中孔分子筛分离富集—原子光谱法测定痕量有害元素汞镉铬的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在查阅大量中外文献资料的基础上,通过深入、系统的试验研究,根据中孔分子筛具有可调的孔径、可控的行貌、结构组成等特点,自行合成了中孔分子筛并制作成一种新型的吸附材料对有害金属离子进行分离富集,分别研究了汞、镉、铬等有害金属离子在中孔分子筛上的分离富集行为,运用原子光谱法测定痕量有害金属元素,由此建立了简单、准确、高效、高选择性、高灵敏度的分析痕量有害金属离子的新方法。拓展了中孔分子筛在分析化学领域中的应用。全文共分四章,主要内容如下:
     第1章:综述了近年来分离富集技术和吸附材料在原子光谱检测的中应用。重点介绍了新型吸附材料-中孔分子筛产生的历史、特性及在分离富集中的应用,以及中孔分子筛的研究进展。
     第2章:以正辛胺为模板剂合成了有机—无机介孔材料,以此作为分离预富集材料,以原子荧光法作为测试手段,建立了测定痕量汞的一种新方法,探讨了中孔分子筛吸附汞的原理以及溶液pH值、温度、洗脱条件及干扰离子对汞分离富集的影响,该方法测定汞的检出限达1.89×10-9 g/L,相对标准偏差为2.69%,线性范围为0.005 ng/mL~5 ng/mL,相关系数r=0.9992,加标回收率在95.3%~104.5%之间。此法应用于环境水样中痕量汞的测定,结果满意。
     第3章:用合成的中孔分子筛P123–SH作为镉的分离富集新材料,以原子吸收光谱法作为测试手段,建立了测定痕量镉的新方法,探讨了中孔分子筛P123–SH吸附镉的原理以及溶液pH值、温度、洗脱条件及干扰离子对镉分离富集的影响,该方法的检出限为0.12μg/L,加标回收率在96.5%~103.1%之间,对50μg/L的Cd2+溶液平行测定7次,RSD=2.1%。此法已成功地应用于环境水样中痕量镉的测定。
     第4章:采用嫁接法制备了一种新型的中孔分子筛SBA-15(NH2),以此为吸附材料,以火焰原子吸收光谱为测试手段,研究了中孔分子筛SBA-15(NH2)材料在动态条件下对环境样品中痕量铬进行形态分析。探讨了微柱中孔分子筛吸附铬的原理以及溶液的pH值、温度、采样时间、采样速度、洗脱条件及干扰离子对铬在线分离富集的影响,由此建立了测定痕量铬的新方法,该方法线性范围为0.00012~2.0μg/mL,线性回归方程A=0.1198C+0.0545,检出限为0.10 ng/mL,相对标准偏差为2.8%,加标回收率在99.0%~104.0%之间,该方法用于实际水样中痕量铬的形态分析,结果满意。
On the basis of numerous references, through in-depth and systemic studied, mesoporous molecule-sieve was chosen to be studied because its aperture and shape can be controlled or its derivative’s characteristics and the existing state of being studied at home and abroad. Mesoporous molecule-sieve firstly has been synthesized and then impregnated, loaded or bonded on the carrier to prepare a new type of adsorbent material which was applied to separate/enrich harmful metal ions. The separation and concentration behavior of Hg、Cd、Cr ions had been studied respectively, and then new methods for analysis and determination by FAAS of trace heavy harmful metal ions have been established. The methods were simple / accurate and highly selection. At the same time, the field of mesoporous molecule-sieve applied was enlarged.
     The major contents include four parts, there are described as follows:
     1. The methods of separation/preconcentration and kinds of adsorption materials in atomic adsorption spectrometry detemination were reviewed. The characteristics and application in separation/preconcentration of new adsorption material- mesoporous molecule-sieve were introduced in detail.
     2. A new functiontalized organic-inorganic mesoporous material has been studied on preconcentration and determination of trace mercury. Determination of trace mercury by atomic fluorescence spectrometry (AFS) after perconcentration on supported this material was elutioned with thick HCl. The linear range was 0.005~5 ng/mL. The detection limit was 1.89×10-9 g/L(3σ). The RSD was 2.69﹪(n=11 , c=0.5 ng/mL). The recoveries of mercury were 95.3~104.5﹪. The method has been applied for determination of trace mercury in water samples with satisfactory results.
     3. A new method of determination of trace cadmium with mesoporous molecule-sieve P123-SH material by flame atomic absorption spectrometry (FAAS) was reported. The linear range was 0.0005~0.1mg/L. The detection limit was 0.12μg/L (3σ,n=11). The recoveries of cadmium were 102%~104%.The RSD was 2.13%(n=7, c=0.05 mg/L). The method has been applied for determination of trace cadmium in water samples with satisfactory results.
     4. Mesoporous molecule-sieve SBA-15(NH2) was synthesized through grafted mothed, use SBA-15 and 3-aminopropyltriethoxysilane as reagent, SBA-15(NH2) was synthesized at strict conditions in our laboratory. A PTFE micro column packed with SBA-15(NH2) was used in FI (flow injection)-FAAS (flame atomic adsorption spectrometry) system for the determination trace Cr forms in environment sample. The linear range was 0.0002~2.0μg/mL.The detection limit was 0.10 ng/mL. The linear equation was A=0.1198C+0.0545(C:μg/mL,r=0.9978). The RSD was 2.8%. The recoveries of Cr(Ⅲ) was 99.0%~104.0%. The method has been applied for the determination of trace Cr forms in environmental and biological samples with satisfactory results.
引文
[1]《环境中重金属研究文集》编辑组编.环境中重金属研究文集[M].北京:科学出版社, 1998: 1-8.
    [2]赵敏政.贵金属分析[M].北京:冶金工业出版社, 1997:2-3.
    [3]王同聚,王瑞雪.原子吸收法和碘量法测金的干扰与消除[J].黄金, 1996, 17(10):46.
    [4]高小霞.极谱催化波[M].北京:科学出版社, 1991.
    [5]李安模,魏继中.原子吸收及原子荧光光谱分析[M].北京:科学出版社, 2000.
    [6]周春山.化学分离富集方法及应用[M].长沙:中南大学大学出版社, 1997:3.
    [7]张莘民,杨凯.固相萃取技术在我国环境化学分析中的应用[J].中国环境监测, 2000, 16(6) : 53-57.
    [8]江腾辉,鞠英,徐汉虹.固相萃取技术在农药残留分析中的应用[J].农药, 2004, 43(10): 463-466.
    [9]钟颖,满长宏,赵泉.固相微萃取技术及其在环境中的应用[J].环境科学与管理, 2005, 30(3):89-90.
    [10]吴景雄,陈梅芹,马晓国.萃取技术在环境样品预处理中的应用及发展[J].中国环境监测, 2005, 21(2):10-14.
    [11]容庆新,李焕光,邦古拉.分析化学中金的溶剂萃取的进展[J].冶金分析, 2000, 20(2):31-38.
    [12]孙大海,王小如,黄本立.原子光谱分析中的样品处理技术[J].分析仪器, 1999, 2:53-57.
    [13]徐淑坤,方肇伦.流动注射在线分离浓集技术在原子吸收光谱分析中的应用[J].分析化学, 1999, 27(7):84.
    [14] Pei S Q,Fang Z L.Flame atomic absorption spectrometric determination of silver in geological materials using a flow-injection system with on-line preconcentration by coprecipitation with diethyldithiocar- bamate[J]. Anal. Chim.Acta, 1994, 294:185.
    [15] Nielsen S, Sloty J J, Hflnsen E H. Determination of ultra-trace amounts of arsenic (III) by flow-injection hydride generation atomic absorption spectrometry with on-line preconcentration by coprecipitation with lanthanum hydroxide or hafnium hydroxide[J], Talanta. 1996, 43: 867-880.
    [16]苏东耀,李静,马红梅.磷酸铈共沉淀分离富集硫酸钴中痕量铅及铅的原子吸收光谱测定[J].分析试验室, 2005, 24(2):70-72.
    [17]苏耀东,李静,黄燕,陈龙武.应用内标的APDC—Cu(Ⅱ)快速共沉淀分离[J].光谱学与光谱分析, 2006, 26(3):564-566.
    [18]马红梅,苏耀东,朱志良.磷酸钕共沉淀选择性分离富集—原子吸收测定环境水样中痕量铅[J].环境污染与防治, 2006, 28(4):305-307.
    [19] Hiraide M, Chen Z S, Kawaguchi H. Coprecipitation of traces of heavy metals with indium hydroxide for graphite-furnace atomic absorption spectrometry[J]. Anal. Sci, 1991, 7(1):65-68.
    [20] Shigehiro Kagaya, Yasuko Araki, Noriyasu Hirai, Kiyoshi Hasegawa. Coprecipitation with yttrium phosphate as a separation technique for iron (III), lead, and bismuth from cobalt, nickel, and copper matrices[J]. Talanta, 2005, 67:90-97.
    [21] Hiraide M, Hommi H, Kawaguchi H. Coprecipitation of copper(II)-humic complexes with indium hydroxide[J]. Anal. Sci, 1991, 7(1):169-171.
    [22] Hiraide M , Ozaki N , Pak Y N, Tanaka T, Kawaguchi H . Coprecipitation with indium hydroxide followed by flotation in a flow system for monitoring copper (II) ions in water[J]. Anal. Sci, 1993, 9(3):367-370.
    [23] Hiraide M, Ito T, Baba M, Kawaguchi H, Mizuike A. Multielement preconcentration of trace heavy metals in water by coprecipitation and flotation with indium hydroxide for inductively coupled plasma-atomic emission spectrometry [J]. Anal. Chem, 1980, 52(6):804-807.
    [24]任曼,邓海琳,龚国洪,冯家毅.分离富集金、铂、钯的碲共沉淀物研究[J].冶金分析, 2006, 25(3):13.
    [25] Takeda K., Akamatsu C., Ishikawa Y..Determination of manganese by electrothermal atomisation atomic absorption spectrometry following coprecipitation with yttrium hydroxide[J]. Anal.Chim. Acta, 1994, 298(3):375-379.
    [26]苏耀东,秦立俊,李静,陈龙武.内标和快速共沉淀一火焰原子吸收光谱法测定食盐中的镉[J].岩矿测试, 2005, 24(3):201.
    [27]周增冉.色谱分析.北京:纺织工业出版社[M].北京, 1992, 1:1.
    [28]刘劲松,陈恒武,毛雪琴.流动注射在线阴离子树脂预富集火焰原子吸收测定痕量铜[J].分析化学, 1998, 26 (11):956-959.
    [29]罗道成,宁立波.流动注射-离子交换分离富集-分光光度法测定石煤渣中痕量钽[J].化学试剂, 2 2005, 27(9),556-558.
    [30]王爱霞,吴冬梅,谢文兵,郭黎平. Amberlite XAD-2键合双硫腙熬合树脂现场预富集测定水中痕量铅[J].分析化学, 2006, 34(9):1315-1318.
    [31]鲍长利,赵淑杰,刘广民.对磺基偶氮变色酸鳌合形成树脂分离富集微量铂和钯[J].分析化学, 2002, 30(2):198-201.
    [32]曹钧,罗世忠,胡秀英.应用8-羟基喹啉-酚酞-聚氨脂泡沫塑料分离富集水样中微量锌[J].冶金分析, 1999, 19(1):45-47.
    [33]曹小安,陈永亨,周怀伟.邻羟基苯基重氮氨基偶氮苯分光光度法测定地质样品中的痕量铊[J] .分析化学, 2001, 29(6):741.
    [34]王艳红,孙津生.趋磁性细菌吸附Pb2+的研究[J].化学工程, 2006, 34(6):1-3.
    [35] Kresge C T, Leonowicz M E, Roth W T, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710~712.
    [36] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279:548-552.
    [37] Dongyuan Zhao, Qisheng Huo, Jianglin Feng, Bradley F. Chmelka, and Galen D. Stucky. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. Am. Chem. Soc, 1998, 120: 6024-6036.
    [38] Dongyuan Zhao, Qisheng Huo, Jianglin Feng, Jiman Kim, Yongjin Han, and Galen D. Stucky. Novel Mesoporous Silicates with Two-Dimensional Mesostructure Direction Using Rigid Bolaform Surfactants[J]. Chem. Mater, 1999, 11:2668-2672.
    [39] Yasuhiro Sakamoto, Isabel Díaz, Osamu Terasaki, Dongyuan Zhao, Joaquin Pérez-Pariente, Ji Man Kim, and Galen D. Stucky. Three-Dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography[J]. Phys. Chem. B, 2002, 106:3118-3123.
    [40] Huo Q S, Margolese D I, Ciesla U, Feng P, Gier T E, Sieger P, Leon R, Petroff P M, Schüth F, Stucky G D. Generalized Syntheses of Periodic Surfactant/Inorganic Composite Materials[J]. Nature, 1994, 368:317-321.
    [41] Huo Q S, Leon R, Petroff P M, Stucky G D. Mesostructure design with Gemini surfactants: Supercage formation in a three-dimensional hexagonal array[J]. Science, 1995, 268:1324-1327.
    [42] Ryoo R, Kim J M, Ko C H, Shin C H. Disordered molecular sieve with branched mesoporous channel network[J]. Phys. Chem. 1996. 100:17718-17721.
    [43] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromtic compounds [J]. Nature, 1994, 368:321-323.
    [44] Tanev P T, Chibwe M, Pinnavala T J. A Neutral Templating Route to Mesoporous Molecular Sieves[J]. Science, 1995, 267:865-867.
    [45] Chen C Y, Burkett S L, Davia M E, Li H X. Studies on mesoporous materials I. Synthesis and Characterization of MCM-41[J]. Micoporous Mater, 1993, 2(1):17-26.
    [46] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H , Tu B, Che R C, Peng L M, Zhao D Y. Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with Ia3d Symmetry[J]. Angew. Chem. Int. Ed, 2002, 41(20): 3876-3878.
    [47]Fan J, Yu C Z., Gao T, Lei J, Tian B Z, Wang L M, Luo Q, Tu B, Zhou W Z, Zhao D Y. Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties[J] Angew.Chem. Int. Ed, 2003, 42(27):3146-3150.
    [48] Chengzhong Yu, Yonghao Yu and Dongyuan Zhao. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer[J]. Chem. Commun, 2000, 575-576.
    [49] Yasuhiro Sakamoto , Osamu Terasaki, Prof. Dr, Yoshiyuki Sugahara, Prof. Dr, Kazuyuki Kuroda, Prof. Dr. Formation of Novel Ordered Mesoporous Silicas with Square Channels and Their Direct Observation by Transmission Electron Microscopy[J]. Angew. Chem. Int. Ed, 2000, 39(21): 3855-3859.
    [50] Liu Y, Du H, Xiao F S, Zhu G, Pang W. Synthesis and Characterization of a Novel Microporous Titanosilicate JLU-1[J]. Chem Mater, 2000, 12:665-670.
    [51] Antonelli D M, Ying J Y. Mesoporous materials[J]. Curr. Opin. Colloid Interface Sci, 1996, 1:523-529.
    [52] Xun He, David Antonelli. Recent Advances in Synthesis and Applications of Transition Metal Containing Mesoporous Molecular Sieves[J]. Angew. Chem. Int. Ed, 2002, 41(2): 214-229.
    [53] Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V, Suib S L. Manganese Oxide Mesoporous Structures Mixed-Valent Semiconducting Catalysts[J]. Science, 1997, 276:926-930.
    [54] Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies [J] .Nature, 1996, 380:325-328.
    [55] Yang P, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396:152-155.
    [56] Ciesla U, Schacht S, Stucky G D, Unger K, Schuth F. Formation of a Porous Zirconium Oxo Phosphate with a High Surface Area by a Surfactant-Assisted Synthesis[J]. Angew. Chem. Int. Ed, 1996, 35:541-543.
    [57] Stein A, Brian J M, Rick C S. Hybrid Inorganic-Organic Mesoporous Silicates - Nanoscopic ReactorsComing of Age[J].Adv. Mater, 2000, 12:1403-1419.
    [58] Stein A. Advances in Microporous and Mesoporous Solids - Highlights of Recent Progress[J]. Adv. Mater, 2003, 15:763-775.
    [59]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报, 1999, 44:1905-1920.
    [60] Asefa T, Yoshina-Ishii C, MacLaclan M, Asefa T, Ozin G A. New nanocomposites: putting organic function "inside" the channel walls of periodic mesoporous silica[J]. Mater Chem, 2000,10: 1751-1755.
    [61] Shinji Inagaki, Shiyou Guan, Yoshiaki Fukushima, Tetsu Ohsuna and Osamu Terasaki. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks[J]. Am. Chem. Soc, 1999, 121(41):9611-9614.
    [62] Brian J. Melde, Brian T. Holland, Christopher F. Blanford, and Andreas Stein. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks[J]. Chem. Mater, 1999, 11:3302-3308.
    [63] Yoshina-Ishii C, Asefa T, Coombs N, MacLachlan M J, Ozin G A. Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry inside the channel walls of hexagonal mesoporous silica[J]. Chem. Commun, 1999, 2539-2540
    [64] Asefa T, Mclachlan M J , Coombs N, Ozin G A. Periodic mesoporous organosilicas with organic groups inside the channel walls[J]. Nature, 1999, 402:867-871.
    [65] Mark C. Burleigh, Michael A. Markowitz, Shalini Jayasundera, Mark S. Spector, Chris W. Thomas and Bruce P. Gaber. Mechanical and Hydrothermal Stabilities of Aged Periodic Mesoporous Organosilicas[J]. Phys. Chem. B, 2003, 107:12628-12634.
    [66] Qihua Yang, Ying Li, Lei Zhang, Jie Yang, Jian Liu and Can Li. Hydrothermal Stability and Catalytic Activity of Aluminum-Containing Mesoporous Ethane-Silicas[J]. Phys. Chem. B, 2004, 108:7934-7937.
    [67] Sayari A, Hamoudi S. Periodic Mesoporous Silica-Based Organic-Inorganic Nanocomposite Materials[J]. Chem. Mater, 200l, l3:3l51-3168.
    [68] Shea K J, Loy D A. Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic-Inorganic Materials[J]. Chem. Mater, 200l, l3:3306-33l9.
    [69] X Feng, G E Fryxell, L-Q Wang, A Y Kim, J Liu, K M Kemner. Organic Monolayers on Ordered Mesoporous Supports[J]. Science, 1997, 276:923-926.
    [70] Liu A M, Hidajat K, Kawi S, Zhao D Y. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions[J] Chem. Commun, 2000, 1145-1146.
    [71] Richer R, Mercier L. Direct synthesis of functionalized mesoporous silica by non-ionic alkylpolyethyleneoxide surfactant assembly[J]. Chem. Commun, 1998, 1775-1776.
    [72] Brown J, Mercier L, Pinnavaia T J. Selective adsorption of Hg2+ by thiol-functionalized nanoporous silica[J]. Chem. Commun, 1999, 69-70.
    [73] Walcarius A. Luthi N. Blin J L. Su B L and Lambrts L.Electrochemical evaluation of polysiloxane- immobilized amine ligands for the accumulation of copper(II) species[J]. Electrochim. Acta, 1999, 44:4601-4610
    [74] Debasish Das, Jyh-Fu Lee and Soofin Cheng. Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for Bisphenol-A synthesis[J]. Chem. Commun, 2001, 21: 2178-2179
    [75] Lim M H, BLanford C F, Stin A. Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41: Probing the Internal Pore Structure by a Bromination Reaction[J]. Am. Chem. Soc, 1997, 119(18):4090-4091.
    [76] Zhao X S, Lu G Q. Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study[J]. Phys. Chem. B, 1998, 102(9):1556-1561.
    [77] Van Rhijin W M, de Vos D, Bossaert W. et al. Sulfonic acid bearing mesoporous materials as catalysts in furan and polyol derivatization[J]. Stud. Surf. Sci. Catal, 1998, 117:183-190.
    [78] Juan A Melero, Rafael van Grieken, Gabriel Morales and Vanesa Nu?o. Friedel Crafts acylation of aromatic compounds over arenesulfonic containing mesostructured SBA-15 materials[J] Catal. Commun, 2004, 5(3):131-136.
    [79] D. Margolese, J A Melero, . C Christiansen, B F Chmelka and G D Stucky. Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups[J]. Chem. Mater, 2002, 12:2448-2459.
    [80] Bossaert W D, de Vos D E, van Rhijn W M. et al. Mesoporous sulfonic acids as selective heterogeneous catalysts for the synthesis of monoglycerides[J]. Catal, 1999, 182:156-164.
    [81] Diaz I, Mohino F, Sastre E. Synthesis and catalytic properties of SO3H-mesoporous materials from gels containing non-ionic surfactants[J]. Stud. Surf. Sci. Catal, 2001, 135(2):1383-1390.
    [82] Das D, Lee J F, Cheng S. J. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups[J]. Cata1, 2004, 223:152-160.
    [83] Kapoor M P, Sinha A K, Sedan S. et al. Hydrophobicity induced vapor-phase oxidation of propene over gold supported on titanium incorporated hybrid mesoporous silsesquioxane[J].Chem. Commun, 2002, 2902-2903.
    [84] Qihua Yang, Ying Li, Lei Zhang, Jie Yang, Jian Liu, and Can Li. Hydrothermal Stability and Catalytic Activity of Aluminum-Containing Mesoporous Ethane-Silicas[J]. Phys. Chem. B, 2004, 108(23): 7934-7937.
    [85] Q Yang, J Liu, J Yang, M P Kapoor, S Inagaki, C Li. Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas[J]. Catal, 2004, 228:265-272.
    [86] Burleigh M C, Markowitz M A, Spector M S and Gaber B P. Direct synthesis of periodic mesoporous organosilicas: functional incorporation by co-condensation with organosilanes[J]. Phys. Chem. B, 2001, 105(41):9935-9942.
    [87] Mark C Burleigh, Shalini Jayasundera, Mark S Spector, Chris W Thomas, Michael A. Markowitz and Bruce P Gaber. A New Family of Copolymers Multifunctional Periodic Mesoporous Organosilicas [J]. Chem. Mater, 2004, 16:3-5.
    [88]刘健,杨启华,张磊,郭亚军.有机-无机杂化氧化硅基介孔材料[J].化学进展, 2005, 17(5):808-815.
    [89] W. R. Hatch and W. L. Ott. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry[J]. Anal. Chem, 1968, 40:2085-2087.
    [90]龙斯华,刘冬春.石墨炉原子吸收法测定人发中的痕量汞及其基体改进剂的研究[J].光谱学与光谱分析, 1989, 2(9):60-64
    [91]陈朝方,罗玉玮,范稚莉.高温氧分解-汞齐法快速测定水产品中的总汞含量[J].光谱学与光谱分析, 2005, 15(1):53-54.
    [92]林燕奎,赵琼晖,郑卫平.原子荧光光谱法同时测定食品中的砷和汞[J].湘潭大学自然科学学报, 2000, 22(3):63-65.
    [93]兰华春,苑宝铃,李坤林,刘会娟,曲久辉. MCM-41中孔分子筛对铜离子吸附性能的研究[J].化工环保, 2005, 26(6):490-493.
    [94]渠荣遴,何绯.石墨炉原子吸收光谱分析中基体改进剂对微量镉测定的影响[J].分析化学, 1999, 27(10):1193-1196.
    [95] Yang Q H, Liu J, Yang J, Zhang L, Feng Z C, Zhang J and Li C. Acid catalyzed synthesis of bifunctionalized mesoporous organosilicas with large pores Microporous and Mesoporous Materials[J]. Micropor. Mesopor. Mater, 2005, 77:257-264.
    [96] Broekaert J A C,刘克玲译.流动分析技术在微波等离子体炬原子发射光谱分析中的应用[J].光谱学与光谱分析, 1995, 15(5):121-123.
    [97]奚旦立,孙裕生,刘秀英.环境检测[M].北京:高等教育出版社, 1995, 291.
    [98]洪正隆,陈红斌.离子交换火焰原子吸收法测定水中铬(Ⅲ)和铬(Ⅵ)[J].分析化学, 1991, 4(19):484-486.
    [99]吴奇藩,周丽华,周淑贞,陈全汉.离子色谱-火焰原子吸收光谱联用技术及其在分离测定Cr(Ⅲ)和Cr(Ⅵ)的应用与研究[J].理化检验.化学分册B, 1991, 27(4):195.
    [100] Cox A G, Mcleod C W. Online Trace Enrichment and Determination of Cobalt Ion as an Anionic Complex by Flow Injection Atomic Absorption Spectrometry[J]. Ana1. Chem. Acta, 1986, 179: 487.
    [101]何金兰.用原子吸收光谱对痕量铬作价态分析[J].分析化学, 1995, 23(9): 1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700