Li_3V_2(PO_4)_3的制备及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用溶胶-凝胶法制备锂离子电池正极材料Li_3V_2(PO_4)_3/C,并通过金属离子掺杂和金属氧化物包覆技术对Li_3V_2(PO_4)_3/C进行改性研究,以期改善材料的电化学性能。
     根据Li_3V_2(PO_4)_3/C前驱体的TG-DTA分析确定制备样品的温度范围。利用XRD和恒电流充放电测试等方法研究Mn2+和Y3+离子掺杂对Li_3V_2(PO_4)_3/C材料的结构和电化学性能的影响。结果表明,掺杂少量Mn2+和Y3+离子不影响材料的晶体结构,适量的Mn2+和Y3+离子掺杂均改善磷酸钒锂材料的循环稳定性能和倍率性能。
     采用FE-SEM、XPS和EIS对Li3V1.94Mn0.09(PO4)3/C材料的形貌特征和电化学性能进行研究。结果表明,掺杂Mn2+离子可以细化材料颗粒。XPS分析表明,Li3V1.94Mn0.09(PO4)3/C中的V和Mn分别以+3和+2价存在。EIS分析表明,Li3V1.94Mn0.09(PO4)3/C的电荷转移电阻明显小于Li_3V_2(PO_4)_3/C。采用XRD和SEM对金属氧化物包覆的Li_3V_2(PO_4)_3/C材料的微观结构和形貌进行分析。研究发现,包覆少量金属氧化物不影响Li_3V_2(PO_4)_3/C材料的晶体结构,包覆后材料的粒径进一步增大。
     通过恒电流充放电测试技术对经包覆处理后的锂离子电池正极材料的最大放电容量,循环稳定性和倍率性能进行研究。结果表明,适量的Al2O3包覆和MgO包覆均可以改善Li_3V_2(PO_4)_3/C材料的循环稳定性和倍率性能,其中MgO包覆还显著提高材料的最大放电容量,降低极化度,进一步改善材料的电化学性能。当包覆量为4.5 mol%时,包覆效果最佳,大幅提高了材料的高倍率充放电性能。在0.2 C电流密度下,放电容量达195 mAh/g,已非常接近磷酸钒锂的理论容量197 mAh/g,当电流密度分别增加到0.5 C和1 C时,放电容量仍高达174 mAh/g和149 mAh/g。
The cathode material Li_3V_2(PO_4)_3/C for lithium-ion battery is prepared by sol-gel method in this paper, and modified by ion doping and metal oxide coating.
     The temperature for synthesization is determined according to TG-DTA curves of Li_3V_2(PO_4)_3/C precursor. The effect of Mn2+ and Y3+ doped on the structure and electrochemical performances of Li_3V_2(PO_4)_3/C is investigated by XRD and galvanostatic charge-discharge. The results show that doping small amount of Mn2+ and Y3+ ion does not affect the monoclinic structure of the material Li_3V_2(PO_4)_3/C, and doping the proper amount Mn2+ and Y3+ ion can improve cyclic stability and high-rate dischargeability of Li_3V_2(PO_4)_3/C.
     Li3V1.94Mn0.09(PO4)3/C is investigated by FE-SEM、XPS and electro -chemical impedance spectroscopy (EIS). The results show that the particles of Mn-doped sample are smaller than those of un-doped sample. XPS analysis shows that oxidation valences state of V and Mn in Li3V1.94Mn0.09(PO4)3/C is +3 and +2, respectively. EIS measurement indicates that doping Mn reduces the charge transfer resistance.
     Metal oxide coated Li_3V_2(PO_4)_3/C is investigated by XRD and FE-SEM. The results show that coating with a small amount of metal oxide does not affect the monoclinic structure of the material and the particles of metal oxide coated samples become bigger than those of non-coated sample.
     Effect of metal oxide coated on the electrochemical property of Li_3V_2(PO_4)_3/C is studied. For example, the maximum discharge capacity, cyclic stability and high-rate dischargeability of resultant materials are measured by galvanostatic charge-discharge. The results show that coating with proper amount of Al2O3 and MgO can improve cyclic stability and high-rate dischargeability of Li_3V_2(PO_4)_3/C. MgO-coating enhances the discharge capacity significantly and reduces the polarization of material and improves electrochemical properties of Li_3V_2(PO_4)_3/C material. The sample of coating amount of 4.5 mol% exhibits excellent electrochemical properties, and can deliver a reversible capacity as high as 195 mAh/g at a discharging rate 0.2C, which is close to its theoretical capacity of 197 mAh/g, and it is able to deliver a capacity of 174 mAh/g and 149 mAh/g at 0.5 C and 1 C, respectively.
引文
1史鹏飞.化学电源工艺学.哈尔滨:哈尔滨工业大学出版社, 2006: 3
    2郭炳焜,徐徽,王先友.锂离子电池.长沙:中南大学出版社, 2002: 1-2
    3 H. Huang, S.C. Yin, L.F. Nazar. Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. Electrochem Solid-State Lett, 2001, 4(10): A170-A172
    4 F. Corce, A.D. Epifanio, J. Hassoum. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode. Electrochem Solid-State Lett, 2002, 5(3): A47-A50
    5 S.Y. Chung, T. Bloking, Y.M. Chiang. Electronically Conductive Phosphor -Olivines as Lithium Storage Electrodes. Nat. Mater, 2002, 2: 123-128
    6 K. Xu. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev, 2004, 104(10): 4303-4417
    7黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术.北京:化学工业出版社, 2007: 12
    8 K. Sato, M. Noguch, T. Demach. A Mechanism of Lithium Storage in Disordered Carbons. Science, 1994, 264: 556-557
    9 K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough. LixCoO2(0    10 J.M. Paulsen, J.R. Muller, Nehaus, J.R. Dahn. Layered LiCoO2 with a Different Oxygen Stacking (O2 strcture) as a Cathode Material for Rechargeable Lithium Batteries. J. Electrochem. Soc., 2000, 147(2): 508-516
    11 G. Amatucci, J.M. Tarason, L.C. Kleinb. End Member of the LixCoO2 Solid Solution. Electrochem. Soc.,1996,143(3): 1114-1123
    12 E. Rossen, J.N. Reimers, J. Dahn. Sythesis and Electrochemistry of Spinel LT LiCoO2. Solid State Ionics, 1993, 62(1-2): 53-60
    13刘景,温兆银,吴梅梅,等.锂离子电池材料的研究进展.无机材料学报, 2002, 17(1): 1-9
    14 E.D. Jeong, M.S. Won. Cathode Properties of a Lithium-Ion Secondary Battery Using LiCoO2 Prepared by a Complex Formation Reaction. J. Powder Source, 1998, 70(1):70-77
    15 S.G. Kang, S.Y. Kang, K.S. Ryu, et al. Electrochemical and Structural Properties of HT- LiCoO2 and LT- LiCoO2 Prepared by the Citrate Sol-gel method. Solid State Ionics, 1999, 120: 155-161
    16 Z.S. Peng, C.R. Wan, C.Y. Jiang. Sythesis by Sol-gel Process and Characterization of LiCoO2 Cathode Materials. J. Powder Source, 1998, 72: 215-220
    17 M. Endo, C. Kim, K. Nishimura. Recent Development of Carbon Materials for Lion Batteries. J.Carbon, 2000, 138(2): 183-197
    18 Masataka, Wakihara. Recent Developments in Lithium Ion Batteries. Materials Science and Engineering, 2001, 33: 110-120
    19 M.J. Zhou, M.Yoshio, S. Gopukumar, J. Yamaki. Sythesis of High-voltage(4.5 V) Cycling Doped LiCoO2 for Use in Lithium Rechargeable Cells. Chem. Mater., 2003, 15(25): 4699-4702
    20 Y.J. Kim, J.P. Cho, T.J. Kim, B. Park. Suppression of Cobalt Dissolution from the LiCoO2 Cathodes with Various Metal-oxide Coatings. Electrochem. Soc., 2003, 150(12): A1723-A1725
    21 S. Waki, K. Dokko, I. Uchida, et al. High-speed Voltammetry of Mn-doped LiCoO2 Using a Microelectrode Technique. Solid State Electrochem., 2000, 4(4): 205-209
    22 R. Stoyanova, E. Zhecheva, L. Zarkova. Effect of Mn-substitution for Co on the Crystal Structure and Acid Delithiation of LiMnyCo1-yO2 Solid Solutions. Solid State Ionics, 1994, 73(3,4): 233-240
    23 G. Ceder, Y.M. Chiang, D.R. Sadoway, et al. Identification of Cathode Materials for Lithium Batteries Guided by First-principles Calculation. Nature, 1998, 392(6677): 694-696
    24 G.A. Nazri, A. Rougier, K.F. Kia. Synthesis Characterization and Electrochemical Performances of Substituted Layered Transition Metal Oxides. Maetr. Res. Soc., 1997,
    453: 635-646
    25 Y.I. Jang, G. Cedder, Y.M. Chiang, et al, LiAlyCo1-yO2 Intercalation Cathode for Rechargeable Lithium Batteries. Electrochem. Soc., 1999, 146(3): 862-868
    26 Z.X. Wang, L.J. Liu, et al. Electrochemical Evaluation and Structural Characterization of Commercial LiCoO2 Surfaces Modified with MgO for Lithium-Ion Batteries. Electrochem. Soc., 2002, 149(4): A466-A471
    27 Z. Chen, J.R. Dahn. Effect of a ZrO2 Coating on the Structure and Electrochemistry of LixCoO2 When Cycled to 4.5 V. Solid-State Lett, 2002, 5(10): A213-A216
    28 J. Cho, G.B. Kim, H.S. Lim, et al. Improvement of Structural Stability of LiMn2O4 Cathode Material on 55 Cycling by Sol-gel Coating of LiCoO2. Electrochem. Solid-State Lett, 1999, 2(12): 607-609
    29 T. Ohzuku, A. Veda, M. Nagayama. Comparative Study of Lithium Cobalt Oxide (LiCoO2), Lithium Nickel Cobalt Oxide (LiNi1/2Co1/2O2) and Lithium Nickel oxide (LiNiO2) for 4 Volt Secondary Lithium Cells. Electrochimica Acta, 1993, 38(9): 1159-1167
    30 C.Y. Yao, T.H. Kao, C.H. Cheng, et al. Studies of Electrochemical Properties of Lithium Cobalt Oxides. Power Sources, 1995, 54(2): 491-493
    31 W. Li, J.C. Currie, J. Wolstenholme. Influence of Morphology on the Stability of LiNiO2. Powder Sources, 1997, 68(2): 565-569
    32 T. Ohzuku. Electrochemistry of LiNiO2(R3m) for 4 V Secondary Lithium Cells. Power Sources, 2003, 140(7): 1862-1870
    33 M. Brouusely, F. Petron, J. Labat, R.J. Staniewicz, A. Romero. Li/LixNiO2 and Li/ LiCoO2 Rechargeable Systems Comparative Study and Performances of Practical Cells. Power Sources, 1993, 43(1-3): 209-216
    34 S. Yamada, M. Fujiwara, M. Kanda. Synthesis and Properties of LiNiO2 as Cathode Material for Secondary Batteries. Power Sources, 1995, 54(2): 209-216
    35 H.J. Kweon, D.G. Park. Surface Modification of LiSr0.002Ni0.9Co0.1O2 by Overcoating with a Magnesium Oxide. Electrochem. Solid-State. Lett., 2000, 3(3): 128-130
    36 M.M. Thackeray, W.I. David, P.G. Bruce, J.B. Goodenough. Lithium Insertion into Manganese Spinels. Mater. Res. Bull., 1983, 18(4): 461-472
    37 M. Wakihara. Recent developments in Lithium Ion Batteries. Mater. Sci, Eng, R., 2001, 33(4): 109-134
    38邱艳,胡文成.高温固相分段反应制备LiMn2O4的研究.中国锰业, 2003, 21(4): 31-38
    39黄可龙,赵家昌,刘素琴,等. Li, Mn源对LiMn2O4尖晶石高温电化学性能的影响.金属学报, 2003, 39(7): 739-743
    40陶菲,沈俊,张昭.溶胶-凝胶-酯化法制备锂离子电池正极材料尖晶石LiMn2O4. 四川有色金属, 2003, 3: 18-21
    41李琪,乔庆东. Li1+xMn2O4的溶胶-凝胶法合成及其电化学性能.应用化学, 2003, 20(12): 1171-1175
    42 C.H. Lu, S.W. Lin. Emulsion-derived Lithium Manganese Oxide Powder for Positive Electrodes in Lithium-Ion Batteries. Power Sources., 2001, 93: 14-19
    43万传云,吴强,王涛,等.锂离子电池锂锰氧化物的性能改进.电池, 2002, 32, S1: 23-26
    44 T. Son, H.G. Kim, Y.J. Park. New Preparation Method and Electrochemical Property of LiMn2O4 Electrode. Electrochimical Acta, 2004, 50(2-3): 453-459
    45 M.M. Thackeray, Y. Shao-Horn, A.J. Kahaian, et al. Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/LixMn2O4 Cells. Electrochem And Solid State Lett., 1998, 1(1): 7-9
    46傅强,陈彬,黄小文,等.粒粒电池正极材料LiMn2-xCrO4电化学性能的研究.高等学校化学学报, 2004, 25(1): 128-130
    47 Y.P. Fu, Y.H. Su, C.H. Lin. Comparison of Microwave-Induced Combustion and Solid-state reaction for Synthesis of Their Electrochemical Properties. Solid State Ionics, 2004, 166: 137-146
    48付鹏.磷酸盐体系钒基锂离子电池正极材料的合成与性能研究. [华南理工大学博士论文]. 2007: 23
    49 Z. Shi, Y. Yang. Progress in Polyanion-type Cathode Materials for Lithium Ion Batteries. Progress In Chemistry, 2005, 17(4): 604-613
    50 A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194
    51周恒辉,陈继涛.铬离子掺杂对LiFePO4电化学性能的影响.物理化学学报, 2004, 20(6): 582-586
    52 A.S. Andersson, J.O. Thomas. The Source of First-Cycle Capacity Loss in LiFePO4. J. Power Sources, 2001, 97-98: 498-502
    53 P.P. Prosini, D. Zane, M. Pasquali. Improved Electrochemical Performance of a LiFePO4-Based Composite Cathode. Electrochemical Acta, 2001, 46(23): 3517-3523
    54 G. Amold, J. Garche, S. Strobele, et al. Fine-Particle Lithium Iron Phosphate LiFePO4 Synthesized by a New Low-Costaqueous Precipitation Technique. Journal of Power Sources, 2003, 119-121: 247-251
    55 A.S. Andersson, J.O. Thomas, B. Kalska, et al. Thermal Stability of LiFePO4-Based Cathodes. Electrochem. Solid-State Lett., 2000, 3(2): 66-68
    56 S. Yang, P.Y. Zavalij, M.S. Whittingham. Hydrothermal Synthesis of Lithium Iron Phosphate Cathodes. Electrochem. Commum, 2001, 3(9): 505-508
    57 J. Yang, J.J. Xu. Nonaqueous Sol-gel Synthesis of High-Performance LiFePO4. Electrochem. Solid-State Lett., 2004, 7(12): A515-A518
    58 M. Higuchi, K. Katayama, Y. Azuma, et al. Synthesis of LiFePO4 Cathode Material by Microwave Processing. J. Power Sources, 2003, 119-121: 258-261
    59 J. Barker, M.Y. Saidi, J.L. Swoyer. Lithium Iron (Ⅱ) Phospho-Olivines Prepared by a Novel Carbothermal Reduction Method. Electrochem. Solid-State Lett., 2003, 6(3): A53-A55
    60 M. Takahashi, S. Tobishima, K. Takei, et al. Characterization of LiFePO4 as the Cathode Material for Rechargeable Lithium Batteries. J. Power Sources, 2001, 97-98: 508-511
    61 D. Morgan, G. Ceder, M.Y. Saidi, et al. Experimental and Computational Study of the Structure and Electrochemical Properties of Li3M2(PO4)3 Compounds with the Monoclinic and Rhombohedral Structure. Chem. Mater., 2002, 14: 4684-4693
    62 M.Y. Saidi, J. Barker, H. Huang, et al. Performance Characteristics of Lithium Vanadium Phosphate as a Cathode Materials for Lithium-Ion Batteries. J. Power Sources, 2003, 119-121: 266-272
    63 J.B. Goodenough, V. Manivannan, A.K. Padihi. Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution. J. Electrochem. Soc., 1998, 145(5): 1518-1520
    64 S. Mineo, O. Hirokazu, Y. Kenji, et al. Enhancement of Discharge Capacity of Li3V2(PO4)3 by Orthorhombic Phase at Room Tempreture. Solid State Ionics, 2000, 135: 137-142
    65 H. Huang, S.C. Yin, T. Kerr, et al. Nanostructured Composites: A High Capacity. Fast Rate Li3V2(PO4)3/C Carbon Cathode for Rechargeable Lithium Batteries. Advanced Materials, 2002, 14: 1525-1531
    66 M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer, G. Adamson. Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries. Electrochem. Solid-State Lett., 2002, 5(7): A149-A151
    67陈权启.磷酸钒锂和磷酸铁锂锂离子电池正极材料研究. [浙江大学博士论文]. 2008: 20-21
    68 Peng Fu, Yanming Zhao, Youzhong Dong, et al. Synthesis of Li3V2(PO4)3 with High Performance by Optimized Solid-State Synthesis Routine. J. Power Sources, 2006, 162: 651-657
    69刘素琴,唐联兴,黄可龙,等.新型锂离子电池正极材料Li3V2(PO4)3的合成及其性能.中国有色金属学报, 2005, 15(8): 1294-1299
    70 Yuzhan Li, Xin Liu, Jie Yan, et al. Study on Synthesis Routes and Their Influences on Chemical and Electrochemical Performances of Li3V2(PO4)3/Carbon. Electrochimica Acta, 2007, 53: 474-479
    71 Yuzhan Li, Zhen Zhou, Manman Ren, et al. Improved Electrochemical Li Insertion Performances of Li3V2(PO4)3/Carbon Composite Materials Prepared by a Sol-gel Route. Materials Letters, 2007,61: 4562-4564
    72 Yuzhan Li, Zhen Zhou, Manman Ren, et al. Electrochemical Performance of Nanocrystalline Li3V2(PO4)3/Carbon Composite Materials Synthesized by a Novel Sol-gel Method. Electrochimica Acta, 2006, 51: 6498-6502
    73 Yuzhan Li, Zhen Zhou, Xueping Gao, et al. A Promising Sol-gel Route Based onCitric Acid to Synthesize Li3V2(PO4)3/Carbon Composite Material for Lithium Ion Batteries. Electrochimica Acta, 2007, 52: 4922-4926
    74 Anping Tang, Xianyou Wang, Zhiming Liu, et al. Electrochemical Behavior of Li3V2(PO4)3/C Composite Cathode Material for Lithium-ion Batteries. Materials Letters, 2008, 62(10/11): 1646-1648
    75 Quanqi Chen, Jianming Wang, Zheng Tang, et al. Electrochemical Performance of the Carbon Coated Li3V2(PO4)3 Cathode Material Synthesized by a Sol-gel Method. Electrochimica Acta, 2007, 52: 5251-5257
    76 Peng Fu, Yanming Zhao, Xiaoning An, et al. Structure and Electrochemical Properties of Nanocarbon-Coated Li3V2(PO4)3 Prepared by Sol-gel Method. Electrochimica Acta, 2007, 52: 5281-5285
    77 Xianjun Zhu, Yunxia Liu, Liangmei Geng, et al. Synthesis and Characteristics of Li3V2(PO4)3 as Cathode Materials for Lithium-ion Batteries. Solid-State Ionics, 2008, 179(27/32): 1679-1672
    78 Shengkui Zhong, Zhoulan Yin, Zhixing Wang, et al. Synthesis and Characterization of Novel Cathode Material Li3V2(PO4)3 by Carbon-Thermal Reduction Method. Transaction Nonferrous Metals Society of China, 2006, 16: s708-s710
    79应皆荣,高剑,姜长印,等.锂离子电池正极材料Li3V2(PO4)3的制备及性能研究.无机材料学报, 2006, 21(5): 1097-1102
    80姜霖琳,田彦文,刘丽英,等.碳热还原法制备锂离子电池正极材料Li3V2(PO4)3的研究.材料与冶金学报, 2006, 5(2): 115-118
    81陈灵谦.正极材料Li3V2(PO4)3的制备及性能.电池, 2007, 37(2): 107-108
    82 Caixian Chang, Jiangfeng Xiang, Xixi Shi, et al. Rheological Phase Reaction Synthesis and Electrochemical Performance of Li3V2(PO4)3/Carbon Cathode for Lithium Ion Batteries. Electrochimica Acta, 2008, 53(5): 2232-2237
    83应皆荣,姜长印,唐昌平,等.碳热还原法制备Li3V2(PO4)3及其性能研究.稀有金属材料与工程, 2006, 35:1792-1796
    84任慢慢,李宇展,周震,等.微波法合成正极材料Li3V2(PO4)3.电池, 2006, 36(1): 13-14
    85侯春平,岳敏.液相球化法合成新型正极材料磷酸钒锂.物理化学学报, 2007, 23(12): 1954-1957
    86 M. Sato, H. Ohkawa, K.Yoshida, et al. Enhancement of Discharge Capacity of Li3V2(PO4)3 by Stabilizing the Orthorhombic Phase at Room Tempreture. Solid-State Ionics, 2000, 135: 137-142
    87 Manman Ren, Zhen Zhou, Yuzhan Li, et al. Preparation and Electrochemical Studies of Fe-doped Li3V2(PO4)3 Cathode Material for Lithium Batteries. Journal of Power Sources, 2006, 162: 1357-1362
    88 Suqin Liu, Shicai Li, Kelong Huang, et al. Effect of Doping Ti4+ on the Structure and Performances of Li3V2(PO4)3. Acta Physico-Chimica Sinica, 2007, 23(4): 537-542
    89 Shengkui Zhong, Letong Liu, Jiqiong Jiang, et al. Preparation and Electrochemical Properties of Y-doped Li3V2(PO4)3 Cathode Materials for Lithium Batteries. JuornaLl of Rare Earths, 2009, 27(1): 134-137
    90 S.Y. Chung, J.T. Bloking, Y.M. Chiang. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes. J. Nat Mater, 2002, 1: 123
    91 A. Vanderven, G.Ceder. Abstract no.135, Meeting Abstract of Battery Division, 1999 Joint International Meeting, Honolulu, Hawaii, 1999,10: 17-22
    92 M. Oku, K. Hirokawa. X-ray Photoelectron Spectroscopy of Manganese-Oxygen Systems. J. Electron Spectroscopy and Related Phenomena, 1975, 7: 465-469
    93 S.T. Yang, Y.X. Liu, Y.H. Yin , H. Wang, T. Wang. Effects of Ta Ion Doping on the Physical and Electrochemical Performance of LiFePO4/C. Chinese Journal of Inorganic Chemistry, 2007, 23: 1165-1170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700