离子液体在超临界二氧化碳中导电性及相关过程相行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们环保意识的增强,绿色化学受到越来越多的关注。离子液体作为一种极具应用前景的环境友好溶剂被应用于电化学反应介质。但是离子液体的黏度和表面张力都较大的特性限制了其电化学应用。超临界二氧化碳(CO2)是目前研究较多的另一类环境友好溶剂,由于具有粘度低、表面张力为零、经济易得、性质可调和较低的临界温度、临界压力等优点而被广泛应用于萃取分离、电化学反应等领域。本文探索将离子液体引入到超临界CO2体系中,试图赋予超临界CO2导电性,克服传统电解介质的高黏度和高表面张力的问题。另外对于该过程相关的相态和离子液体在超临界CO2中合成的相关相态也进行研究。工作总结如下:
     (1)高压相平衡是研究高压CO2混合体系的前提和理论基础。研究了CO2与1-溴丁烷、1-氯丁烷、1-甲基咪唑在不同溶质摩尔含量(0.0102-0.1495)、不同温度(308.2-337.4K)以及不同压力(6.21-19.04MPa)下混合体系的相平衡及密度。另外,还利用取样分析的方法测定了(293.15、309.75和323.2)K和(2.83-14.16)MPa下的超临界CO2与1-甲基咪唑气液平衡数据。研究表明:在实验研究的范围内,三种体系的相平衡有着类似的规律。混合体系的密度随着压力的升高而增大,随着温度的升高而减小,随着溶质摩尔分率的增大而增大;并且在分相点附近,密度对压力的变化非常敏感,用来表征压力对密度影响大小的KT变化也很大,而远离分相点时,密度受压力变化影响很小,KT很小,并且受压力影响也很小。超临界CO2与l-甲基咪唑混合体系在高温高压下存在三相(297.85K-313.95K,6.20MPa-8.67MPa),而且该体系的相图属于第四或第五类相图。CO2的溶解度随温度升高而减小,随压力升高而增大。
     (2)本文还利用合成法测定了乙腈作为共溶剂、不同的温度、压力情况下,离子液体[Bmim]BF4在超临界CO2中的溶解度,其中乙腈摩尔含量为0.1495和0.1990,温度范围为313.2K-332.2K。结果表明,离子液体在超临界CO2中的溶解度随着温度升高而减小,随着压力增大而增大,随着乙腈含量增多而增大。
     (3)本文研究了溶有离子液体的超临界CO2的导电性能,在高压变体积可视釜中测定了乙腈为共溶剂的情况下有离子液体([Bmim]BF4和[Bmim]PF6)时和没有离子液体时超临界CO2的导电性能,其中乙腈摩尔含量为0.1390-0.1971,温度范围为313.2K-332.2K。通过研究发现,只有共溶剂乙腈的情况下,超临界CO2的电导率非常小;而加入离子液体后,超临界CO2的电导率大大上升,并且电导率随着温度升高而降低,随着压力增大和乙腈含量增大而增强。
Recently, much more attention has been focused on green chemistry along with people's awareness of the importance of environment. Ionic liquid can be used in electrochemical reactions as environmentally benign solvent. However, the high viscosity and surface tension restrict its applications in electrochemistry. Because CO2 is readily available, inexpensive, nontoxic, nonflammable, has low viscosity and has a mild critical temperature (304.2 K) and critical pressure (7.38MPa), supercritical CO2 (scCO2) has been recognized as an environmentally benign solvent and has attracted much attention in many chemical processes, such as extraction and fractionation, chemical reactions, and so on. Ionic liquids were introduced to supercritical carbon dioxide to endow the latter with conductivity in order to decrease the high viscosity and high surface tension of traditional electrochemical medium. The related phase behaviors have also been studied in this work. The contents of our work are as following:
     The knowledge of high pressure phase behavior about carbon dioxide mixtures, especially the vapor-liquid equilibria (VLE) are essential in the design, development, and operation of supercritical fluid separation processes. This work has studied the phase behaviors of CO2+ 1-bromobutane, CO2+1-chlorobutane, CO2+1-methylimidazole, which are related to synthesis of imidazolium based ILs. The vapor-liquid equilibrium datas of the three mixtures were measured with concentrations of solute mole fractions (0.0102 to 0.1495), temperatres from (308.2 to 337.4) K and pressures from (6.21 to 19.04) MPa. The VLE data of CO2+ 1-methylimidazole were also determined using analytic method under (293.15,309.75,323.2) K and (2.83 to 14.16) MPa. The results indicate that the phase behaviors of three binary systems have similar tendency in the temperature range we studied. And the density of mixtures increases with increasing pressure and decreasing temperature, and with increasing solute mole fraction. It is also demonstrated that the density is sensitive to the pressure as the pressure approaches the phase transition points of binary mixtures; that is, KT is large and increases significantly. When the pressure is much higher than the phase transition pressure or the composition is far from the critical composition, KT is rather small, and the effect of pressure on KT is fairly limited. The phase boundary data of the binary mixtures can be correlated well by the Peng-Robinson equation of state (PR EoS) with two binary parameters. Th results also indicate that the liquid-liquid-vapor equilibria (LLV) of the CO2+1-methylimidazole binary system exists under temperatures from 297.85K to 313.95K and pressures from 6.20MPa to 8.67MPa. The experimental data were also correlated well by the Peng-Robinson equation of state with two van der Waals mixing rules. According to the experimental results, the phase behavior of the binary system might be classified to Type-IV or Type-V according to the classification of six principal types of binary phase diagrams. The solubility of carbon dioxide decreases along with increasing temperatre and increases as pressure increasing.
     The solubilities of ionic liquid ([Bmim]BF4) in supercritical CO2 with cosolvent (acetonitrile) have been investigated using static method at temperatures from 313.2K to 332.2K. The mole fraction of acetonitrile was from 0.1495 to 0.1990. And it is demonstrated that the solubility of ionic liquid in supercritical carbon dioxide increases with increasing pressure and mole fraction of acetonitrile, while it decreases with increasing temperature.
     The conductivity of ionic liquid in supercritical carbon dioxide has been studied In high-pressure variable-volume view cell, the conductivity of supercritical carbon dioxide with and without ionic liquids were measured. And the mole fraction of cosolvent (acetonitrile) was from 0.1390 to 0.1971, temperatures from 313.2K to 332.2K. At presence of identical concentration of acetonitrle, the conductivity of supercritical carbon dioxide without ionic liquid is very small, while it increases greatly with ionic liquid. And the coductivity decreases with increasing temperature, while it increases with increasing pressure and mole fraction of acetonitrile.
引文
[1]闵恩泽,傅军.绿色化学的进展[J].化学通报,1999,1:10-15
    [2]陈敏元.有机电化学的新进展[J].精细化学,2000,17(增刊):10-15
    [3]马淳安.有机电化学合成导论[M].北京:科学出版社,2002
    [4]杨绮琴,方北龙,童叶翔.应用电化学[M].广州:中山大学出版社,2001
    [5]陈国华,王光信.电化学方法和应用[M].北京:化学工业出版社,2003年2月
    [6]Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents[J]. Green Chem.,2002,4(2):73-80
    [7]Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. J. Chem. Soc., Chem. Commun.,1992,13:965-966
    [8]Wasserscheid P, Keim W. Ionic liquids-new "solution" for transition metal catalysis[J]. Angew. Chem. Int. Ed.,2000,39:3772
    [9]Rogers R D, Seddon K R. Ionic liquids as green solvents:progress and prospects[M]. ACS Symo Ser 856, Washington, D C:American Chemical Society,2003
    [10]Wasserscheid P, Welton T. Ionic liquids in synthesis[M]. Weinheim, Germany: Wiley-VCH,2003
    [11]Earle M J, Seddon K R. Ionic liquids. Green solvents for the future[J]. Pure & Appl. Chem.,2000,72, (7):1391-1398
    [12]Bonhote P, Dias A P, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorg. Chem.,1996,35: 1168-1178
    [13]Kanazawa A, Tsutsumi O, Lkeda T. Nobel thermotropic liquid crystals without a rigid core formed by amphiphiles having phosphonium ions[J]. J. American Soc.,1997,119:7670
    [14]Perry R L, Jones K M, Scott W D, William D, Liao Qing, Hussey C L. Densities, viscosities, and conductivities of mixtures of selected organic cosolvents with the lewis basic aluminum chloride+1-methyl-3-ethylimidazolium chloride molten salt[J]. J. Chem. Eng. Data,1995,40:615
    [15]Koch V R, Dominey L A, Najundiah C, Ondrechen M J. The intrinsic anodic stability of several anions comprising solvent-free ionic liquids[J]. J. Electrochem. Soc.,1996,143, (3):798-803
    [16]Zhang Jianmin, Wu Weize, Jiang Tao, Gao Haixiang, Liu Zhimin, He Jun, Han Buxing. Conductivities and viscosities of the ionic liquid [bmim][PF6]+water + ethanol and [bmim][PF6]+water+acetone ternary mixtures[J]. J. Chem. Eng. Data,2003,48: 1315-1317
    [17]Liu Zhimin, Wu Weize, Han Buxing, Dong Zexuan, Zhao Guoying, Wang Jiaqiu, Jiang Tao, Yang Guanying. Study on the phase behaviors, viscosities, and thermodynamic properties of CO2/[C4mim][PF6]/methanol system at elevated pressures[J]. Chem. Euro. J., 2003,9:3897-3903
    [18]Zhang Jianmin, Yang Chunhe, Hou Zhenshan, Han Buxing, Jiang Tao, Li Xiaohong, Zhao Guoying, Li Yongfang, Liu Zhimin, Zhao Dongbin, Kou Yuan. Effect of dissolved CO2 on the conductivity of the ionic liquid [bmim][PF6][J]. New J. Chem.,2003,27, (2):333
    [19]Zhang Shuguang, Zhang Qinglin, Zhang Z Conrad. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Ind. Eng. Chem. Res.,2003,43:614-622
    [20]Sherif F G, Shyu L J, Greco C C. Linear alxylbenzene formation using low temperature ionic liquid[P]. US 5824832,1998-10-20
    [21]Hsiu S I, Huang Jingfang, Sun I W, Yuan Chenghui, Shiea J. Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids[J]. Electrochimical Acta,2002,47:4367-4372
    [22]Zhang Qingguo, Yang Jiazhen, Lu Xingmei, Gui Jinsong, Huang Ming. Studies on an ionic liquid based on FeCl3 and its properties[J]. Fluid Phase Equalibria,2004,226:207-211
    [23]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社,2004
    [24]Matsumoto H, Kageyama H, Miyazaki Y. Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions[J]. Chem. Commun.,2002,21, (16):1726-1727
    [25]Golding J, Forsyth S, MacFarlane D R. Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations:novel low cost ionic liquids[J]. Green Chem.,2002,4:223-229
    [26]Wasserscheid P, Sesing M, Korth W. Hydrogensulfate and tetrakis(hydrogensulfato) borate ionic liquids:synthesisi and catalytic application in highly Bronsted-acidic systems for Friedel-Crafts alkylation[J]. Green Chem.,2002,4:134-138
    [27]Moulton R. Electrochemical process for producing ionic liquids. US2003/0094380A1, 2003-05-22
    [28]Karodia N, Guis S, Newland C, Andersen J A. Clean catalysis with ionic solvents-phosphonium tosylates for hydroformylation[J]. Chem. Commun.,1998, (21): 2341-2342
    [29]Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimizaolium trtrafluoroborate for electrolyte[J]. J. Fluorine Chem.,2003, 4:73-80
    [30]石家华,孙逊,杨春和.离子液体研究进展[J].化学通报,2002,4:243-250
    [31]Wasserscheid P, Drieben-Holscher B, Hal R V. New functionalized ionic liquids from Michael-type chance for combinatorial ionic liquid development[J]. Chem. Commun., 2003:2038-2039
    [32]Hriao M, Sugimoto H, Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines[J]. J. Electrochem. Soc.,2000,147, (11):4168-4172
    [33]Seddon K R, Cannichael A J, Earle M J. Process for preparing ambient temperature ionic liquids[P].US20030080312
    [34]Levelt Sengers J M H. Supercritical fluids technology:reviews in modem theory and applications[C]. Bruno T J, Ely J F, Eds. Boca Raton:CRC Press,1991
    [35]Reid R C, Prausnitz J M, Poling B E. The properties of gases and liquids[M].4th ed. London:McGraw-Hill Book Company,1987
    [36]李志义.用超临界溶液快速膨胀法制备超细粉体[J].中国粉体技术,2000,6,(5):25-28
    [37]Pai R A, Humayun R, Schulberg M T, Aengupta A., Sun Jianing, Watkins J J. Mesoporous silicates prepared using preorganized templates in supercritical fuluids[J]. Science,2004, 303:507-510
    [38]Eckert C A, Knuston B L, Debenedetti P G. Supercritical fluids as solvents for chemical and material processing[J]. Nature,1996,383:313
    [39]McHugh M A, Krukonis V J. Supercritical extraction:principles and practice[M],2nd ed. Butterworth-Heinemann:Boston,1994
    [40]Kim H, Han H M, Chao K C. AICHE Symposium Series, America Institute of Chemical Engineers.1985:96
    [41]Galia A, Argentino A, Scialdone O, Filardo G. A new simple static method for the determination of solubilities of condensed compounds in supercritical fluids[J]. J. Supercrit. Fluids,2002,24, (1):7-17
    [42]Sherman G, Shenoy S, Weiss R A, Erkey C. A static method coupled with gravimetric analysis for the determination of solubilities of solids in supercritical carbon dioxide[J]. Ind. Eng. Chem. Res.,2000,39:846
    [43]Tuma D, Schneider G M. Determination of the solubilities of dyestuffs in near-and supercritical fluids by a static method up to 180 MPa[J]. Fluid Phase Equalibria,1999, 158:743-757
    [44]Zhong Minghong, Han Buxing, Yan Haike. Solubility of stearic acid in supercritical CO2 with cosolvents[J]. J. Supercrit. Fluids,1997,10, (2):113-118
    [45]van Konynenburg P H, Scott R L. Critical lines and phase equilibria in binary wan der Waals mixtures[J]. Philos. Trans. R. Soc. Lond.,1980,298:495-540
    [46]Shiflett M B, Yokozeki A. Soubility and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [Bmim][BF4][J]. Ind. Eng. Chem. Res.,2005,12:4453-4464
    [47]Shariati A, Peters C J. High-pressure phase behavior of systems with ionic liquids: measurements and modeling of the binary system fluoroform + 1-ethyl-3-methylimidazolium hexafluorophosphate[J]. J. Supercrit. Fluids,2003,28: 109-117
    [48]Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquids and CO2[J]. Nature,1999,399:28-29
    [49]Olivier-Bourbigou H, Magna L. Ionic liquid:prespectives for organic and catalytic reactions[J]. J. Mol. Catal. A:Chem.,2002,182, (1):419
    [50]Dupont J, De Souza R F, Suarez P A Z. Ionic liquid (molten salt) phase organometallic catalysis[J].Chem. Rev.,2002,102:3667-3692
    [51]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chem. Rev.,1999,99, (8):2071-2084
    [52]Dzyuba S V, Bartsch R A. Recent advances in appliciation of room-temperature ionic liquid/supercritical CO2 system[J]. Angew. Chem. Int. Ed.,2003,42:148
    [53]Kazarian S G, Briscoe B J, Welton T. Combining ionic liquid and supercritical fluids:in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures[J]. Chem. Commun.,2000,20:2047
    [54]Zhang Suojiang, Chen Yuhuan, Ren Rex X.-F., Zhang Yanqiang, Zhang Jianmin, Zhang Xiangping. Solubility of CO2 in sulfonte ionic liquids at high pressure[J]. J. Chem. Eng. Data,2005,50:230-233
    [55]Anthony J L, Maginn E J, Brennecke J F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. J. Phys. Chem. B,2002,106:7315-7320
    [56]Husson-Borg P, Majer V, Gomes M F. Solubilities of oxygen and carbon dioxide in butylmethyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure[J]. J. Chem. Eng. Data,2003,48:480
    [57]Blanchard L A, Brennecke J F. Recovery of organic products from ionic liquids using supercritical carbon dioxide[J]. Ind. Eng. Chem. Res.,2001,40:278-292
    [58]Blanchard L A, Gu Zhiyong, Brennecke J F. High-pressure phase behavior of ionic liquid/CO2 systems[J]. J. Phys. Chem. B,2001,105:2437-2444
    [59]Huang Z, Kawi S, Chiew Y C. Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents[J]. J. Supercrit. Fluids,2004,30:25-39
    [60]Li Dan, Mchugh M A. Solubility behavior of ethyl cellulose in supercritical fluid solvents[J]. J. Supercrit. Fluids,2004,28, (2-3):225-231
    [61]Li Qunsheng, Zhang Zeting, Zhong Chongli, Liu Yancheng, Zhou Qingrong. Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents[J]. Fluid Phase Equalibria,2003,207:183
    [62]Wu Weize, Zhang Jianmin, Han Buxing, Chen Jiawei, Liu Zhimin, Jiang Tao, He Jun, Li Wenjing. Solubility of room-temperature ionic liquid in supercritical CO2 with and without organic compounds[J]. Chem. Commun.,2003:1412-1413
    [63]Wu Weize, Li Wenjing, Han Buxing, Jiang Tao, Shen Dong, Zhang Zhaofu, Sun Donghai, Wang Bo. Effect of organic cosolvents on the solubility of ionic liquid in supercritical CO2[J]. J. Chem. Eng. Data,2004,49:1597-1601
    [64]Suarez P A Z, Selbach V M, Dullius J E L, Einloft S, Piatnicki C M S, Azambuja D S, de Souza R F, Dupont J. Enlarged electrochemical window in dialkylimidazolium cation based room temperature air and water-stable molten salts[J]. Electrochimical Acta,1997, 42, (16):2533-2535
    [65]Lu Wen, Fadeev A G, Qi Baohua, Smela E, Mattes B R, Ding Jie, Spinks G M, Mazurkiewicz J, Zhou Dezhi, Wallace G G, MacFarlane D R, Forsyth S A, Forsyth M. Use of ionic liquids for-conjugated polymer electrochemical devices[J]. Science,2002,297, (5583):983-987
    [66]Yang Hongzhou, Gu Yanlong, Deng Youquan, Shi Feng. Electrochemical activation of carbon dioxide in ionic liquids:synthesis of cyclic carbonates under mild reaction conditions[J]. Chem. Commun.,2002, (3):274-275
    [67]Zhao Guoying, Jiang Tao, Han Buxing, Li Zhonghao, Zhang Jianmin, Liu Zhimin, He Jun, Wu Weize. Electrochemical reduction of supercritical carbon dioxide in ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. J. Supercrit. Fluids,2004,32, (1-3):287-291
    [68]Zhao Guoying, Jiang Tao, Wu Weize, Han Buxing, Liu Zhimin, Gao Haixiang. Electro-oxidation of benzyl alcohol in a biphasic system consisting of supercritical CO2 and ionic liquids[J]. J. Phys. Chem.B,2004,108:13052-13057
    [69]King J W, Sahle-Demessle E, Temelli F, Teel J A. Thermal gradient fractionation of glyceride mixtures under supercritical fluid conditions [J]. J. Supercrit. Fluids,1997,10: 127-137
    [70]Fang Tao, Goto M, Wang XianbaoDing XIaolin, Geng Jianguo, Sasaki M, Hirose T. Separation of natural tocopherols from soybean oil byproduct with supercritical carbon dioxide[J]. J. Supercrit. Fluids,2007,40:50-58
    [71]Jessop P G, Leitner W. Chemical synthesis using supercritical fluids[J]. Wiley-VCH: Weinheim, Germany,1999:676-688
    [72]Baker G A, Campbell M L, Yates M Z, McCleskey T M. Carbon dioxide emulsion assisted loading of polymer microspheres toward sustained release materials[J]. Langmuir,2005, 21:3730-3732
    [73]Cooper A I. Synthesis and processing using supercritical carbon dioxide[J]. J. Mater. Chem.,2000,10:207-234
    [74]王仲妮,王洁莹,司友华,周武.咪唑类离子液体的研究进展[J].化学进展,2008,20:1057-1063
    [75]张保芳,蒲敏,陈标华,刘坤辉.一类新型绿色环保的介质材料-咪唑类离子液体[J].材料科学与工程学报,2006,24:165-168
    [76]Wilkes J S, Levisky J A, Wilson R A, Hussey C L. Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis[J]. Inorg. Chem.,1982,21:1263-1264
    [77]Huddleston J G, Willauer H D, Swatloski R P, Visser A E, Rogers R D. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction[J]. Chem. Commun.,1998, 998:1765-1766
    [78]Zhou Zhenhua, Wang Tao, Han Buxing. Butyl-3-methylimidazolium chloride preparation in supercritical carbon dioxide[J]. Ind. Eng. Chem. Res.,2006,45:525-529
    [79]Wu Weize, Li Wenjing, Han Buxing, Zhang Zhaofu, Jiang Tao, Liu Zhimin. A green and effective method to synthesize ionic liquids:supercritical CO2 route[J]. Green Chem., 2005,7:701-704
    [80]Brennecke J F, Chateauneuf J E. Homogeneous organic reactions as mechanisitic probes in supercritical fluids[J]. Chem. Rev.,1999,99:433-452
    [81]Chouchi D, Gourgouillon D, Courel M, Vital J, Nunes da Phote M. The Influence of phase behavior on reaction at supercritical conditions [J]. Ind. Eng. Chem. Res.,2001,40: 2551-2554
    [82]Pereda S, Bottini S B, Brignole E A. Supercritical fluids and phase behavior in heterogeneous gas-liquid catalytic reactions[J]. Appl. Catal. A,2005,281:129-137
    [83]Wang Bo, He Jun, Sun Donghai, Zhang Rui, Han Buxing. Solubility of chlorobutane, ethyl methacrylate and trifluoroethyl acrylate in supercritical carbon dioxide[J]. Fluid Phase Equilibria,2006,239:63-68
    [84]Chany-Yih D, Chiehming J C, CHiu-Yang C. Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures[J]. J. Chem. Eng. Data,1999,44:365
    [85]Wu Jialong, Pan Qinmin, Rempel G L. Pressure-density-temperature behavior of CO2/acetone, CO2/toluene, and CO2/monochlorobenzene mixtures in the near-critical region[J]. J. Chem. Eng. Data,2004,49:976-979
    [86]Adrian T, Maurer G. Solubility of carbon dioxide in acetone and propionic acid at temperature between 298 K and 333 K[J]. J. Chem. Eng. Data,1997,42:668-672
    [87]Pohler H, Kiran E. Volumetric properties of carbon dioxide+acetone at high pressures[J]. J. Chem. Eng. Data,1997,42:379-383
    [88]Chen Xiaoting, Hou Yucui, Wu Weize, Ren Shuhang, Zhang Jianwei, Fan Jinlong. High pressure phase behavior and density of the carbon dioxide+1-methylimidazole binary system[J]. J. Supercrit. Fluids,2009,49:310-314
    [89]Chen Jiawei, Wu Weize, Han Buxing, Gao Liang, Mu Tiancheng, Liu Zhimim, Jiang Tao, Du Jimin. Phase behavior, densities, and isothermal compressibility of CO2+pentane and CO2+ acetone systems in various phase regions[J]. J. Chem. Eng. Data,2003,48: 1544-1548
    [90]Adrian T, Maurer G Solubility of carbon dioxide in acetone and propionic acid at temperature between 298 K and 333 K[J]. J. Chem. Eng. Data,1997,42:668-672
    [90]Chen Xiaoting, Hou Yucui, Wu Weize, Ren Shuhang, Zhang Jianwei, Fan Jinlong. Phase behavior, densities, and isothermal compressibility of carbon dioxide + 1-bromobutane, carbon dioxide+1-chlorobutane, carbon dioxide+1-methylimidazole[J]. J. Chem. Eng. Data,2010,55:385-399
    [91]Wang Bo, Wu Weize, Chen Jiawei, Han Buxing, Zhang Zhaofu, Shen Dong, Zhang Rui. Phase behavior, densities and isothermal compressibility of CO2+ ethanol+ dichloromethane ternary system in different phase regions[J]. J. Chem. Eng. Data,2005, 50:1153-1156
    [92]Zhang Zhaofu, Wu Weize, Gao Haixiang, Han Buxing, Wang Bo, Huang Ying. Tri-phase behavior of ionic liquid-water-CO2 system at elevated pressures[J]. Chem. Chem. Phys., 2004,6:5051-5055
    [93]Peng D Y, Robinson D B. A new two-constant equation of state[J]. Ind. Eng. Chem. Res., 1976,15:59-64
    [94]Morton D W, Lui M P, Tran C A. The gas liquid critical temperature of some chlorinated alkanes and halogenated aromatic hydrocarbons[J]. J. Chem. Eng. Data,2000,45:437-439
    [95]Joback K G, Reid R C. Estimation of pure-compontent proprties from group-contribution[J]. Chem. Eng. Commun.,1987,57:233-243
    [96]Hou Yucui, Chen Xiaoting, Ren Shuhang, Li Guo, Wu Weize. High pressure phase behavior of carbon dioxide + nitrobenzene binary system at 298.15K,310.45K and 322.75K[J]. J. Supercrit. Fluids,2009,51:104-108
    [97]Florusse L J, Fornari T, Bottini S B, Peters C J. Phase behavior of carbon dioxide-low-molecular weight triglycerides binary systems:measurements and thermodynamic modeling[J]. J. Supercrit. Fluids,2004,31:123-132
    [98]Hurley F, Wier T. Electrodeposition of metals from fused quaternary ammonium salts[J]. J. Electrochem. Soc.,1951,98:203
    [99]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社,2006:377-413
    [100]Schldon R. Catalytic reactions in ionic liquids[J]. Chem. Commun.,2001:2399-2047
    [101]Endres F, El Abedin S Z. Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid[J]. Chem. Commun.,2002:892-893
    [102]Endres F. Electrodeposition of a thin germanium film on gold from a room temperature ionic liquid[J]. Phys. Chem. Chem. Phys.,2001,3:3165-3174
    [103]韩布兴.超临界流体科学与技术[M].北京:中国石化出版社,2005:
    [104]Sakellarios N I, Kazarian S G Solute partitioning between an ionic liquid and high-pressure CO2 studied with in situ FTIR spectroscopy[J]. J. Chem. Thermodynamics, 2005,37:621-626
    [105]张建敏,韩布兴,杨春和,赵国英,李晓宏,姜涛,侯震山,李永舫,刘志敏,杨冠英.超临界CO2/[bmim]PF6两相体系中CO2对离子液体电导率影响研究[C].北京:第四届全国超临界流体技术学术及应用研讨会论文集,7-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700