonstrates a specific capacity of982mAh g"1after100cycles at500mA g-1, higher than that of Li/MnO electrode. Even after 900cycles at1000mA g-1,Li/MnO@C-N electrode can still display679mAh g-1. The excellent electrochemical properties are related to the rationally designed nanostructures, such as, one dimensional, carbon coating and N-doping.
引文
[1]Q. Zhang, E. Uchaker, S. L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev.,2013,42,3127-3171.
    [2]J. B. Goodenough, K. S. Park, The Li-ion rechargeable battery:a perspective. J. Am. Chem. Soc.,2013,135,1167-1176.
    [3]S. Jeong, S. Park, J. Cho, High-Performance, Layered,3D-LiCoO2 Cathodes with a Nanoscale Co3O4 Coating via Chemical Etching. Adv. Energy Mater.,2011, 1,368-372.
    [4]B. J. Hwang, C. Y. Chen, M. Y. Cheng, R. Santhanam, K. Ragavendran, Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J. Power Sources,2010,195,4255-4265.
    [5]M. M. Shaijumon, E. Perre, B. Daffos, P. L. Taberna, J. M. Tarascon, P. Simon, Nanoarchitectured 3D cathodes for Li-ion microbatteries. Adv. Mater.,2010,22, 4978-4981.
    [6]W. Lai, C. K. Erdonmez, T. F. Marinis, C. K. Bjune, N. J. Dudney, F. Xu, R. Wartena, Y. M. Chiang, Ultrahigh-energy-density microbatteries enabled by new electrode architecture and micropackaging design. Adv. Mater.,2010,22, E139-144.
    [7]I. D. Scott, Y. S. Jung, A. S. Cavanagh, Y. Yan, A. C. Dillon, S. M. George, S. H. Lee, Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett.,2011,11,414-418.
    [8]F. Wu, M. Wang, Y. Su, L. Bao, S. Chen, A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 for advanced lithium-ion batteries. J. Power Sources, 2010,195,2900-2904.
    [9]Y Huang, J. Chen, F. Cheng, W. Wan, W. Liu, H. Zhou, X. Zhang, A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. J. Power Sources,2010,195,8267-8274.
    [10]W. Luo, F. Zhou, X. Zhao, Z. Lu, X. Li, J. R. Dahn, Synthesis, Characterization, and Thermal Stability of LiNi1/3Mn1/3Co1/3-zMgzO2, LiNi1/3-zMn1/3Co1/3Mgz02, and LiNi1/3Mn1/3-zCo1/3MgzO2. Chem. Mater.,2010,22,1164-1172.
    [11]M. Tabuchi, Y. Nabeshima, T. Takeuchi, K. Tatsumi, J. Imaizumi, Y. Nitta, Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J. Power Sources,2010,195,834-844.
    [12]S. Lee, Y. Cho, H. K. Song, K. T. Lee, J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem. Int. Ed.,2012,51,8748-8752.
    [13]Y. L. Ding, J. Xie, G. S. Cao, T. J. Zhu, H. M. Yu, X. B. Zhao, Enhanced Elevated-Temperature Performance of Al-Doped Single-Crystalline LiMn2O4Nanotubes as Cathodes for Lithium Ion Batteries. J. Phys. Chem. C, 2011,115,9821-9825.
    [14]S. Lim, J. Cho, PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem. Commun.,2008,10,1478-1481.
    [15]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, K. Kim do, Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett.,2010,10,3852-3856.
    [16]J. Y Shi, C.-W. Yi, K. Kim, Improved electrochemical performance of AlPO4-coated LiMn1.5Ni0.5O4 electrode for lithium-ion batteries. J. Power Sources,2010,195,6860-6866.
    [17]R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNio.5Mn1.5O4 material. J. Power Sources,2010,195,5442-5451.
    [18]M. Aklalouch, J. M. Amarilla, R. M. Rojas, I. Saadoune, J. M. Rojo, Sub-micrometric LiCr0.2Nio.4Mn1.4O4 spinel as 5V-cathode material exhibiting huge rate capability at 25 and 55℃. Electrochem. Commun.,2010,12,548-552.
    [19]T. Ohzuku, M. Kitagawa, T. Hirai, Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell Ⅲ. X-Ray Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide. J. Electrochem. Soc.,1990,137,769-775.
    [20]X. L. Xin Gu, Liqiang Xu, Huayun Xu, Jian Yang, Yitai Qian, Synthesis of Spinel LiNixMn2-xO4 (x=0,0.1,0.16) and Their High Rate Charge-Discharge Performances. Int. J. Electrochem. Sci.,2012,7,2504-2512.
    [21]A. K. N. Padhi, K. S.; Masquelier, C.; Goodenough, J. B.,, Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J. Electrochem. Soc.,1997,144,2581-2586.
    [22]M. T. Takahashi, S.; Takei, K.; Sakurai, Y.,, Evidence for Interfacial-Storage Anomaly in Nanocomposites for Lithium Batteries from First-Principles Simulations. Solid State Ionics,2002,148,283-289.
    [23]A. S. T. Andersson, J. O.; Kalska, B.; Haggstrom, L., Thermal stability of LiFePO4-based cathodes. Electrochem. Solid State Lett.,2000,3,66-68.
    [24]H. M. Xie, R. S. Wang, J. R. Ying, L. Y. Zhang, A. F. Jalbout, H. Y. Yu, G. L. Yang, X. M. Pan, Z. M. Su, Optimized LiFePO4-Polyacene Cathode Material for Lithium-Ion Batteries. Adv. Mater.,2006,18,2609-2613.
    [25]G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater.,2010,22,4944-4948.
    [26]X. Zhou, F. Wang, Y. Zhu, Z. Liu, Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem.,2011,21,3353.
    [27]J. Wang, X. Sun, Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. EnergyEnviron. Sci.,2012,5, 5163.
    [28]H. Liu, Q. Cao, L. J. Fu, C. Li, Y. P. Wu, H. Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun.,2006, 8,1553-1557.
    [29]L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J. B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci.,2011,4,269.
    [30]T. Muraliganth, A. V. Murugan, A. Manthiram, Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries. J. Mater. Chem.,2008,18,5661.
    [31]M. Z. Jiangfeng Qian, Yuliang Cao,Xinping Ai, and Hanxi Yang, Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4Microspheres for High-Performance Lithium-Ion Batteries. J. Phys. Chem. C,2010,114, 3477-3482.
    [32]C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, Monodisperse Porous LiFePO4Microspheres for a High Power Li-Ion Battery Cathode. J. Am. Chem. Soc.,2011,133,2132-2135.
    [33]K. S. N. A. K. Padhi, J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc.,1997,144, 1188-1194.
    [34]D. Choi, D. Wang, I. T. Bae, J. Xiao, Z. Nie, W. Wang, V. V. Viswanathan, Y. J. Lee, J. G. Zhang, G. L. Graff, Z. Yang, J. Liu, LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett., 2010,10,2799-2805.
    [35]S. H. Shin-ichi Nishimura, Ryoji Kanno, Masatomo Yashima, Noriaki Nakayama,Atsuo Yamada, Structure of Li2FeSiO4. J. Am. Chem. Soc.,2008,130, 13212-13213.
    [36]T. Muraliganth, K. R. Stroukoff, A. Manthiram, Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M=Mn and Fe) Cathodes for Lithium-Ion Batteries. Chem. Mater.,2010,22,5754-5761.
    [37]A. Nytn, S. Kamali, L. Hggstrm, T. r. Gustafsson, J. O. Thomas, The lithium extraction/insertion mechanism in Li2FeSiO4. J. Mater. Chem.,2006,16,2266.
    [38]Z. Gong, Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci.,2011,4,3223.
    [39]J.-N. C. N. Recham, L. Dupont, C. Delacourt, W.Walker, M. Armand, J-M. Tarascon, A 3.6V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat. Mater.,2010,9,68-74.
    [40]M. N. Shin-ichi Nishimura, Ryuichi Natsui, Atsuo Yamada, New Lithium Iron Pyrophosphate as 3.5 V Class Cathode Material for Lithium Ion Battery. J. Am. Chem. Soc.,2010,132,13596-13597.
    [41]W. J. Lee, T. H. Hwang, J. O. Hwang, H. W. Kim, J. Lim, H. Y. Jeong, J. Shim, T. H. Han, J. Y. Kim, J. W. Choi, S.O. Kim, N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries. Energy Environ. Sci., 2014,7,621.
    [42]T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, J. A. Rogers, U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett.,2010,10,1710-1716.
    [43]W.-M. Zhang, J.-S. Hu, Y.-G. Guo, S.-F. Zheng, L.-S. Zhong, W.-G. Song, L.-J. Wan, Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Adv. Mater.,2008, 20,1160-1165.
    [44]L. Shen, E. Uchaker, X. Zhang, G. Cao, Hydrogenated Li(4)Ti(5)O(12) nanowire arrays for high rate lithium ion batteries. Adv. Mater.,2012,24,6502-6506.
    [45]M. V. Reddy, G. V. Subba Rao, B. V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev.,2013,113,5364-5457.
    [46]J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater.,2012,24,5166-5180.
    [47]S. Li, C. Chen, K. Fu, R. White, C. Zhao, P. D. Bradford, X. Zhang, Nanosized Ge@CNF, Ge@ C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries. J. Power Sources, 2014,253,366-372.
    [48]Y. Yu, C. Yan, L. Gu, X. Lang, K. Tang, L. Zhang, Y. Hou, Z. Wang, M. W. Chen, O. G. Schmidt, Three-Dimensional (3D) Bicontinuous Au/Amorphous-Ge Thin Films as Fast and High-Capacity Anodes for Lithium-Ion Batteries. Advanced Energy Materials,2013,3,281-285.
    [49]C. Yan, W. Xi, W. Si, J. Deng, O. G. Schmidt, Lithium-Ion Batteries:Highly Conductive and Strain-Released Hybrid Multilayer Ge/Ti Nanomembranes with Enhanced Lithium-Ion-Storage Capability. Adv. Mater.,2013,25,644-644.
    [50]T. Song, H. Cheng, K. Town, H. Park, R. W. Black, S. Lee, W. I. Park, Y. Huang, J. A. Rogers, L. F. Nazar, Electrochemical Properties of Si-Ge Heterostructures as an Anode Material for Lithium Ion Batteries. Adv. Funct. Mater.,2013.24, 1458-1468.
    [51]Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. R. Zachariah, C. Wang, Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano lett.,2013,13, 470-474.
    [52]J. Chen, Z. Zhu, S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng, Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano lett.,2013.14,153-157.
    [53]C. Wang, Y. Li, Y.-S. Chui, Q.-H. Wu, X. Chen, W. Zhang, Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Nanoscale,2013, 5,10599-10604.,.
    [54]M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, L. Roue, A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci.,2013,6,2145.
    [55]Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P. T. Hurley, O. Mao, J. Chen, Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun., 2013,29,67-70.
    [56]H.-Y. Lee, S.-M. Lee, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem. Commun., 2004,6,465-469.
    [57]J. Ji, H. Ji, L. L. Zhang, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater.,2013,25,4673-4677.
    [58]Q. Si, M. Matsui, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, N. Imanishi, Carbon paper substrate for silicon-carbon composite anodes in lithium-ion batteries. J. Power Sources,2013,241,744-750.
    [59]H. Tao, L.-Z. Fan, W.-L. Song, M. Wu, X. He, X. Qu, Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale,2013,6,3138-3124.
    [60]J. Ji, H. Ji, L. L. Zhang, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries. Adv. Mater.,2013,25,4673-4677.
    [61]J. Deng, H. Ji, C. Yan, J. Zhang, W. Si, S. Baunack, S. Oswald, Y. Mei, O. G. Schmidt, Naturally Rolled-Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithium-Ion Batteries with Remarkable Cycling Performance. Angew. Chemie,2013,125,2382-2386.
    [62]S. Scharner, W. Weppner, P. Schmid-Beurmann, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33T11.67O4 Spinel. J. Electrochem. Soc.,1999,146,857-861.
    [63]M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D. Lutzenkirchen-Hecht, R. Frahm, F. M. Mulder, A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12. Adv. Mater.,2006,18, 3169-3173.
    [64]J.-F. Colin, V. Godbole, P. Novak, In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochem. Commun.,2010,12,804-807.
    [65]J. Chen, L. Yang, S. Fang, Y. Tang, Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochim. Acta,2010,55, 6596-6600.
    [66]Y. Li, G. Pan, J. Liu, X. Gao, Preparation of Li4Ti5O12 nanorods as anode materials for lithium-ion batteries. J. Electrochem. Soc.,2009,156, A495-A499.
    [67]L. Shen, X. Zhang, E. Uchaker, C. Yuan, G. Cao, Li4TisO12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater.,2012,2,691-698.
    [68]M. Rahman, J. Z. Wang, M. F. Hassan, D. Wexler, H. K. Liu, Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12-TiO2:A Nanocomposite Anode Material for Li-Ion Batteries. Adv-Energy Mater.,2011, 1,212-220.
    [69]Y.-R. Jhan, C.-Y. Lin, J.-G. Duh, Preparation and characterization of Ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability. Mater. Lett.,2011,65,2502-2505.
    [70]T.-F. Yi, J. Shu, Y.-R. Zhu, X.-D. Zhu, R.-S. Zhu, A.-N. Zhou, Advanced electrochemical performance of Li4Ti4.95V0.05O12as a reversible anode material down to 0V. J. Power Sources,2010,195,285-288.
    [71]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407,496-499.
    [72]S. Xiong, J. S. Chen, X. W. Lou, H. C. Zeng, Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)-0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater.,2012,22,861-871.
    [73]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Adv. Mater,2008,20,258-262.
    [74]X.-1. Huang, R.-z. Wang, D. Xu, Z.-l. Wang, H.-g. Wang, J.-j. Xu, Z. Wu, Q.-c. Liu, Y. Zhang, X.-b. Zhang, Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries. Adv. Funct. Mater.,2013,23, 4345-4353.
    [75]R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, J. M. Tarascon, Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium. Chem. Mater.,2004,16, 1056-1061.
    [76]Y. Yu, C. H. Chen, J. L. Shui, S. Xie, Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew. Chem. Int. Ed.,2005, 44,7085-7089.
    [77]K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang, L. Chen, MnO powder as anode active materials for lithium ion batteries. J. Power Sources,2010,195, 3300-3308.
    [78]X. Li, D. Li, L. Qiao, X. Wang, X. Sun, P. Wang, D. He, Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J. Mater. Chem.,2012,22,9189.
    [79]G. L. Xu, Y. F. Xu, H. Sun, F. Fu, X. M. Zheng, L. Huang, J. T. Li, S. H. Yang, S. G. Sun, Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem. Commun.,2012,48,8502-8504.
    [80]W.-M. Chen, L. Qie, Y. Shen, Y.-M. Sun, L.-X. Yuan, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy,2013,2,412-418.
    [81]Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Adv. Funct. Mater.,2013,23,2436-2444.
    [82]S. Wang, Y. Ren, G. Liu, Y. Xing, S. Zhang, Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries. Nanoscale,2014,DOI:10.1039/c3nr05916b.
    [83]Y. Xiao, X. Wang, W. Wang, D. Zhao, M. Cao, Engineering Hybrid between MnO and N-Doped Carbon to Achieve Exceptionally High Capacity for Lithium-Ion Battery Anode. ACSAppl. Mater. Interfaces,2014,6,2051-2058.
    [84]K. Chen, Y. Dong Noh, K. Li, S. Komarneni, D. Xue, Microwave-Hydrothermal Crystallization of Polymorphic MnO2for Electrochemical Energy Storage. J. Phys. Chem. C,2013,117,10770-10779.
    [85]L. Li, C. Nan, J. Lu, Q. Peng, Y. Li, alpha-MnO2 nanotubes:high surface area and enhanced lithium battery properties. Chem. Commun.,2012,48,6945-6947.
    [86]H. Lai, J. Li, Z. Chen, Z. Huang, Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2012,4,2325-2328.
    [87]J. M. Kim, Y. S. Huh, Y.-K. Han, M. S. Cho, H. J. Kim, Facile synthesis route to highly crystalline mesoporous y-MnO2 nanospheres. Electrochem. Commun., 2012,14,32-35.
    [88]J. Jiang, J. Zhu, Y. Feng, J. Liu, X. Huang, A novel evolution strategy to fabricate a 3D hierarchical interconnected core-shell Ni/MnO2 hybrid for Li-ion batteries. Chem. Commun.,2012,48,7471-7473.
    [89]A. Yu, H. W. Park, A. Davies, D. C. Higgins, Z. Chen, X. Xiao, Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO2Nanotube as Anode for Lithium Ion Batteries. J. Phys. Chem. Lett.,2011,2,1855-1860.
    [90]H. Xia, M. Lai, L. Lu, Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem.,2010,20,6896.
    [91]S.-H. Yu, D. E. Conte, S. Baek, D.-C. Lee, S.-K. Park, K. J. Lee, Y. Piao, Y.-E. Sung, N. Pinna, Structure-Properties Relationship in Iron Oxide-Reduced Graphene Oxide Nanostructures for Li-Ion Batteries. Adv. Funct. Mater., 2013,DOI:10.1002/adfm.201300190.
    [92]J. M. Jeong, B. G. Choi, S. C. Lee, K. G. Lee, S. J. Chang, Y. K. Han, Y. B. Lee, H. U. Lee, S. Kwon, G. Lee, C. S. Lee, Y. S. Huh, Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes. Adv. Mater.,2013,DOI: 10.1002/adma.201302710.
    [93]S.-H. Lee, V. Sridhar, J.-H. Jung, K. Karthikeyan, Y.-S. Lee, R. Mukherjee, N. Koratkar, I.-K. Oh, Graphene-Nanotube-Iron Hierarchical Nanostructure as Lithium Ion Battery Anode. ACS Nano,2013,7,4242-4251.
    [94]X. Xu, R. Cao, S. Jeong, J. Cho, Spindle-like mesoporous alpha-Fe(2)O(3) anode material prepared from MOF template for high-rate lithium batteries. Nano Lett., 2012,72,4988-4991.
    [95]B. Koo, H. Xiong, M. D. Slater, V. B. Prakapenka, M. Balasubramanian, P. Podsiadlo, C. S. Johnson, T. Rajh, E. V. Shevchenko, Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett.,2012,12, 2429-2435.
    [96]Z. Wang, D. Luan, F. Y. Boey, X. W. Lou, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc.,2011,133, 4738-4741.
    [97]B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc.,2011,133,17146-17148.
    [98]J. Zhu, Z. Yin, D. Yang, T. Sun, H. Yu, H. E. Hoster, H. H. Hng, H. Zhang, Q. Yan, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci.,2013,6, 987.
    [99]X. Wang, X.-L. Wu, Y.-G. Guo, Y. Zhong, X. Cao, Y. Ma, J. Yao, Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. Adv. Funct. Mater.,2010,20,1680-1686.
    [100]A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan, Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries. Nano Lett.,2009,9,1002-1006.
    [101]C. X. Guo, M. Wang, T. Chen, X. W. Lou, C. M. Li, A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High-Performance Lithium Ion Batteries. Adv. Energy Mater.,2011,1,736-741.
    [102]Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Assembling carbon-coated a-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci.,2012,5,5252.
    [103]W. Zhou, C. Cheng, J. Liu, Y. Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H. H. Hng, T. Yu, H. J. Fan, Epitaxial Growth of Branched a-Fe2O3/SnO2 Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Adv. Funct. Mater,2011,21,2439-2445.
    [104]L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, Controlled fabrication of flower-like ZnO-Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method. J. Mater. Chem.,2012,22,7544.
    [105]Y. Luo, J. Luo, J. Jiang, W. Zhou, H. Yang, X. Qi, H. Zhang, H. J. Fan, D. Y. W. Yu, C. M. Li, T. Yu, Seed-assisted synthesis of highly ordered TiO2@a-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci.,2012,5,6559.
    [106]D. Kong, J. Luo, Y. Wang, W. Ren, T. Yu, Y. Luo, Y. Yang, C. Cheng, Three-Dimensional Co3O4@MnO2Hierarchical Nanoneedle Arrays:Morphology Control and Electrochemical Energy Storage. Adv. Funct. Mater.,2014, DOI: 10.1002/adfm.201304206.
    [107]L. Yu, Z. Wang, L. Zhang, H. B. Wu, X. W. Lou, TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. J. Mater. Chem. A,2013,1,122.
    [108]X. Zhang, H. Chen, Y. Xie, J. Guo, Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core-shell nanorods. J. Mater. Chem. A,2014,2,3912.
    [109]W. Zeng, F. Zheng, R. Li, Y. Zhan, Y. Li, J. Liu, Template synthesis of SnO2/alpha-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale,2012,4,2760-2765.
    [110]Y. Wang, J. Xu, H. Wu, M. Xu, Z. Peng, G. Zheng, Hierarchical SnO2-Fe2O3 heterostructures as lithium-ion battery anodes. J. Mater. Chem.,2012,22,21923.
    [111]J. S. Chen, C. M. Li, W. W. Zhou, Q. Y. Yan, L. A. Archer, X. W. Lou, One-pot formation of SnO2 hollow nanospheres and alpha-Fe203@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale,2009,1, 280-285.
    [112]J. Zhu, Z. Lu, M. O. Oo, H. H. Hng, J. Ma, H. Zhang, Q. Yan, Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2-Fe2O3/rGO composite nanostructures. J. Mater. Chem.,2011,21,12770.
    [113]X. Y. Xue, Z. H. Chen, L. L. Xing, S. Yuan, Y. J. Chen, SnO2/alpha-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun.,2011,47,5205-5207.
    [114]D.-W. Kim, I.-S. Hwang, S. J. Kwon, H.-Y. Kang, K.-S. Park, Y.-J. Choi, K.-J. Choi, J.-G. Park, Highly Conductive Coaxial SnO2-In2O3 Heterostructured Nanowires for Li Ion Battery Electrodes. Nano Lett.,2007,7,3041-3045.
    [115]X. Wu, S. Zhang, L. Wang, Z. Du, H. Fang, Y. Ling, Z. Huang, Coaxial SnO2@TiO2 nanotube hybrids:from robust assembly strategies to potential application in Li+storage. J. Mater. Chem.,2012,22,11151.
    [116]Y.-M. Lin, R. K. Nagarale, K. C. Klavetter, A. Heller, C. B. Mullins, SnO2 and TiO2-supported-SnO2 lithium battery anodes with improved electrochemical performance. J. Mater. Chem.,2012,22,11134-11139.
    [117]Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu, Z. Chen, T. Guo, R. Zeng, Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications. RSC Advances,2011,1,1834.
    [118]G. Du, Z. Guo, P. Zhang, Y. Li, M. Chen, D. Wexler, H. Liu, SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries. J. Mater. Chem.,2010,20,5689.
    [119]X. Hou, X. Wang, B. Liu, Q. Wang, Z. Wang, D. Chen, G. Shen, SnO2@TiO2Heterojunction Nanostructures for Lithium-Ion Batteries and Self-Powered UV Photodetectors with Improved Performances. ChemElectroChem,2014,1,108-115.
    [120]J. H. Jeun, K. Y. Park, D. H. Kim, W. S. Kim, H. C. Kim, B. S. Lee, H. Kim, W. R. Yu, K. Kang, S. H. Hong, SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. Nanoscale,2013,5, 8480-8483.
    [1]C. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chem. Soc.Rev.,2010,39,3115-3141.
    [2]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont,J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407,496-499.
    [3]J. S. Chen,L. A. Archer, X. W. Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. Mater. Chem.,2011,21,9912-9924.
    [4]L. Shen, E. Uchaker, X. Zhang, G. Cao, Hydrogenated Li4Ti5O12Nanowire Arrays for High Rate Lithium Ion Batteries. Adv. Mater.,2012,24,6502-6506.
    [5]H. B. Wu, J. S. Chen, H. H. Hng, X. W. Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale,2012,4, 2526-2542.
    [6]J. S. Chen, C. M. Li, W. W. Zhou, Q. Y. Yan, L. A. Archer, X. W. Lou,One-pot formation of SnO2 hollow nanospheres and alpha-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale,2009,1, 280-285.
    [7]Y. L. Wang, J. J. Xu, H. Wu, M. Xu,Z. Peng, G. F. Zheng,Hierarchical SnO2-Fe2O3 heterostructures as lithium-ion battery anodes.J. Mater. Chem.,2012,22, 21923-21927.
    [8]W. Q. Zeng, F. P. Zheng, R. Z. Li, Y. Zhan, Y. Y. Li, J. P. Liu,Template synthesis of SnO2/alpha-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale,2012,4,2760-2765.
    [9]W. W. Zhou, C. W. Cheng, J. P. Liu,Y. Y. Tay, J. Jiang, X. T. Jia, J. X. Zhang, H. Gong, H. H. Hng, T. Yu,H. J. Fan, Epitaxial Growth of Branched a-Fe2O3/Sn02Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Adv. Funct. Mater.,2011,21,2439-2445.
    [10]W. W. Zhou,Y. Y. Tay, X. T. Jia, D. Y. Yau Wai, J. Jiang, H. H. Hoon, T. Yu, Controlled growth of SnO2@Fe2O3 double-sided nanocombs as anodes for lithium-ion batteries. Nanoscale,2012,4,4459-4463.
    [11]J. X. Zhu, Z. Y. Lu, M. O. Oo, H. H. Hng,J. Ma, H. Zhang, Q. Y. Yan, Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2-Fe2O3/rGO composite nanostructures. J. Mater. Chem.,2011,21, 12770-12776.
    [12]Y. S. Luo, J. S. Luo, J. Jiang, W. W. Zhou, H. P. Yang, X. Y. Qi,H. Zhang, H. J. Fan, D. Y. W. Yu, C. M. Li, T. Yu,Seed-assisted synthesis of highly ordered TiO2@a-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications.Energy Environ.Sci.,2012,5,6559-6566.
    [13]L. Yu, Z. Y. Wang, L. Zhang, H. B. Wu,X. W. Lou, TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. J. Mater. Chem. A,2013,1,122-127.
    [14]L. M. Qin, Q. Zhu,G. R. Li, F. T. Liu, Q. M. Pan, Controlled fabrication of flower-like ZnO-Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method. J. Mater. Chem.,2012,22, 7544-7550.
    [15]Z. X. Yang, G. D. Du, Q. Meng, Z. P. Guo, X. B. Yu, Z. X. Chen,T. L. Guo, R. Zeng, Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications.RSC Adv.2011,1,1834-1840.
    [16]X. M. Wu,S. C. Zhang, L. L. Wang, Z. J. Du, H. Fang, Y. H. Ling, Z. H. Huang,Coaxial SnO2@TiO2 nanotube hybrids:from robust assembly strategies to potential application in Li+storage.J. Mater. Chem.,2012,2,11151-11158.
    [17]G. D. Du, Z. P. Guo,P. Zhang, Y. Li, M. B. Chen, D. Wexler, H. K. Liu, SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries. J. Mater. Chem.,2010,20,5689-5694.
    [18]X. Y. Xue, Z. H. Chen, L. L. Xing, S. Yuan,Y. J. Chen, SnO2/alpha-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun.,2011,47,5205-5207.
    [19]D. W. Kim,I. S. Hwang, S. J. Kwon, H. Y. Kang, K. S. Park, Y. J. Choi, K. J. Choi,J. G. Park, Highly Conductive Coaxial SnO2-In2O3 Heterostructured Nanowires for Li Ion Battery Electrodes. Nano Lett.,2007,7,3041-3045.
    [20]Y. M. Lin, R. K. Nagarale, K. C. Klavetter, A. Heller, C. B. Mullins,SnO2 and TiO2-supported-SnO2 lithium battery anodes with improved electrochemical performance. J. Mater. Chem.,2012,22,11134-11139.
    [21]B. Sun, J. Horvat, H. S. Kim, W. S. Kim, J. Ahn, G. X. Wang,Synthesis of Mesoporous a-Fe2O3 Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries.J.Phys.Chem. C,2010,114, 18753-18761.
    [22]M. V. Reddy, T. Yu, C. H. Sow,Z. X. Shen, C. T. Lim, G. V. Subba Rao, B. V. R. Chowdari, a-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries. Adv. Funct.Mater.,2001,17,2792-2799.
    [23]Z. Y. Wang, D. Y. Luan, S. Madhavi,Y Hu, X. W. Lou, Assembling carbon-coated a-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci.,2012,5,5252-5256.
    [24]M. S. Wu, P. C. J. Chiang, Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochem. Commun.,2006, 8,383-388.
    [25]A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan, Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries. NanoLett.,2009,9,1002-1006.
    [26]H. Xia, M. O. Lai, L. Lu, Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem.,2010,20,6896-6902.
    [27]J. M. Kim, Y. S. Huh, Y. K. Han, M. S. Cho,H. J. Kim, Facile synthesis route to highly crystalline mesoporous y-MnO2 nanospheres. Electrochem. Commun.,2012,14,32-35.
    [28]L. H. Li,C. Y. Nan, J. Lu, Q. Peng, Y. D. Li, alpha-MnO2 nanotubes:high surface area and enhanced lithium battery properties. Chem. Commun.,2012,48, 6945-6947.
    [29]J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan, X. W. Lou,Recent advances in metal oxide-based electrode architecture design for electrochemical energy storageAdv.Mater.,2012,24,5166-5180.
    [30]J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian,Formation Process of CdS Nanorods via Solvothermal Route. Chem. Mater.,2000,12,3259-3263.
    [31]J. Yang, C. Xue, S. H. Yu,J. H. Zeng, Y. T. Qian, General Synthesis of Semiconductor Chalcogenide Nanorods by Using the Monodentate Ligand n-Butylamine as a Shape Controller. Angew. Chem. Int. Ed.,2002,41, 4697-4700.
    [32]J. Yang, T. W. Liu, C. W. Hsu, L. C. Chen, K. H. Chen, C. C. Chen,Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition.Nanotechnology,2006,17, S321-S326.
    [33]M. S. Wu, P. C. J. Chiang, J. T. Lee, J. C. Lin, Synthesis of Manganese Oxide Electrodes with Interconnected Nanowire Structure as an Anode Material for Rechargeable Lithium Ion Batteries. J. Phys. Chem. B,2005,109,23279-23284.
    [34]X. L. Wu, Y. G. Guo, L. J. Wan, C. W. Hu, a-Fe2O3 Nanostructures:Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage. J. Phys. Chem. C,2008,112,16824-16829.
    [35]J. Z. Zhao, Z. L. Tao, J. Liang, J. Chen, Facile Synthesis of Nanoporous γ-MnO2 Structures and Their Application in Rechargeable Li-Ion Batteries. Cryst. Growth Des.,2008,8,2799-2805.
    [36]W. Xiao, J. S. Chen, Q. Lu, X. W. Lou, Porous Spheres Assembled from Polythiophene (PTh)-Coated Ultrathin MnO2 Nanosheets with Enhanced Lithium Storage Capabilities. J. Phys.Chem. C,2010,114,12048-12051.
    [37]B. Wang, J. S. Chen, H. B. Wu,Z. Y. Wang, X. W. Lou, Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc.,2011,133,17146-17148.
    [38]R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau,J. M. Tarascon, Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium. Chem. Mater.,2004,16, 1056-1061.
    [39]H. Lai, J. X. Li, Z. G. Chen, Z. G. Huang, Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl. Mater. Interfaces,2012,4,2325-2328.
    [40]C. X. Guo, M. Wang, T. Chen, X. W. Lou, C. M. Li, A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High-Performance Lithium Ion Batteries. Adv. Energy Mater.,2011,1,736-741.
    [41]Y. F. Deng, Q. Zhang, S. Tang, L. Zhang, S. Deng, Z. Shi,G. H. Chen, One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun.,2011,47,6828-6830.
    [42]P. Balaya, H. Li, L. Kienle, J. Maier, Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater.,2003, 13,621-625.
    [43]C. Li, W. Wei, S. M. Fang, H. X. Wang, Y. Zhang, Y. H. Gui,R. F. Chen,A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries. J. Power Sources,2010,195,2939-2944.
    [44]P. C. Lian,S. Z. Liang, X. F. Zhu, W. S. Yang, H. H. Wang, A novel Fe3O4-SnO2-graphene ternary nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta,2011,58,81-88.
    [45]H. Y. Xu, S. Xie, N. Ding, B. L. Liu, Y. Shang, C. H. Chen, Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel method. Electrochim.Acta,2006,51,4352-4357.
    [46]Z. C. Bai, B. Sun, N. Fan, Z. C. Ju, M. H. Li, L. Q. Xu, Y. T. Qian,Branched Mesoporous Mn3O4 Nanorods:Facile Synthesis and Catalysis in the Degradation of Methylene Blue. Chem. Eur. J.,2012,18,5319-5324.
    [1]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature,2001,414,359-367.
    [2]M. Armand, J. M. Tarascon, Building better batteries. Nature,2008,451, 652-657.
    [3]Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Adv. Funct.Mater.,2013,23,2436-2444.
    [4]J. Zhu, Z. Yin, D. Yang, T. Sun, H. Yu, H. E. Hoster, H. H. Hng,H. Zhang, Q. Yan, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. EnergyEnviron. Sci.,2013,6, 987.
    [5]X. Wang, X.-L. Wu, Y.-G. Guo, Y Zhong, X. Cao, Y. Ma,J. Yao, Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. Adv. Funct. Mater.,2010,20,1680-1686.
    [6]Y.-M. Lin, P. R. Abel, A. Heller, C. B. Mullins, a-Fe2O3Nanorods as Anode Material for Lithium Ion Batteries.J.Phys.Chem. Lett.,2011,2,2885-2891.
    [7]S. Chaudhari, M. Srinivasan, 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries.J. Mater. Chem.,2012, 22,23049.
    [8]X. Yao, C. Tang, G. Yuan, P. Cui, X. Xu, Z. Liu,Porous hematite (a-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. Electrochem. Commun.,2011,13,1439-1442.
    [9]B. Koo, H. Xiong, M. D. Slater, V. B. Prakapenka,M. Balasubramanian, P. Podsiadlo, C. S. Johnson, T. Rajh, E. V. Shevchenko, Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett.,2012,12, 2429-2435.
    [10]J. Chen, L. Xu, W. Li, X. Gou, α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv. Mater.,2005,17,582-586.
    [11]Z. Wu, K. Yu, S. Zhang, Y. Xie,Hematite Hollow Spheres with a Mesoporous Shell:Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries J. Phys. Chem. C,2008,112,11307-11313.
    [12]S.-H. Lee, V. Sridhar, J.-H. Jung, K. Karthikeyan, Y.-S. Lee,R. Mukherjee, N. Koratkar, I.-K. Oh,Graphene-Nanotube-Iron Hierarchical Nanostructure as Lithium Ion Battery Anode.ACS Nano,2013,7,4242-4251.
    [13]A. Brandt, A. Balducci,Ferrocene as precursor for carbon-coated a-Fe2O3 nano-particles for rechargeable lithium batteries. J. Power Sources,2013,230, 44-49.
    [14]Q. Zhu, N. Chen, F. Tao, Q. Pan, Improving the lithium storage properties of Fe2O3@C nanoparticles by superoleophilic and superhydrophobic polysiloxane coatings. J. Mater. Chem.,2012,22,15894.
    [15]J. M. Jeong, B. G. Choi, S. C. Lee, K. G. Lee, S. J. Chang,Y. K. Han, Y. B. Lee, H. U. Lee, S. Kwon, G. Lee, C. S. Lee, Y. S. Huh, Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes. Adv. Mater.,2013,25, 6250-6255.
    [16]J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C. F. Ng, T. Yu,H. Zhang, H. J. Fan, Rationally Designed Hierarchical TiO2@Fe2O3 Hollow Nanostructures for Improved Lithium Ion Storage. Adv. Energy Mater.,2013,3,737-743.
    [17]Y. Luo, J. Luo, J. Jiang, W. Zhou, H. Yang, X. Qi, H. Zhang,H. J. Fan, D. Y. W. Yu, C. M. Li, T. Yu, Seed-assisted synthesis of highly ordered TiO2@a-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ.Sci.,2012,5,6559.
    [18]L. Xiao, D. Wu, S. Han, Y. Huang, S. Li, M. He, F. Zhang,X. Feng,Self-assembled Fe2O3/graphene aerogel with high lithium storage performance.ACS Appl. Mater. Interfaces,2013,5,3764-3769.
    [19]J. Ma, X. Zhang, K. Chen, G. Li, X. Han,Morphology-controlled synthesis of hematite hierarchical structures and their lithium storage performances.J.Mater. Chem.A,2013,1,5545.
    [20]W. Zhang, Y. Zeng, N. Xiao, H. H. Hng, Q. Yan, One-step electrochemical preparation of graphene-based heterostructures for Li storage. J. Mater.Chem., 2012,22,8455.
    [21]L. Chen, H. Xu, L. e. Li, F. Wu, J. Yang, Y. Qian,A comparative study of lithium-storage performances of hematite:Nanotubes vs. nanorods.J. PowerSources,2014,245,429-435.
    [22]Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Assembling carbon-coated a-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. EnergyEnviron. Sci.,2012,5,5252.
    [23]W.-J. Yu, P.-X. Hou, F. Li, C. Liu, Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes. J. Mater. Chem.,2012, 22,13756.
    [24]X. Gu, L. Chen, Z. Ju, H. Xu, J. Yang, Y. Qian, Controlled Growth of Porous a-Fe2O3Branches on p-MnO2Nanorods for Excellent Performance in Lithium-Ion Batteries.Adv. Funct.Mater,2013,23,4049-4056.
    [25]L. Zhang, G. Zhang, H. B. Wu, L. Yu, X. W. D. Lou, Hierarchical Tubular Structures Constructed by Carbon-Coated SnO2Nanoplates for Highly Reversible Lithium Storage.Adv.Mater.,2013,25,2589-2593.
    [26]X.-L. Wu, Y.-G. Guo, L.-J. Wan, C.-W. Hu,a-Fe2O3 Nanostructures:Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage. J. Phys. Chem. C,2008,112,16824-16829.
    [27]M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim,G. V. SubbaRao, B. V. R. Chowdari, a-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries.Adv. Funct. Mater.,2007,17,2792-2799.
    [28]Z. Wang, D. Luan, S. Madhavi, C. M. Li, X. W. Lou,alpha-Fe2O3 nanotubes with superior lithium storage capability.Chem.Commun.,2011,47,8061-8063.
    [29]C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, Synthesis of Hematite (a-Fe2O3) Nanorods:Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors. J. Phys. Chem.5,2006,110, 17806-17812.
    [30]Y. Song, S. Qin, Y. Zhang, W. Gao, J. Liu, Large-Scale Porous Hematite Nanorod Arrays:Direct Growth on Titanium Foil and Reversible Lithium Storage.J. Phys. Chem, C,2010,114,21158-21164.
    [31]Y. NuLi, P. Zhang, Z. Guo, P. Munroe, H. Liu, Preparation of a-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries. Electrochim.Acta,2008,53,4213-4218.
    [32]S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, Y. Qi,W. Zhou,Facile Route for the Fabrication of Porous Hematite Nanoflowers:Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties. J. Phys. Chem. C,2008,112,4836-4843.
    [33]Y. Han, Y. Wang, L. Li, Y. Wang, L. Jiao, H. Yuan, S. Liu,Preparation and electrochemical performance of flower-like hematite for lithium-ion batteries. Electrochim. Acta,2011,56,3175-3181.
    [34]B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn, G. Wang, Synthesis of Mesoporous a-Fe2O3 Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries J.Phys. Chem. C,2010,114, 18753-18761.
    [35]S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang,W. Zhou, Hematite Hollow Spindles and Microspheres:Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment.J.Phys. Chem. C, 2007,111,10217-10225.
    [36]J. Zhou, H. Song, X. Chen, L. Zhi, S. Yang, J. Huo,W. Yang, Carbon-Encapsulated Metal Oxide Hollow Nanoparticles and Metal Oxide Hollow Nanoparticles:A General Synthesis Strategy and Its Application to Lithium-Ion Batteries. Chem. Mater.,2009,21,2935-2940.
    [37]H. S. Kim, Y. Piao, S. H. Kang, T. Hyeon, Y.-E. Sung,Uniform hematite nanocapsules based on an anode material for lithium ion batteries. Electrochem. Commun.,2010,12,382-385.
    [38]B. Wang, J. S. Chen, H. B. Wu, Z. Wang, X. W. Lou, Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties.J.Am.Chem. Soc.,2011,133,17146-17148.
    [39]X. Xu, R. Cao, S. Jeong, J. Cho, Spindle-like mesoporous alpha-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett., 2012,12,4988-4991.
    [40]W. J. Yu, P. X. Hou, L. L. Zhang, F. Li, C. Liu,H. M. Cheng, Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun.,2010,46,8576-8578.
    [41]Y. Zhao, J. Li, Y. Ding, L. Guan, Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun., 2011,47,7416-7418.
    [42]W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan,X. Jia, H. J. Fan, Q. Yan, C. M. Li,T.Yu, A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage. Energy Environ.Sci.,2011,4,4954.
    [43]F. Han, D. Li, W.-C. Li, C. Lei, Q. Sun, A.-H. Lu,Nanoengineered Polypyrrole-Coated Fe2O3@C Multifunctional Composites with an Improved Cycle Stability as Lithium-Ion Anodes. Adv.Funct. Mater.,2013,23,1692-1700.
    [44]Y. Zou, J. Kan, Y. Wang, Fe2O3-Graphene Rice-on-Sheet Nanocomposite for High and Fast Lithium Ion Storage. J. Phys. Chem. C,2011,115,20747-20753.
    [45]J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou,Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy r.,2012,24,5166-5180.
    [1]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407,496-499.
    [2]X. Wang, X.-L. Wu, Y.-G. Guo, Y. Zhong, X. Cao, Y. Ma, J. Yao, Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. Adv. Funct. Mater.,2010,20,1680-1686.
    [3]X. Gu, L. Chen, Z. Ju, H. Xu, J. Yang, Y. Qian, Controlled Growth of Porous a-Fe2O3Branches on p-MnO2Nanorods for Excellent Performance in Lithium-Ion Batteries. Adv. Funct. Mater.,2013,23,4049-4056.
    [4]X. Gu, L. Chen, S. Liu, H. Xu, J. Yang, Y. Qian, Hierarchical core-shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. J. Mater. Chem. A,2014,2,3439.
    [5]Y. L. Ding, C. Y. Wu, H. M. Yu, J. Xie, G. S. Cao, T. J. Zhu, X. B. Zhao, Y W. Zeng, Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochim. Acta,2011,56,5844-5848.
    [6]C.-T. Hsieh, C.-Y. Lin, J.-Y. Lin, High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim. Acta,2011,56,8861-8867.
    [7]Y. Liu, X. Zhao, F. Li, D. Xia, Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta,2011,56,6448-6452.
    [8]S.-Y. Liu, J. Xie, Y.-X. Zheng, G.-S. Cao, T.-J. Zhu, X.-B. Zhao, Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochim. Acta,2012,66,271-278.
    [9]Y. J. Mai, D. Zhang, Y. Q. Qiao, C. D. Gu, X. L. Wang, J. P. Tu, MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J. Power Sources,2012,216,201-207.
    [10]Y. Sun, X. Hu, W. Luo, Y. Huang, Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. J. Mater. Chem.,2012,22,19190.
    [11]G. L. Xu, Y. F. Xu, H. Sun, F. Fu, X. M. Zheng, L. Huang, J. T. Li, S. H. Yang, S. G. Sun, Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem Commun,2012,48,8502-8504.
    [12]X. Zhang, Z. Xing, L. Wang, Y. Zhu, Q. Li, J. Liang, Y. Yu, T. Huang, K. Tang, Y Qian, X. Shen, Synthesis of MnO@C core-shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J. Mater. Chem.,2012,22,17864.
    [13]X. Li, Y Zhu, X. Zhang, J. Liang, Y Qian, MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. RSC Adv.,2013,3,10001.
    [14]W. Luo, X. Hu, Y Sun, Y. Huang, Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACSAppl. Mater. Interfaces,2013,5,1997-2003.
    [15]X. Sun, Y Xu, P. Ding, M. Jia, G. Ceder, The composite rods of MnO and multi-walled carbon nanotubes as anode materials for lithium ion batteries. J. Power Sources,2013,244,690-694.
    [16]S. Wang, Y. Ren, G. Liu, Y Xing, S. Zhang, Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries. Nanoscale,2014, DOI:10.1039/c3nr05916b.
    [17]J. Zang, H. Qian, Z. Wei, Y Cao, M. Zheng, Q. Dong, Reduced Graphene Oxide Supported MnO Nanoparticles with Excellent Lithium Storage Performance. Electrochim. Acta,2014,118,112-117.
    [18]B. Sun, Z. Chen, H.-S. Kim, H. Ahn, G. Wang, MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources,2011, 196,3346-3349.
    [19]X. Li, S. Xiong, J. Li, X. Liang, J. Wang, J. Bai, Y. Qian, MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries. Chem. Eur.J.,2013,19,11310-11319.
    [20]Y Sun, X. Hu, W. Luo, F. Xia, Y Huang, Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Adv. Funct. Mater.,2013,23,2436-2444.
    [21]K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, L. Chen, Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl. Mater. Interfaces,2012,4,658-664.
    [22]W.-M. Chen, L. Qie, Y. Shen, Y.-M. Sun, L.-X. Yuan, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy,2013,2,412-418.
    [23]Y. Xiao, X. Wang, W. Wang, D. Zhao, M. Cao, Engineering Hybrid between MnO and N-Doped Carbon to Achieve Exceptionally High Capacity for Lithium-Ion Battery Anode. ACS Appl. Mater Interfaces,2014,6,2051-2058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700