珲春地区晚海西期辉长岩—闪长岩的形成时代和地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对珲春地区晚海西期辉长岩和闪长岩进行了锆石LA-ICP-MS U-Pb定年、Hf同位素和岩石地球化学研究,确定了它们的形成时代,并讨论了岩石成因以及研究区二叠纪的构造演化。
     辉长岩和闪长岩中的锆石均呈自形-半自形,发育典型的岩浆振荡生长环带,结合高的Th/U比值(0.26~1.22),暗示其为岩浆成因。测年结果表明:辉长岩的形成时代为早二叠世(282Ma);闪长岩的形成时代为晚二叠世(255Ma),同时闪长岩中存在早二叠世(279Ma)的捕获锆石。辉长岩属于低钾拉斑系列,具有较低的稀土元素(REE)丰度,较平坦的REE配分形式和较弱的Eu正异常,明显亏损高场强元素(Nb、Ta、Ti),显示岛弧玄武岩的地球化学属性,锆石εHf (t)值介于+7.63~+14.6之间,显示辉长岩岩浆起源于亏损的岩石圈地幔。闪长岩属于中钾钙碱性系列,具有明显偏高的REE丰度,较弱的Eu正异常,以及高场强元素Nb、Ta、Ti的强烈亏损,显示活动陆缘岩浆岩的地球化学特征;闪长岩中结晶锆石的εHf (t)值介于+11.22~+14.17之间,其Hf模式年龄为424~692Ma,表明闪长岩岩浆起源于从亏损地幔分异出来的早古生代或新元古代新生下地壳的部分熔融。早二叠世辉长岩至晚二叠世闪长岩地球化学属性的变异揭示兴凯地块与和龙地块(华北板块北缘东段)之间曾存在古亚洲洋向兴凯地块西南缘的俯冲作用和消亡的演化历史。
The Yanbian fold belt is located at the junction of the Jiamusi, Khanka and Longgang massifs, i.e., the easternmost segment of the Hinggan-Mongolia Orogenic Belt (XMOB). The region mainly experienced collision and amalgamation of the Jiamusi, Khanka and Longgang massifs during the Paleozoic. For a long time, the Late Paleozoic tectonic nature between the Khanka and Longgang massifs has always been a controversial issue. At present, two different opinions are presented based on the closure time of the Paleo-Asian Ocean, the late Paleozoic sedimentary strata, and paleontological evidence. One is that the Khanka and Longgang massifs were separated by an aulacogen in the Permian; the other is that the closure of the Paleo-Asian Ocean between the Khanka and Longgang massifs happened in the Permian. In the latter view, some scholars consider that the Paleo-Asian Ocean subducted beneath the southwestern edge of the Khanka Massif. Then, whether did the subduction between the Khanka and Longgang massifs happen or not? How did the Paleo-Asian Ocean crust subduct beneath the Khanka Massif or the Longgang Massif? The above-mentioned problems have been unsolved due to the lack of detailed dating and geochemical data for the magmatic rocks in the region. However, a voluminous Late Hercynian intermediate-basic rocks, occurred in the Hunchun area, provide insight to solve the above-mentioned problems. Therefore, this paper presents zircon U-Pb dating, Hf isotope, and geochemical data for the Late Hercynian gabbros and diorites in Hunchun area to constrain the tectonic evolution between the Khanka and Longgang massifs in the Late Paleozoic.
     1. Formation time of gabbro and diorite
     LA-ICP-MS zircon U–Pb dating results show that zircons from the gabbro in Hunchun Area yield a weighted mean 206Pb/238U age of 282±2 Ma, indicating that the gabbro formed in the Early Permian, that the magmatic zircons from the diorite yield a weighted mean 206Pb/238U age of 255±3 Ma, indicating that the diorite formed in the Late Permian, and that the captured zircons from the diorite yield a weighted mean 206Pb/238U age of 279±4 Ma, which is consistent with the formation time of the gabbro under the uncertainty.
     2. Geochemistry and zircon Hf isotopes of the gabbros and diorites
     The gabbros in Hunchun area have SiO2 = 46.75-47.54%, Mg# = 61-70, high Al and low Ti (Al2O3 = 19.99-20.87%, TiO2 = 0.37-0.41%), belonging to the subalkaline low-K tholeiitic series. Chondrite-normalized rare earth element (REE) patterns indicate that the gabbros are characterized by relatively enrichment in LREEs and depletion in HREEs, and weak positive Eu anomalies. Meanwhile, the gabbros display an enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and K), depletion in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and strong positive Sr anomalies, similar chemically to island-arc tholeiites. 176Hf/ 177Hf ratios andεHf(t) of selected zircons from the gabbro vary from 0.282813 to 0.283015 and from +7.63 to +14.61, respectively.
     The diorites have relatively high SiO2 contents (SiO2 = 54.56-61.23%), lower Mg (Mg# = 37-39), high alkali contents (Na2O+K2O = 4.74-5.19%), belonging to the subalkaline middle-K calc-alkaline series. Compared with the gabbros, the diorites have the similar chondrite-normalized REE patterns and primitive mantle (PM)-normalized trace element patterns, e.g., enrichment in LREEs and large ion lithophile elements, depletion in HREEs and high field strength elements. However, the diorites have obviously higher REE and other trace element abundances, and weak negative Eu anomalies, similar to the igneous rocks from the active continental margin setting. 176Hf/ 177Hf ratios andεHf(t) of zircons with age of 255 Ma from the diorites are between 0.282940 and 0.283040 and between +11.22 and +14.17,respectively. Their Hf model ages range from 424 Ma to 692 Ma.
     3. Magma source
     The gabbros in the Hunchun area are poor in SiO2 (46.75-47.54%), rich in MgO (7.56- 8.07%), high Mg# (61-70), and high Cr (201-229 ug/g) contents, suggesting that their primary magma could be derived from partial melting of peridotite mantle.The depletion in Nb, Ta and Ti of the gabbros could exclude the possibility that the gabbro magma could be derived from partial melting of the lithospheric mantle metasomated by the subducted slab-derived melt at the mantle wedge. Therefore, we propose that the primary gabbro magmas should be derived from partial melting of mantle wedge peridotite metasomatized by subduction- related fluid, which is consistent with their high Al and low-K tholeiitic geochemical features and is also supported by their low Zr/Y ratios.εHf(t) values of zircons from the gabbros vary from +7.63 to +14.61, suggesting that primary magma should be derived from partial melting of a depleted lithospheric mantle. Taken together, the gabbro magmas should originate from partial melting of the depleted mantle wedge metasomatized by the subducted slab-derived fluid. Combined with their similarity to volcanic arc low-K tholeiites, it is suggested that the gabbros could form in island arc setting close to trench.
     The Wudaogou diorites are characterized by enrichment in SiO2 and alkali, as well as depletion of MgO, Cr (3.66 ug/g ~7.29 ug/g) and Ni (1.91 ug/g ~ 5.35 ug/g), implying that they could not be the mantle-derived primary magma. TheεHf(t) values and Hf model ages of zircons from the diorite range from +11.22 to +14.17 and from 424 to 692 Ma, respectively, suggesting that the primary magma for the diorites could be derived from partial melting of the Early Paleozoic and/or Neoproterozoic accreted lower crust.
     4. Tectonic implications
     The gabbros in Hunchun area show the geochemical features of the igneous rocks from the island-arc setting, suggestting that the Paleo-Asian oceanic plate subducted beneath the the Khanka Massif in the Early Permian. The diorites, together with the coeval tonalitic rocks from the Xiaoxinancha area, are chemically similar to the igneous rocks from the active continental margin setting, implying that an active continental margin setting could exist in the region in the late Permian. The gabbros and diorites are both located in the western margin of the Khanka Massif, and fromed in the Early and Late Permian, respectively. Spatial and temporal distribution of gabbros and diorites implies that the collision and amalgamation of the arc and continent happened in the region between the Early Permian and Late Permian.
引文
[1] Abe N, Arai S, Yurimoto H. Geochemical characteristics of the uppermost mantle beneath the Japan island arcs: Implications for upper mantle evolution[J]. Physics of The Earth and Planetary Interiors, 1998, 107:233-248.
    [2] Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399:252-255.
    [3] Andersen T. Correction of common lead in U-Pb analyses that do report 204Pb[J]. Chemical Geology, 2002, 192(1-2):59-79.
    [4] Arculus R J. Aspects of magma genesis in arcs[J]. Lithos, 1994, 33:189-208.
    [5] Ballard J R, Palin J M, Williams I S, et al. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit if northern Chile by ELA-ICP-MS and SHRIMP[J]. Geology, 2001, 29:383-386.
    [6] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200:155-170.
    [7] Boynton W V. Geochemistry of the rare earth elements: meteorite studies[M]// Henderson P (Ed.), Rare Earth Element Geochemistry, 1984, 63-114.
    [8] Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172:5-24.
    [9] Condie K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104:1-37.
    [10] Cox K G. A model for flood basalt volcanism[J]. Journal of Petrology, 1980, 21:629-650.
    [11] Davies J H, Stevenson D J. Physical model of source region of subduction zone volcanics[J].Journal of Geophysical Research, 1992, 97:2037-2070.
    [12] Eiler J M, Grawford A J, Elliott T R, et al. Oxygen isotope geochemistry of oceanic arc lavas[J]. Journal of Petrology, 2000, 41:229-256.
    [13] Frey F A, Prinz M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 1978, 38(1):129-176.
    [14] Gao S, Liu X M, Yuan H L, et al. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICPMS[J]. Geostandard Newsletters, 2002, 22:181-195.
    [15] Gill J B. Orogenic Andesites and Plate Tectonics[M]. New York: Springer Verlag, 1981, 385.
    [16] Grove T L, Kinzler R J. Petrogenesis of andesites[J]. Annual Review of Earth and Planetary Sciences, 1986, 14:417-454.
    [17] Grove T L, Elkins Tanton L T, Parman S W, et al. Fractional crystallization and mantle melting controls on calk-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145(5):515-533.
    [18] Harrison T M, Aleinikoff J N, Compston W. Observations and controls on the occurrence of inherited zircon in concord-type granitoids, NewHampshire[J]. Geochimica et Cosmochimica Acta, 1987, 52:2549-2558.
    [19] Harris A C, Allen C M, Bryan S E, et al. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: implication for porphyry-related mineralization[J]. Mineralium Deposita, 2004, 39:46-67.
    [20] Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90:297-314.
    [21] Hole M J, Saunders A D, Marriner G F, et al. Subduction of pelagic sediments: Implication for the origin of Ce-anomalous basalts from the Mariana island[J]. Journal of the Geological Society, 1984, 141:453-472.
    [22] Ionov D A, Gregoire M, Prikhodko V S. Feldspar-Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle[J]. Earth and Planetary Science Letters, 1999, 165(1):37-44.
    [23] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548.
    [24] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in-situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211:47-69.
    [25] Jahn B M, Zhang Z Q. Archean granulite gneisses from eastern Hebei Province,China:rare earth geochemistry and tectonic implications [J]. Contributions to Mineralogy and Petrology, 1984, 85:224-243.
    [26] Jahn B M, Wu F Y, Lo C H, et al. Crust mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China[J]. Chemical Geology, 1999, 157:119-146.
    [27] Ji Weiqiang, Xu Wenliang, Yang Debin, et al. Chronology and Geochemistry of Volcanic Rocks in the Cretaceous Suifenhe Formation in Eastern Heilongjiang, China[J]. Acta geologica sinica, 2007, 81(2):266-277.
    [28] Jia Dacheng, Hu Ruizhong, Lu Yan, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China[J]. Journal of Asian Earth Sciences, 2004, 23:211-219.
    [29] Kelemen P B, Hangh J K, Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[M]//Rudnick R L(ed.), Treatise On Geochemistry, 2003, 3:593-659.
    [30] Khanchuk A I. Accretion of Asia in the northest China and Far East of USSR[R]. Sperical issue on IGCP 321, 1992, 154-161.
    [31] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of microscopy, 1993, 171:223-232.
    [32] Krough T E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations[J]. Geochimica et Cosmochimica Acta, 1973, 27:485-494.
    [33] Krough T E. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion techniques [J]. Geochimica et Cosmochimica Acta, 1992, 46:637-649.
    [34] Lanyon R, Black R P, Seitz H M. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology, 1993, 115:84-203.
    [35] Le Roux A P. Geochemical correlation between southern African kimberlites and south Atlantic hotspots[J]. Nature, 1986, 324:243-245.
    [36] Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature,1997, 390(13):159-162.
    [37] Li X H, Liang X R, Sun M, Guan H, Malpas J G. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation[J]. Chemical Geology, 2001, 175:209-219.
    [38] Li Jinyi. Permian geodynamic setting of northeast China and adjacent regions:closure of the Paleo-Asian ocean and subduction of the Paleo-pacific plate[J]. Journal of Asian Earth Sciences, 2006, 26(3-4):207-224.
    [39] Ludwig K R. Using Isoplot/EX, version 2.49. A Geochronological Toolkit for Microsoft Excel[P/OL]. Berkeley:Berkeley Geochronological Center,Special Publiction, 2001, 1-55.
    [40] Meng En, Xu Wenliang, Yang Debin, et al. Permian volcanisms in eastern and southeastern margins of the Jiamusi Massif, northeastern China:zircon U-Pb chronology, geochemistry and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(8):1231-1245.
    [41] Middlemost Eric A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(3-4):215-224.
    [42] Natal’in B A. History and modes of Mesozoic accretion in Southeastern Russia[J]. The Island Arc, 1993, 2:15–34.
    [43] Peccerillo A, Taylor A R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contribution to Mineralogy and Petrology, 1976, 58:63-81.
    [44] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[M]//Thorpe R S (ed), Andesits. Chichester: Wiley, 1982, 525-548.
    [45] Peter D K, Roland M. Lu-Hf and Sm-Nd isotope systems in zircon[M]// Hanchar J M, Hoskin and Paul W O. America: Mineralgical society of America, 2003, 327-341.
    [46] Rudnick R L, Gao S. Composition of the continental crust[M]// Rudnick R L(ed.). Treatise On Geochemistry, 2003, 3:1-64.
    [47] Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology, 1993, 21:1007-1010.
    [48] Sengor A M C and Natal’in B A. Paleotectonics of Asia: fragments of a synthesis[M]//Yin A, Harrison T M (Eds.). The Tectonic Evolution of Asia. Cambrige University Press, Cambridge, 1996, 486-641.
    [49] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]// Saundern A D, Norry M J (eds.).Magmatism in the ocean basins. Geological Society Special Publication, 1989, 42:313-345.
    [50] Taylor S R, Mclennan S M. The continental crust: Its composition and Evolution[M]. Blackwell, Oxford, 1985, 312.
    [51] Taylor S R, Mclennan S M. The geochemical composition of the continental crust[J]. Reviews of Geophysics, 1995, 33:241-265.
    [52] Thompson R N, Morrison M A, Hendy G L. An assessment of the relative roles of a crust and mantle in magma genesis:an elemental approach[J]. Philosophical Transactions of the Royal Society of London, 1984, A310:549-590.
    [53] Williams I S. Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks[J]. Transactions of the Royal Society of Edinburge: Earth Sciences, 1992, 83:447-458.
    [54] Wilson Marjorie. Igneous petrogenesis-a global tectonic approach[M]. Unwin Hyman,London:United Kingdom (GBR), 1989.
    [55] Xu Ping, Wu Fuyuan, Xie Liewen, et al. Hf isotopic compositions of the standard zircons for U-Pb dating[J]. Chinese Science Bulletin, 2004, 49(15):1642-1648.
    [56] Xu Wenliang, Ji Weiqiang, Pei Fuping, et al. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 34:392-402.
    [57] Yan Jun, Chen Jiangfeng, Xu Xisheng. Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region,eastern China: Characteristics and evolution of the lithospheric mantle[J]. Journal of Asian Earth Sciences, 2008, 33:177-193.
    [58] Yang Chenghai, Xu Wenliang, Yang Debin, et al. Petrogenesis of Shangyu gabbro-diorites in western Shandong: Geochronological and geochemical evidence[J]. Science in China (Series D: Earth Sciences), 2008, 51(4):481-624.
    [59] Yang Jinhui, Wu Fuyuan, Shao Jian, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246:336-352.
    [60] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28:353-370.
    [61] Yu Yang, Xu Wenliang, Pei Fuping, Yang Debin, et al. Chronology and Geochemistry of Mesozoic Volcanic Rocks in the Linjiang Area, Jilin Province and their Tectonic Implications[J]. Acta geologica sinica, 2009, 83(2):245-257.
    [62] Zhang Yanbin, Wu Fuyuan, Simon A.Wilde., et al. Zircon U-Pb ages and tectonic implications of‘Early Paleozoic’granitoids at Yanbian,Jilin Province, northeast China[J]. The Island Arc, 2004, 13(4):484-505.
    [63]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述―兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.
    [64]方文昌.吉林省花岗岩类及成矿作用[M].长春:吉林科学技术出版社,1992,15-30.
    [65]付长亮.珲春小西南岔地区花岗岩类的时代-地球化学特征与成因[D].长春:吉林大学,2009.
    [66]侯可军,李延河,邹天人,等.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    [67]吉林省地质矿产局.中华人民共和国区域地质调查报告(1:20万):珲春县幅、春化公社幅、敬信公社幅[R].1983.
    [68]吉林省地质矿产局.区域地质调查报告(1:5万):大西南岔K-52-34-B南半幅,五道沟幅K-52-34-F,马滴达k-52-46-B北半幅[R].1985.
    [69]靳克.延边地区中生代火山岩的岩石学和地球化学:对构造体制转换与岩石圈深部物质组成的制约[D].长春:吉林大学,2003.
    [70]李超文,郭锋,范蔚茗,等.延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义[J].中国科学D辑,2007,37(3):319-330.
    [71]李曙光.εNd-La/Nb、Ba/Nb、Nb/Th图对地幔不均一性研究的意义—岛弧火山岩分类及EMIl端元的分解[J].地球化学,1994,23(2):106-114.
    [72]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    [73]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J].地球化学,2003,32:86-90.
    [74]刘敦一,赵敦敏.用热离子发射质谱计直接测定单颗粒锆石207Pb/208Pb年龄[J].地质论评,1988,34(6):496-504.
    [75]刘民武,赫英.激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展[J].地球科学进展,2003,18(1):116-121.
    [76]刘燊,胡瑞忠,赵军红,等.胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究[J].岩石学报,2005,21(3):947-953.
    [77]柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D].西安:西北大学,2004.
    [78]孟恩.佳木斯地块东缘及东南缘晚古生代火山岩的年代学和岩石地球化学[D].长春:吉林大学,2008.
    [79]裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义[J].世界地质,2004,23(1):6-13.
    [80]彭玉鲸.吉林中部地区地质构造特征[M].沈阳:沈阳出版社,1997.
    [81]彭玉鲸,刘爱,李文锁,等.吉林省延边地区二叠纪的三类植物群与古陆缘再造[J].吉林地质,1999,18(1):1-12.
    [82]彭玉鲸,赵成弼.古吉黑造山带的演化与陆壳的增生[J].吉林地质,2001,20(2):1-9.
    [83]彭向东,张梅生,李晓敏.吉黑造山带古生代构造古地理演化[J].世界地质,18(3):24-28.
    [84]苏养正.中国东北区二叠纪和早三叠世地层[J].吉林地质,1996,15(3、4):55-65.
    [85]孙书勤,汪云亮,张成江.玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J].地质论评,2003,49(1):40-47.
    [86]邵济安,唐克东,詹立培,等.一个古大陆边缘的再造及其大地构造意义[J].中国科学(D辑),1995,25(5):548-555.
    [87]唐克东.中朝陆台北侧褶皱带构造发展的几个问题[J].现代地质,1989,3(2):195-204.
    [88]唐克东,王莹,何国琦,等.中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1):16-30.
    [89]唐克东,邵济安,李景春,等.吉林延边缝合带的性质与东北亚构造[J].地质通报,2004,23(9-10):885-891.
    [90]唐克东,赵爱林.吉林延边开山屯地区地层时代的新证据[J].地层学杂志,2007,31(2):141-150.
    [91]汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf– Ta/Hf图解判别[J].岩石学报,2001,17(3):413-421.
    [92]王凯怡,杨瑞英.白云鄂博辉长岩的稀土含量[J].地质科学,1983,2:195-198.
    [93]王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西安:西北大学,2005.
    [94]王友勤,苏养正.东北区区域地层发育与地壳演化[J].吉林地质,1996,15(3、4):118-132.
    [95]王友勤,苏养正,刘尔义.东北区区域地层[M].武汉:中国地质大学出版社,1997,1-175.
    [96]文琼英,张川波,汪筱林,等.吉林省晚古生代造山带二叠纪移置地体及古地理原型[J].长春地质学院学报,1996,26(3):265-272.
    [97]吴福元,Wilde S,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [98]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    [99]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,4916:1589-1604.
    [100]夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77-89.
    [101]杨宝忠,夏文臣,杨坤光.吉林中部地区二叠纪岩相古地理及沉积构造背景[J].现代地质,2006,20(1):62-68.
    [102]杨学明,杨晓勇,陈双喜.岩石地球化学[M].合肥:中国科学技术大学出版社,2000.
    [103]于介江,门兰静,陈雷,等.延边地区五道沟群变质英安岩的锆石SHRIMP U-Pb年龄及其地质意义[J].吉林大学学报:地球科学版,2008,38(3):363-367.
    [104]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [105]张炯飞,张允平.关于延边地区石炭—二叠系[M].沈阳地质矿产研究所集刊,第4号,吉林科学技术出版社,1995.
    [106]张炯飞.延边地区渤海地块与兴凯地块之间古缝合带的初步研究[J].吉林地质,1997,16(02):30-37.
    [107]张炯飞,祝洪臣.延边地区花岗岩的成因类型及其形成的大地构造环境[J].辽宁地质,2000,17(1):25-33.
    [108]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].吉林大学,2002.
    [109]张允平,张炯飞.延边地区石炭系二叠系研究新认识[M].沈阳地质矿产研究所集刊,第3号,地质出版社,1994.
    [110]赵全国,许文良,靳克,等.延边地区中生代火山岩的岩浆源区:来自Sr-Nd同位素和深源捕虏体(晶)的证据[J].吉林大学学报(地球科学版),2005,35(4):416-422.
    [111]赵庆英,李春锋,李殿超,等.延边地区五道沟群辉长岩岩脉的锆石年龄及其地质意义[J].世界地质,2008,27(2):150-155.
    [112]赵成弼,靳克,齐成栋,等.珲春地区早印支期I-A型花岗岩系的特征及其大地构造意义[J].吉林地质,2001,20(1):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700