四倍体棉种的遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉属包括5个四倍体棉种,其中陆地棉和海岛棉为栽培种,达尔文棉、黄褐棉和毛棉为野生种。从种质资源角度来讲,陆地棉野生种系也属于四倍体野生棉,它是未经栽培驯化的陆地棉原始类型,不仅具有抗病虫,耐干旱、耐盐碱、纤维高强优质等遗传特性,而且比野生资源更容易导入栽培品种,所以对于改进棉花品质和抗性都具有很好的利用价值。本研究利用形态学标记和SSR标记对18份四倍体棉种及42份陆地棉野生种系材料的遗传多样性进行了综合分析,以期进一步验证前人所得的棉花种属关系结果;并了解野生种系及材料间的多样性水平及其遗传关系。其意义在于为今后有效利用陆地棉野生种系材料提供理论依据,为育种家提供更广泛的种质资源,从而促进棉花种质资源的收集、保存以及有效利用。研究主要结果如下:
     1.对陆地棉野生种系进行了形态学性状观察,结果发现尖斑棉和阔叶棉多数材料的花柱高度较低,阔叶棉的株高在7个种系中最低;莫利尔棉和玛利加郎特棉多为晚熟材料,但后者多数材料含花瓣基斑。鸡脚叶或超鸡脚叶是帕默尔棉最明显的特征。
     2.对野生种系17个形态及农艺性状的统计分析表明,不同材料之间存在较大差异,不同性状在不同材料间表现出了不同程度的多样性,尤以主茎茸毛、叶片形状、花瓣基斑大小以及铃数的变异系数较大,均大于50.00%,而以株高的变异系数为最小,仅为21.10%。
     3.多样性指数分析显示,13个质量性状的平均多样性指数为0.992,而4个数量性状的平均多样性为1.972,总体平均多样性程度较高,不同性状之间的多样性指数差异较大。各种系内部多样性指数均明显低于总体,以莫利尔棉种系质量性状的多样性指数为最低(0.435)。
     4.形态学数据聚类分析显示,所有野生种系材料之间的遗传距离在0.602-2.127之间变化,平均为1.387。42份材料中的28份均准确聚到如下四个分支:尖斑棉(Ⅰ),玛利加郎特棉(Ⅱ),莫利尔棉(Ⅲ),阔叶棉(Ⅳ),而其他3个种系均因材料数目较少无法单独聚成一类,散布在其他种系中。
     5.95对SSR引物在60份四倍体材料中共检测出658个等位基因位点,其中多态性位点580个,占88.15%;引物等位位点数的变化范围为2-14个,平均每对引物6.93个;对于陆地棉野生种系而言,95对引物中有90对SSR引物能在42份材料间扩增出多态性条带,共检测出530个等位基因位点,包括多态性位点438个,占82.64%;引物等位位点数2-12个,平均每对引物5.89个。
     6.多态信息含量(PIC)、基因多样性(H')和有效等位基因数(Ne)在四倍体棉种间和陆地棉野生种系内的变化幅度均较大,表明SSR标记可以反映较丰富的遗传多样性信息,但陆地棉野生种系多样性程度低于四倍体棉种间多样性。
     7.60份材料的成对相似系数范围为0.157-1.000;对于42份陆地棉野生种系材料来说,成对相似系数范围缩小为0.306-1.000,平均相似系数为0.493,将所有相似系数分10个区间统计,在0-0.700区间内的系数占总数的92.56%,表明陆地棉野生种系的遗传相似性很低,从反面也就说明其遗传多样性非常丰富。
     8.基于SSR标记的UPGMA聚类分析表明:陆地棉与陆地棉野生种系中阔叶棉的亲缘关系最近。海岛棉与达尔文棉的亲缘关系非常相近。黄褐棉与毛棉相对较近。陆地棉与其他四个棉种的亲缘关系最远。
There are five tetraploid cotton species including 2 cultivated species, G.hirsutum and G.barbadense, and 3 wild species, G. darwinii watt, G. mustelinum Miers ex Watt and G. tomentosum. From the perspective of germplasm resources, G.hisutum L.races also belong to the tetraploid wild species. They are primitive types of the Gossypium hirsutum without cultivation and domestication, which not only has unique hereditary property of disease or insect resistance, drought or salt tolerance, high sthength and quality fiber but also easier to transfer good gene into cultivated species than wild resouces. So there was good value for utitilization to improve fiber quality and resistance. In order to verify the results of relationship among cotton species reported in previous studies and discover the diversity level of races and its genetic relationship, the genetic diversity of 18 allotetraploid cotton species and 42 upland cotton races were assessed based on agronomic and SSR analysis. Its significance lies in providing theoretical basis for effective utilization of races in future and offering more germplasm for breeders, thereby promoting the collection, conservation and effective utilization of cotton germplasm resources.The main results are as follows:
     1. Morphological observation of races revealed:The stylus height of the most Punctatum and Latifolium were low, but the plant height of the Latifolium was the lowest. Most of the Morrlli and Marie-galante were late-maturing, but there were petal base spots in most of the Marie-galante. Chicken foot-shaped and Super chicken foot-shaped were the clearest characteristic of Palmeri.
     2. Statistical analysis based on 17 morphological and phenological characters of races revealed:There were obvious differences in various materials, and different traits of different materials have expressed some degree of diversity, especially the coefficient of variations (CV) of Stem solfandthick, Leaf shape, Petal base spot size and Boll number were larger than 50.00%, but the CV of plant height was the smallest, only 21.10%.
     3. The results of diversity indices indicated that the average diversity indice of 13 qualitative trait was 0.992, which among 4 quantitative trait was 1.972. So the whole diversity was relatively high, but the diversity indexes of different traits varied in larger interval. The diversity indices of each race were distinctly lower than general, the diversity indice of qualitative trait was the smallest in Morrlli, only 0.435.
     4. The cluster results based on morphological data showed that the genetic distance of all races was among 0.602-2.127 with an average of 1.387.28 cotton germplasms among 42 cotton germplasms mentioned above that were classified into 4 branches exactly:Punctatum(Ⅰ),Marie-galante(Ⅱ), Morrlli(Ⅲ),and Latifolium(Ⅳ). However, other 3 races could not be clusted branches respectively because of small amount of materials, which were clustered in other races.
     5.95 pairs of primers used in 60 different germplasm accessions, and a total of 658 DNA fragments were scored, of which 580 polymorphic bands were obtained, accounting for 88.15% of the total bands; The range of allele (NA) per SSR locus were 2 to 14 with the average of 6.93; Similarly, with 90 primers among 95 primers produced polymorphisms in all materials, we could detecte 530 DNA fragments in 42 upland cotton races, of which 438 polymorphic bands(82.64%) were obtained; The range of allele (NA) per SSR locus were 2 to 12 with the average of 5.89.
     6. The variation limit of polymorphism information content(PIC), Shannon-weaver diversity index(H') and Effective number of alleles(Ne) varied widely, indicating a wide genetic variation among 60 tetraploid cotton species and 42 upland cotton races by SSR markers, but diversity among the five tetraploid cotton species were more abundant than races.
     7. The genetic similarity (GS) coefficient in 60 germplasms ranged from 0.157 to 1.000, the minimum of which in 42 races reduced to 0.306 and with the average of 0.493. Count the numbers of the coefficient in 10 interval distribution, the percentage was 92.56% in the range of 0-0.700, which displayed that genetic similarity were very low in upland cotton races, in other words, the genetic diversity of upland races were so abundant.
     8. UPGMA cluster analysis based on SSR showed that the genetic relationship is the nearest between upland cotton and G. hirsutum race.Latifolium, Gossypium barbadense and G. darwinii watt is very close, G.mustelinum Miers ex Watt and G.tomentosum L.Nuttall ex Seeman is a bit close, It's the farthest between upland cotton and others.
引文
1.陈光,杜雄明.我国陆地棉基础种质遗传多样性的SSR分子标记分析.遗传学报,2006,33:733-745.
    2.陈亮,梁春阳,孙传清,等.AFLP和RFLP标记检测水稻亲本遗传多样性比较研究.中国农业科学,2002,35(6):589-595.
    3. 陈听,周涵韬,杨志伟,等.大蒜种质资源遗传多样性的分子标记研究[J].厦门大学学报(自然科学版).2005,44:144-149.
    4.陈新露,赵祥云,Bradley,N.W.,等.RAPD标记在丁香类鉴定中的应用[C].见:园艺学论文集.北京:北京农业大学出版社,1995,580-584.
    5.崔海丽,夏春镗,赵则胜.黑稻资源遗传多样性的SSR分析[J].中国农学通报.2007,23(1):63-67.
    6.池书敏,刘志增.几个常用玉米自交系的优势群分析.河北农业大学学报.1995,18(1):22-26.
    7.丁明会.棉花远缘杂交种质及部分湖北省品种的遗传多样性研究.[硕士毕业论文].华中农业大学,2008.
    8. 董玉琛.生物多样性及作物遗传多样性检测.植物品种资源,1995(3):1-5.
    9.杜雄明,周忠丽等.棉花种质资源描述规范和数据标准.中国农业出版社,北京,2005
    10.范玲.新疆棉花栽培种遗传多样性研究.[硕士学位论文].新疆农业大学,2004.
    11.傅廷栋.杂交油菜的育种与利用(第二版).武汉:湖北科学技术出版社,2000.
    12.葛淑俊,李广敏,马峙英,等.甘草野生种群遗传多样性的AFLP分析.中国农业科学,2009,42(1):47-54
    13.关媛,鄂文弟,王丽侠,等.以湖南和湖北大豆[Glycine max(L.)Merr.]为例分析影响遗传多样性评价的因素.作物学报,2007,33(3):461-468.
    14.郭海林,刘建秀,郭爱桂,等.中国狗牙根染色体数变异研究初报.草地学报,2002,10(1):69-73.
    15.郭灵安,聂汝芝,于锡绍.陆地棉三个栽培品种和七个半野生种系的种子酯酶分析.西南农业学报,1989,2(1):90-91.
    16.郭旺珍,彭锁堂.陆地棉与毛棉杂种性状遗传学和细胞学研究.棉花学报,1997,9(1):21-24.
    17.郭旺珍,周兆华.RAPD鉴定棉花抗(耐)黄萎病品种(系)的遗传变异研究.江苏农业学报,1999,15:1-6.
    18.杭焱,金燕,卢宝荣.濒危植物华山新麦草(Psathyrostachys huashanica)的遗传多样性及其保护[J].复旦学报.2004,4(2):260-265.
    19.郝晓芬,王节之,王潞英,等.SSR标记分析谷子遗传多样性[J].陕西农业科学.2005,33(4):29-31.
    20.何凤发,杨志平,张正圣,等.马铃薯遗传资源多样性的SRAP分析[J].农业生物技术学报,2007,15(6):1001-1005.
    21.胡佳磊,邵雪玲,刘思阳.RAPD引物数量对施式巴鲵遗传多样性评估结果的影响.氨基酸和生物资源,2005,27(1):27-31.
    22.黄进勇,胡琼,魏文辉,等.甘蓝型油菜新型恢复系Nsa恢1及其后代的GISH分析.武汉大学学报,2008,54(4):467-471.
    23.黄益勤,李建生.利用RFLP标记划分45份玉米自交系杂种优势群的研究.中国农业科学.2001,34(3):244-250.
    24.季鹏章,汪云刚,蒋会兵,等.云南大理茶资源遗传多样性的AFLP分析.茶叶科学,2009,29(5):329-335.
    25.贾宝艳,王伯伦,关荣霞等.辽宁不同株型水稻品种的RAPD分析.作物学报,2005,31(7):952-955.
    26.贾继增. 分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29:1-10.
    27.江建铭,沈宇峰,孙乙铭.红豆杉种质资源遗传多样性的AFLP分析.中国野生植物资源,2009,28(5):37-40.
    28.姜树坤,马慧,刘君,等.利用SRAP标记分析玉米遗传多样性[J].分子植物育种,2007,5(3):412-416.
    29.李慧芝,尹燕枰,张春庆,等.SRAP在葱栽培品种遗传多样性研究中的适用性分析[J].园艺学报,2007,34(4):929-934.
    30.李景欣,云锦凤,阿拉坦苏布道.冰草的遗传多样性研究.中国草地,2004, 26(6):12-15.
    31.李丽,郑晓鹰,柳李旺.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种[J].分子植物育种,2006,4(5):702-708.
    32.李巧明,赵建立.云南干热河谷地区余甘子居群的遗传多样性研究[J].生物多性.2007,15(1):84-91.
    33.李武,倪薇,林忠旭,等.海岛棉遗传多样性的SRAP标记分析.作物学报,2008,34(5):893-898.
    34.李严,张春庆.西瓜杂交种遗传多态性的SRAP标记分析[J].园艺学报,2005,32(4):643-647.
    35.李自超,张洪亮,曹永生,等.云南稻种资源表型遗传多样性的研究.作物学报.2001,27(6):832-837.
    36.梁红健,刘敏,钟志宇,等.中国部分兰花品种RAPD分析[J].园艺学报.1996,23(4):365-370.
    37.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,2004,31(6):622-626.
    38.刘迪.遗传多样性的消失给农业发展带来阴影[J].世界研究与发展动态,1996,12(6):91-92.
    39.刘三宏,王坤波,宋国立.四倍体棉种的起源与演化.棉花学报,2003,15(5):304-308.
    40.娄希祉,刘学明,王述明.世界植物遗传资源概况.作物品种资源,1996,4:1-6.
    41.栾非时,崔成焕,王金陵.菜豆种质资源形态标记的研究.东北农业大学学报,2001,32(2):105-110.
    42.罗林广,王新望,罗绍春.分子标记及其在作物遗传育种中的应用[J].江西农业学报,1997,9(1):45-54.
    43.马克平.试论生物多样性的概念.生物多样性.1993,1(1):20-22
    44.马克平,刘玉明.生物群落多样性的测度方法Ⅰα多样性的测度方法(下).生物多样性,1994,24:231-239.
    45.马克平,钱迎倩.生物多样性保护及其研究进展.应用与环境生物学报,1998,4(1):95-99.
    46.孟金陵,Sharp A, Bowman C,等.用RFLP标记分析甘蓝型油菜的遗传多样性[J].遗传学报,1996,23:293-306.
    47.聂汝芝,李懋学. 陆地棉半野生种系的细胞学研究.植物学报,1989,31(5):333-342.
    48.裴炎,张凤鑫.对黄萎病不同抗性的棉花品种(系)的酯酶同工酶等电聚焦谱带分析.西南农业大学学报,1989,11:90-92.
    49.钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994,13-361.
    50.沈浩,刘登义.遗传多样性概述.生物学杂志,2001,18(3):5-7.
    51.沈淞海,许复华.陆地棉野生种系种子醇溶蛋白的PAGE图谱多态性.浙江农业大学学报,1992,18(1):49-50.
    52.沈裕琥,王海庆,杨天育,等.甘青两省春小麦遗传多样性演变[J].西北植物学报,2002,22(4):731-740.
    53.施立明,贾旭.遗传多样性.北京:科学出版社,1993,99-113.
    54.宋国立.棉属种间关系的RAPD分析.[硕士学位论文].武汉:华中农业大学,1998.
    55.孙东磊,孙君灵,杜雄明,等.棕色棉与绿色棉遗传多样性比较研究.华北农学报,2009,24(5):96-101.
    56.孙传清,王象坤,吉村淳,等.普通野生稻和亚洲栽培稻遗传多样性的研究.遗传学报,2000,27(3):227-234,
    57.唐梅,何光华,裴炎,等.中籼杂交稻遗传多样性的RAPD分析[J].西南农业学报,2002,15(3):7-9.
    58.汤圣祥,江云珠,魏兴华,等.中国栽培稻同工酶的遗传多样性.作物学报,2002,28(2):203-207.
    59.王彪,常汝镇,陶莉,等.分析中国栽培大豆遗传多样性所需SSR引物的数目.分子植物育种,2003,1:82-88.
    60.汪小全,邹喻苹,张大明,等.银杉遗传多样性的RAPD分析.中国科学(C辑).1996,26(5):436-441.
    61.王林海,田志强,董中东,等.SSR标记技术在小麦品种遗传多样性上的应用[J].作物科学,2007,41(1):5-11.
    62.王洪新,胡志昂.植物繁育系统、遗传结构和遗传多样性的保护.生物多样性,1996,4(2):92-96.
    63.王坤波.野生棉的收集与保存.棉花学报,2007,19(5):354-361.
    64.王坤波,付怀勤,黎绍惠,等.陆地棉种系的农艺特性分类.中国种业,1990,4:17-19.
    65.王坤波,李懋学,张香娣,等.陆地棉与7个野生棉杂种细胞学研究.作物学报,1996,22(1):27-36.
    66.王述民,胡英考,胡家蓬.利用RAPD标记评价小豆种质遗传多样性.植物遗传资源科学,2002,3(1):14-19.
    67.王小利,张改生,刘宏伟,等.小麦细胞质雄性不育系的分子细胞遗传学检测.西北农林科技大学学报,2003,31(4):11-14.
    68.王省芬,张桂寅,李喜焕,等.黄河、长江流域棉区棉花抗病品种AFLP分析.遗传学报,2004,31:1426-1433.
    69.王中仁.植物遗传多样性和系统研究中的等位酶分析.生物多样性,1994,2(2):91-95.
    70.武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性.遗传学报,2001,28:1040-1050.
    71.吴渝生.荞麦主要农艺性状的遗传相关分析[J].云南农业大学学报,1996,11(4):258-262.
    72.吴玉香,孙玉强,陈崇乾,等.利用RAPD检测棉属种间亲缘关系的研究.作物学报,2007,33(6):909-913.
    73.夏铭.遗传多样性研究进展[J].生态学杂志,1999,18(3):59-65.
    74.解新明,云锦凤.植物遗传多样性及其检测方法.中国草地,2000,6,51-59.
    75.许东河,高忠,盖钧镒,等.中国野生大豆与栽培大豆等位酶、RFLP和PAPD标记的遗传多样性与演化趋势分析[J].中国农业科学,1999,32(6):16-22.
    76.徐海根,王健民,强胜,等.《生物多样性公约》热点研究-外来物种入侵生物安全遗传资源.北京:科学出版社,2004,416-419.
    77.徐秋华,张献龙.长江、黄河流域两棉区陆地棉品种的遗传多样性比较研究.遗传学报,2001,28:683-690.
    78.徐微,张宗文,吴斌,等.裸燕麦种质资源AFLP标记遗传多样性分析.作物学报,2009,35(12):2205-2212.
    79.严华军,吴乃虎.DNA分子标记技术及其在植物遗传多样性研究中的应用[J].生命科学,1996,8(3):32-36.
    80.杨代刚,周鑫.用主成份和系统聚类法评价棉花品种资源.棉花学报,1995,7:154-159.
    81.袁力行,傅骏骅,张世煌,等.利用RFLP和SSR标记划分玉米自交系杂种优势类群的研究.作物学报,2001,27(2):149-156.
    82.张爱萍,王晓武,张岳莉,等.西瓜种质资源遗传多样性的SRAP分析[J].中国农学通报,2008,24(4):115-120.
    83.张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展.生物多样性,1999 7(1):31-37.
    84.张德水,陈受宜,惠东威,等.栽培大豆与半野生大豆间的杂种F2群体中RFLP标记的偏分离及其形成原因的分析[J].遗传学报,1997,24:362-367.
    85.张金枝.陆地棉半野生种系的利用研究初报.1988,12:18-20.
    86.张木清,洪艺殉,李奇伟,等.中国斑茅种质资源分子多态性分析[J].植物资源与环境学报.2004,13(1):1-6.
    87.郑泗军,季道藩,许复华.陆地棉野生种系对枯萎病的抗性及其遗传的初步分析.中国种业,1989,2,20-22.
    88.郑泗军,季道藩,许复华.陆地棉野生种系生物学特性的观察.浙江农业科学,1989,1:27-30.
    89.郑泗军,季道藩,许复华.陆地棉野生种系的光周期效应和开花反应的遗传.浙江农业学报,1989,1(1):8-13.
    90.郑泗军,季道藩,许复华.陆地棉野生种系与栽培品种杂交的亲和性分析.西北植物学报,1991,11(2):125-128.
    91.郑泗军,季道藩,许复华. 陆地棉野生种系的种子特性分析.种子,1991,6,23-27.
    92.郑泗军,季道藩,许复华.陆地棉野生种系籽棉性状和枯萎病抗性的鉴定.种子,1994,3,6-8.
    93.周宝良,黄骏麒,沈新莲,等.海岛棉与澳洲棉、黄褐棉种间杂种F1的细胞学研究.棉花学报,1995,7(4):209-212.
    94.周延清.DNA分子标记技术在植物研究中的应用.化学工业出版社,2005,2-4.
    95.朱青竹,赵国忠.不同来源棉花种质资源基于RAPD的遗传变异.河北农业大学学报,2002,25:16-19.
    96.朱四元,陈金湘,刘爱玉,等.SSR标记对不同类型抗虫棉品种的遗传多样性分析.湖南农业大学学报(自然科学版),2006,32(5):469-472.
    97. Beckman J S. Soller M. Restriction fragment length polymorphisms in genetic improvement methodologics,mapping and costs[J]. Thero Appl Genet,1983,67:35-43.
    98. Bell CJ, Ecken J R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis.Genomics.1994,19:137-144.
    99. Botstein D, White R L, Skolnick M H, et al.Construction of a genetic linkage map on men using restriction fragment length polymorphisms [J].Am.J.Hum Genet.1980,32:314-331
    100.Brubaker,CL, Paterson,AH, Wendel,JF. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome,1999,42:184-203.
    101.Dejoode D R., et al. Genetic diversity and origin of the Hawaiian islands cotton,Gossypium tomentosum. American Journal botany.1992,79(11):1311-1319.
    102.Ferriol M,Pico B,Nuez F. Genetic diversity of a germplasm collection of Cucubita pepo using SRAP and AFLP markers[J].Theor Appl Genet,2003,107(2):271-282.
    103.Ferriol M,Pico B,Nuez F. Genetic diversity of some accession of Cucubita maxima from Spain using RAPD and SRAP markers[J]. Genetic Resources and Crop Evolution,2003,50(3):227-238.
    104.Grant V. the Evolutionary Proeess:A Critical Study of Evolutionary Theory.(2nd ed.)New York:Columbia University Press.1991.
    105.Heckenberger M,Muminovic J,Rouppe van der Voort J,et al. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines. Ⅲ.AFLP data from maize inbreds and comparison with SSR data[J].Molecular Breeding.2006,17:111-125.
    106.Hutchinson,J.B. New evidence on the origin of the old world cottons. Heredity, 1954,8:225-241.
    107.Hansan,M.,Seyis,F.,Badani,A.G.,et al. Analysis of genetic diversity in the Brassica napus L.gene pool using SSR markers [J]. Genetic Resources and Crop Evolution.2006,53:793-802.
    108.Liu D, Guo X, Lin Z, et al. Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genetic Resources and Crop Evolution,2006,53:1145-1152.
    109.LIU Ren-Hu,MENG Jin-Ling. RFLP and AFLP Analysis of Inter-and Intraspecific Varia-tion of Brassica rapa and B. napus Shows that B. rapa Is an Important Genetic Resource for B. napus Improvement. Acta Genetica Sinica,2006,33(9):814-823.
    110.Mortiz C, Hillis D M.Molecular systematics:Context and Controversies. In:HIllis D M and Moritz C(eds.)Moleeular systematics.1990,1-11.
    111.Monte J.V, Mclntyre C.L., Gustafson J.P. Analysis of phylogenetic relationships in the Trticeae tribe using RFLPs. Theor.APPL.Genet,1993,86:648-655.
    112.Pillay, M, Myers, GO. Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Science:Crop Sci Soc America,1999. 1881-1886.
    113.Quiros,C.F, et al. Use of RAPD markers in potato genetics:segregation in diploid and tetraploid families[J].Amer.Potato J.1993.70:35-70.
    114.Rana, MK, Singh, VP, Bhat, KV. Assessment of genetic diversity in upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genetic Resources and Crop Evolution,2005,52:989-997.
    115.Shishido,R.,Kikuchi,M.,Nomura,K.et al. Evaluation of genetic diversity of wild rice(Oryza rufipogon Griff.)in Myanmar using simple sequence repeats(SSRs)[J]. Genetic Resources and Crop Evolution.2006,53:179-186.
    116.Sielder H.,Messmer M.M.,Schachermayar G.M.,etal. Genetic diversity in European wheat and spelt breeding material based on RFLP data. Thero Appl.Genet.1994,88:994-1003.
    117.Tara Satyavathil C, BhatK V, Bharadwaj C,et al. AFLP analysis of genetic diversity in Indian soybean[Glyeine max(L.)Merr.] Varieties Genetic Resources and Crop Evolution,2006,Vol 53:1069-1079.
    118.Tautz,D and M.Renz. Simple sequences are ubiquitous repetitive components of eukaryotic genomes [J].Nucleic Acid Res,1984,12:4127-4138.
    119.United Nations.Concention on Biological Diversity—Plant Genetic Resources Abstracts.CAB London.1993,2(1)1-15.
    120. Van Esbroeck, GA. Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Science,1998,38:33-37.
    121.Welsh J,et al. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,1990,18(24):7213-7218.
    122.Wendel, JF, Brubaker,CL, Percival, AE. Genetic diversity in Gossypium hirsutum and the origin of upland cotton. American Journal of Botany,1992:1291-1310.
    123.Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton. Adv Agron, 2003,78:139-186.
    124.Wendel JF. Genetic diversity introgression and independent domestication of old world cultivated cottons. American Journal of Botany,1989,76:1795-1806
    125.Williams J G K,et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990,18(22):6532-6535.
    126.Xu D H,Gai J Y. Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breeding.2003,122(6):503-506.
    127.Yasuda K, Yamaguchi H. Phylogenetic analysis of the subgenus Ceratotropis (genusVigna)and an assumption of the progenitor of azuki bean using isozyme variation. Breeding Science,1996,46:337-342.
    128.Yi W Chen, Randall L.Nelson. Genetic Variation and Relationships among Cultivated,Wild,and Semiwild Soybean. Crop Science Society of America,2004,Vol 44:316-325.
    129.You GX, Zhang XY, Wang, LF. An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties:Information from 96 random accessions with maximized genetic diversity. Molecular Breeding, 2005,14:397-406.
    130.Yu HG, Kiang YT. Genetic variation in South Korean natural populations of wild soybean(Glycine soja).Euphytica,1993,Vol68:213-221
    131.Zhao Jianjun, Wang Xiaowu, Deng Bo, et al. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints[J].Theor Appl Genet,2005,110:1301-1314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700