青海化隆亚曲含镍岩体成岩成矿作用及其构造响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日月山-化隆超基性岩带位于南祁连造山带。自20世纪70年代后期以来发现了拉水峡铜镍硫化物矿床,使这一地区逐渐成为国内外地质学家关注的焦点。本文依托国土资源大调查项目“青海省化隆县甘都地区铜镍矿调查评价”,选取日月山-化隆成矿带中比较有代表性的亚曲岩体,通过对亚曲岩体岩石学、矿物学、主量元素、微量元素及硫同位素、Re-Os同位素地球化学等方面的系统研究,取得了以下主要认识:
     1.亚曲岩体属镁铁-超镁铁岩类,主要的岩石类型有角闪石化辉长-苏长岩、石英闪长岩、黑云母辉长岩,超基性岩数量少,主要含矿岩相为辉长—苏长岩和闪长岩,各岩相带为同源岩浆结晶分异演化的产物;主要的造岩矿物有辉石、斜长石、角闪石及黑云母。
     2.亚曲岩体的稀土元素表现为轻稀土富集型,具有比较明显铕负异常,富集大离子亲石元素,相对亏损高场强元素。
     3.岩浆源区为富集的岩石圈地幔,源区物质受到沉积物质的交代改造。形成于440.74±0.33Ma。
     4.形成岩体的大部分岩浆已经不是原生岩浆,而主要是由演化程度不同的岩浆组成,岩浆在上升过程中受到过地壳物质的混染。硫同位素、铼-锇同位素特征结合岩石化学资料显示亚曲岩体在岩浆演化过程中发生了辉石、斜长石等矿物的分离结晶作用及富硅组分地壳围岩的混染可能是引起该矿床母岩浆硫饱和与硫化物发生熔离作用而成矿的主要因素。
Riyue-Hualong ultrabasic rocks lies in the southern part of Qilian orogenic belt. Since the th late 70s of 20th century, after we found the Lashuixia copper-nickel sulfide deposit, this region has become the focus of domestic and foreign geologists. In Riyue-Hualong rock band, Yaqu rock is more representative. This paper according to systematically research the petrography, crystal chemistry, rare earth elements, trace elements and S and Re-Os isotopic geochemistry of Yaqu rock body, scientifically demonstrates its magmatic process, magma nature and mantle source district features. Based on these researches we get some initial understanding as follows:
     1. The Yaqu intrusion is mafic-ultramafic rocks,the main rock types are amphibole gabbro-norite, quartz diorite, biotite gabbro, the quantity of ultrabasic rock is few, the main ore-bearing rocks are gabbro-norite and diorite, each lithofacies is the result of mineral crystal by the same source magma; the main rock-forming minerals are pyroxene, plagioclase, hornblende and biotite.
     2. The REE partitioning pattern is LREE enrichment, the Eu anomaly is a distinct negative, and enriches LILE, correspondingly depleted HFSE.
     3. The magma source is enriched mantle, and the source matter is composed by metasomatic lithosphere mantle matter. Its formation age is 440.74±0.33 Ma.
     4. A majority of magma which forms the rock body is not the primary magma, it mainly composed by different evolution degree magma, When the magma is in the course of rising it should be hybridized a little by the crust substance. The S isotop,Re-Os isotope geochemical character and petrochemical data show that crustal contamination and the fractionation of pyroxene and Plagioclase in the magma revolution process of Yaqu intrusion and the accession of silicon-rich crustal rock composition may be the main factors leading to S-saturation and sulfide segregation in deep crust.
引文
[1]Baker J. A., Menzies M. A,, Thirlwall M. F. and Macpherson C. G.. Petrogenesis of Quaternary intraplate volcanism, Sana'a Yenmen:Implication and polybaric melt hybridization [J]. Journal of Petrology,1997,38:1359~239.
    [2]Birck J-L,Roy Barman M,Capmas F.Re-Os isotopic measurements at the femtomole level in natural samples[J].Geostand Newslett,1997,21(1):19~27.
    [3]Campbell I. H.. Implications of Nb/U,Th/U and Sm/Nd in plume magma for the relationship between continental and oceanic crust formation and the depleted mantle [J]. Geochmica et Cosmochimics Acta,2002,66(9):1651~1661
    [4]Campbell I. H. and Griffiths R.W.. The evolution of mantle's chemical structure [J]. Lithos, 1993,30:389~399
    [5]Furman T. Y., Bryce J.G., et al. East African rift system(EARS) plume structure:insight from quaternary mafic lavas of Turkana, Kenya [J]. Journal of Petrology,2004,45: 1069~1088
    [6]Gibson S. A., Kirkpatrick R. J., Emmemann R., Schmincke R. H., Pritchard G, Okay P. J., Thorpe R. S., Marriner G F.. The trace element compositeon of lavas and dykes from a 3km vertical section through a lava pile in Eastern Iceland. [J]. J. Geophys. Res,1982, 87:6532~6546
    [7]Lambertt D D,Foster J G,Frick L R, et al. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits:new insights from the Re-Os isotope system..[J]. Economic Geology,1998, 93(2):121~136
    [8]Lambertt D D,Walker R J,Morgan J W.Re-Os and Sm-Nd isotope geochemistry of the Stillwater Complex, montana:implications for the prteogenesis of the J-M Reef. [M]. Journal of petrology,1998b,35:1717~1753
    [9]Li C, Ripley E M, Maier W D, et al. Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa:Evidence forsulfur contamination and multiple magma emplacements. [J].Chemical Geology, 2002,188,149~159.
    [10]Li C, Ripley E M, Naldrett A J. Compositional variations of olivine and sulfur isotopes the Noril'sk and Talnakh intrusions, Siberia:Implications for ore forming processes in dynamic magma conduits:Economic Geology.2003,98(1):69~86.
    [11]Li C S,Xu Z H,De Wall S A,et al.Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit,western China:implications for ore genesis.Mineralium deposita,2004,39:159~172
    [12]Lightfoot P. C., Hawkesworth J., Hergt J., Naldrett A. J., Gorbachev N. S., Fedorenko V. A., Doherty W.. Remobilisation of the continental lithosphere by a mantle plume:major-, trace element and Sr-, Nd-, and Pb-isotope evidence from pieritie and tholeiitic lavas of the Noril'sk District. Siberian trap, Russia [J]. Contrib. Mineral. Petrol.,1993,171~188
    [13]Lightfoot P C,Chris J.Hawkesworth C J.Olshefskyk,et al, Geochemistry of tertiary tholectes and picrites from Qeqertarssusqe (Disko Ialznd) and Nuussuaqc,west Greenl and with implications for the mineral potential of comagmatic intrusions,Contrib.[J].Mineral petrol,1997,128:139~163
    [14]Lightfoot P C,Hawkesworth C J.Flood basalts and magmatic Ni,Cu and PGE sulphide mineralization:Comparative geochemistry of the Noril'sk (Siberian Trap) and west Greenland Sequences.In:Mahoney JJ,Coffin MF,eds.large igneous province.[J].Washington DC,Amercian Geophysical Union:1997,357~380
    [15]Li C, Ripley E M, Naldrett A J. Compositional variations of olivine and sulfur isotopes the Noril'sk and Talnakh intrusions, Siberia:Implications for ore forming processes in dynamic magma conduits:Economic Geology.2003,98(1):69~86.
    [16]LiZX, Li X H, Zhou H, et al.Grenville-aged continental collision in South China:new SHRIMP U-Pb zircon results anf implications for Rodinia configuration[J].Geology,2002,30:163~166.
    [17]Maier W D,Barnes S J,De WaalSA.Exploration for magmatic Ni-Cu-PGE sulphide deposits:Areview of recent advances in the use of geochemical tools,and their application to some south African ores.[J].South African Geology,1998,101(3):237~ 253
    [18]Naldrett A J. World-class Ni-Cu-PGE deposits: key factors in their genesis.[J].Mineralium Deposita,1999,34:227~240
    [19]Naldrett A J.Magmatic Sulphie Deposits. [M].New York:Oxford University Press.1989.1~186
    [20]Naldrett A J.An overview of Ni-Cu mineralization with conclusions guide in explo-ration. [C].International Geological correlation program IGCP479 short course notes, 2004a,154~164
    [21]Naldrett A J.Magmatic sulfide deposits. [M].Springer Berlin.2004b,128:303~311
    [22]Naldrett A J.A model for the Ni-Cu-PGE ores of the Noril'sk region and its application to other areas of flood basalt.[J].Economic Geology,1992,87(8):1945~1962
    [23]Naldrett A J.Duke J M, Lightfoot P C,et al.Quantitative Modelling of the segregation of magmatic sulfides:an exploration guide.[J].Bull Can Inst Min Metall,1984,77:46~57
    [24]Naldrett A J.Fedornko V A,Asif M,et al. Controls on the compositions of Ni-Cu sulfide deposits as illustrated by those at Noril'sk,Siberia.[J].Economic Geology,1996,91:751~ 773
    [25]Naldrett A J.Key factors in the genesis of Noril'sk,Sudbury,Jinchuan,Voisey's Bay and other world-class Ni-Cu-PGE deposits:implication for exploration.[J].Australian Journal of Earth Sciences,1997,44:281~315
    [26]Naldrett A J.Nickle sulphide deposits:Their classification and genesis with special emphasis on deposits of volcanic association.[J].Canadian Mining and Metallurgical Bull,1973,66:45~63
    [27]Pearce J. A., Thirlwall M. F., Ingram G., Murton B. J., Arculus R.J., Van der laan S. R.. Isotopic evidence for the origin of Boninites and related rocks drilled in the Izu-Bomin(Ogasa Wara) forearc, Leg 125. In:Fryer P., Pearce J. A., Stokking L.(Eds), Proceedings of the Ocean Drilling Program[J]. Scientific Results,1992, vol.125, pp. 237~261
    [28]Ripley E M,Lightfoot P C,Li C S,et al.Sulfur isotopic studies of continental flood in the Noril'sk region:implications for the association between lavas and ore-bearing intrusions.[J].Geochimical et co smchimicaacta,2003,67(15):2805~2817
    [29]Ripley E M, Alawi J A.Petrogenesis of pelitic xenoliths at the Babbitt Cu-Ni deposit,Duluth Complex,Minnesota,USA.[M].Lithos,1988,21:143~159.
    [30]Song S G, Zhang L F, Niu Y L, et al.Evolution from oceanic subduction to continental collision: a case study from the northern Tibetan plateau based on geochemical and geochronological data[J] Journal of Petrology,2006,47:435~455.
    [31]Stanley C. R., Russell J. K.. Petrologic hypothesis testing with pearce element ration d iagrams derivation of diagram axes:Contrib [J]. Mineral. Petro.,1989,101:78~89
    [32]Staudigel H., Hart S. R.. Alteration of basaltic glass:mechanicsms and significance for the oceanic crust-seawater budget[J]. Geochim. Cosmochim,1983, Acta 47:337~350
    [33]Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts: impliimplications for mantle composition and processes.In:Saunders A D and Norry M J(eds).Magmatism in the Ocean Basins. [M].Geological Society.London:Special Publication,1989,42:313~345
    [34]Taylor S R,Mclennan S M.1985.The continental crust:its composition and evolution.[M].London:Blackwell Scientific Publications,1985.1~312.
    [35]Wan Y S, Yang J S, Xu Z Q, et al.Ages and Compositions of the Precambrian high-grade basement of the Qilian Terrane and its adiacent areas [J]. Acta Geologica Sinica,2001,75:375~384.
    [36].Wan Y S, Zhang J X, Yang J S, et al.Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance [J].Journal of Asian Earth Sciences,2006,28:174~184.
    [37]Wendlandt R F.Sulphide saturation of basalt and andesite melts at high pressures and temperature.[J].American mineralogist,1982,67:877~885
    [38]Wooden J. L., Czamanske G. K., Fedorenko V. A., Arndt N. T., Chauvel C., Bouse R. M., King B. S. W., Knight R. J., Siems D. F.. Isotopic and trace-element constraints on mantle and crustal contrib.utions to Siberian continental flood basalts Noril'sk Area, Siberia[J].Geochim.Cosmochim.Acta,1993,57:3677~3704.
    [39]Xu W C,Zhang H F,Liu X M.U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications [J].Chinese Science Bulletin,2007,52:531~538.
    [40]Yang Gang,Du Andao,Lu Jiren,Qu Wenjun,Chen Jiangfeng.Re-Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni-Cu-PGE deposit[J].Sci China(D),2005,48(10):1672~1677.
    [41]柴凤梅,新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁-超镁铁质岩的地球化 学特征对比研究:博士学位论文.[D].北京.中国地质大学.2006
    [42]陈浩琉,吴水波,傅德彬,等.镍矿床.[M].北京:地质出版社,1993,1~199
    [43]陈衍景.中国区域成矿研究的若干问题及其与陆陆碰撞的关系.[J].地学前缘,2002,9(4):319~328
    [44]陈衍景.中国西北地区中亚型造山—成矿作用的研究意义和进展.[J].高校地质学报,2000,6(1):17~22
    [45]陈毓川,赵逊,张之一,等.世纪之交的地球科学—重大地学领域进展[M].北京:地质出版社,2000
    [46]杜安道,赵敦敏,王淑贤,孙德忠,刘敦—.Carius管溶样-负离子热表面电离质谱准确测定辉钼矿中铼-锇同位素地质年龄[J].岩矿测试,2001,20(4):247~252.
    [47]杜安道,屈文俊,李超,杨刚.铼-锇同位素定年方法及分析测试技术的进展[J].岩矿测试,2009,28(3):288~304
    [48]董云鹏,周鼎武,张国伟.东秦岭富水基性杂岩体地球化学特征及其形成环境.[J].地球化学,1997,26(3):79~88
    [49]范育新,张铭杰.超大型铜镍硫化物矿床研究进展.[J].甘肃地质学报,1999,8(2):47~52
    [50]冯益民.祁连造山带研究概况—历史、现状及展望[J].地球科学进展,1977,12:307~314.
    [51]冯益民,何世平.祁连山大地构造与造山作用[M].北京:地质出版社,1980
    [52]葛文春,林强,孙德有.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.[J].岩石学报,1999,15(3):396~407
    [53]顾连兴,诸建林,郭继春,等.造山带环境中的东疆型镁铁.超镁铁杂岩.[J].岩石学报,1994.10(4):339~356
    [54]韩宝福,季建清,宋彪,等.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义.[J].科学通报,2004,49(22):2324~2328
    [55]韩宝福,何国琦,王式洗.后碰撞幔源岩浆活动底垫作用及准噶尔盆地基底的性质.[J].中国科学(D辑),1999,29(1):16~21
    [56]韩春明,肖文交,崔彬,等.新疆北部晚古生代铜矿床主要类型和地质特征.[J].地质学报,2006,80(1):74~89
    [57]姜常义,安三元.论火成岩中钙质角闪石的化学成分及其岩石学意义.[J].矿物岩 石,1984,4(3)
    [58]姜常义,姜寒冰,叶书锋,等.新疆库鲁克塔格地区二叠纪脉岩群岩石地球化学特征,Nd、Sr、Pb同位素组成与岩石成因[J].地质学报,2005a,79(6):823-833
    [59]姜常义,卢登蓉,白开寅,等.大陆岩石圈地质交代作用的产物-且干布拉克蛭石矿床[J].岩石学报,2005b,21(1):201~210
    [60]姜常义,程松林,叶书锋,等.新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因[J].岩石学报,2006,22(1):115~126
    [61]姜常义,钱壮志,姜寒冰,等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报,2007,23(4):777~792
    [62]李曙光,聂永红,郑双根,等.俯冲陆壳与上地幔的相互作用——Ⅰ.大别山同碰撞镁铁-超镁铁岩的主要元素及痕量元素地球化学[J].中国科学(D辑),1997,27(6):488~493
    [63]李文渊Re-Os同位素体系及其在岩浆Cu-Ni-PGE矿床研究中的应用[J].地球科学进展,1996,11(6):580~584
    [64]刘德权,唐延龄,周汝洪.中亚古生代造山带成矿作用基本特征[J].西北地质,2001,34(2):1~10
    [65]刘民武.中国几个镍矿床的地球化学比较研究.博士学位论文[D].西安:西北大学,2003
    [66]刘月星.铜镍硫化物矿床成矿作用及成矿模式研究[J].矿产与地质,1997,11(4):225~231
    [67]毛景文,杨建民,屈文俊,等.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义[J].矿床地质,2002,21(4):323~330
    [68]毛景文,Franco Pirajno,张作衡,等.天山.阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床:主要特点及与地幔柱关系(待发表).2006.
    [69]毛景文,李晓峰,李厚民,等.中国造山带内生金属矿床类型、特点和成矿过成探讨[J].地质学报,2005,79(3):342~372
    [70]钱壮志,王建中,姜常义等.喀拉通克铜镍矿床铂族元素地球化学特征及其成矿作用意义[J].岩石学报,2009,25(4):832~844
    [71]钱壮志,孙涛,汤中立等.东天山黄山东铜镍矿床铂族元素地球化学特征及其意义[J].地质论评,2009,55(6):873~884.
    [72]孙卫东,彭子成,王兆荣,Yin Qingzhu铼锇负热电离质谱测定中的氧同位素校正[J].质谱学报,1997,18(3):1~6.
    [73]汤中立,李文渊.金川铜镍硫化物模式及地质特征对比[M].北京:地质出版社.1995
    [74]汤中立.超大型Ni-Cu(Pt)岩浆矿床的划分与找矿[J].地质与勘探,2002,38(3):1~7.
    [75]汤中立.中国的小岩体岩浆矿床[J].中国工程科学,2002,4(6):9~12.
    [76]汤中立,白云来,徐章华等.华北古陆西南缘(龙首山—祁连山)成矿系统及成矿构造动力学[M].北京:地质出版社,2002.
    [77]汤中立.中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化[J].地学前缘,2004,11(1):113~119.
    [78]汤中立,闫海卿,焦建刚等.中国岩浆硫化物矿床新分类与小岩体成矿作用[J].矿床地质.2006,25(1):1~8.
    [79]王瑞廷,毛景文,柯洪,等.铜镍岩浆硫化物矿床成矿作用研究综述[J].矿产与地质,2003,17(增刊):281~284
    [80]吴利仁.论中国基性岩、超基性岩的成矿专属性[J].地质科学,1963,(1):29~41
    [81]万渝生,许志琴,杨经绥等.祁连造山带及临区前寒武纪深变质基底的时代和组成[J].地球学报,2003,24:319~324.
    [82]杨刚Re-Os和Pt-Os同位素体系在金属矿床的研究和应用[D].合肥:中国科学技术大学,2005.
    [83]张招崇,王福生.一种判别原始岩浆的方法-以苦橄岩和碱性玄武岩为例[J].吉林大学学报(地球科学版),2003,33(2):130~134
    [84]张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志,2005,24(4):285~293.
    [85]赵敦敏,杜安道,刘敦一.地质样品中铼、锇同位素比值的负离子质谱测量[J].质谱学报,1998,19(3):35~41.
    [86]曾建元,洋红仪,万渝生等.北祁连山变质杂岩中新元古代(~775Ma)岩浆活动记录的发现:来自SHRIMP锆石U-Pb定年的证据[J].科学通报,2006,51:75~581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700