全数字交流短路过渡焊接系统及低热输入研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接是一种将材料永久连接,并成为具有给定功能的制造技术。随着近年经济的迅速发展,全球制造业的竞争越来越激烈,汽车、集装箱等生产企业大量采用薄板和超薄板以降低成本,因此对焊接过程提出了低热输入的要求。为了迎合这种趋势,交流短路过渡这种低成本、低热输入的焊接方法被提出并受到关注。然而,目前该方法还处在发展初期,国外可参考的资料很少,而国内对此研究目前还尚处于空白阶段。因此,对交流短路过渡方法的控制以及能量分配原理进行学术深入研究,提出理想控制方案,并成功研制出焊接系统平台,成为当前焊接技术发展的一个重要课题。
     为了满足交流短路过渡焊接方法的工艺要求,设计了基于DSP和CPLD的交流短路过渡焊接电源系统,并成功研制出用于薄板焊接的交流短路过渡焊接电源系统平台。整个系统由主电路部分、控制电路部分以及送丝系统组成。其中主电路部分采用二次逆变结构,并且为了实现焊接过程中的电弧再引燃,增加了全桥高压稳弧电路。控制系统主要由DSP(TMS320F2812)和CPLD(EPM7192S)联合控制实现,其中DSP承担着整个系统所有时序控制和主要控制计算功能,是整个系统的核心,而CPLD则承担着DSP绝大部分与外部进行联系的信号的传递和分配,并实现电平兼容。同时,CPLD还有另外一个重要的功能,即将DSP计算输出的PWM数值,通过运算转变为相应脉冲宽度的数字PWM信号进行输出,实现PWM控制的数字化。
     由于薄板焊接过程对能量输入非常敏感,送丝系统的稳定与否将极大地影响着整个系统的精度及过程稳定,因此,如何提高送丝系统的精度和动态性能是焊接中不可回避的一个重要问题。本文通过采用DSP(TMS320F2808)和光电码盘,直接采集送丝电机的转速来实现送丝速度反馈控制,使控制目标更加合理。为了进一步提高送丝的整体性能,系统采用模糊数字PI算法进行设计。试验结果表明,送丝系统的静态和动态性能均高于一般电枢电压反馈控制,能够完美地实现送丝稳定性。
     交流短路过渡焊接方法作为一种新型低热输入焊接方法,由于其提出的时间较短,人们对此种方法的认识还并不深入,此方法在我国尚属空白。本论文从电弧物理的角度出发,分别对焊接过程中不同阶段焊丝和工件的加热情况进行分析、计算,并得出影响交流短路过渡焊接过程热输入的各种参数。根据此理论研究,并结合实际的焊接波形分析,确定并提出了本周期交流短路过渡焊接方法,使焊接过程的能量调节在一个短路燃弧周期之内完成,在保证焊接过程稳定的同时,实现了低热输入控制。
     为了适应交流短路过渡焊接方法,焊接过程采用了全新的波形控制方案。在短路阶段采用多曲率波形控制,完美实现焊接电流上升曲率的控制,降低焊接过程的飞溅;燃弧时期的EN阶段采用恒流控制,保证了电流稳定;在燃弧的EP阶段,采用多阶梯电压控制,通过电弧的自调节作用实现焊接弧长控制。
     论文针对所提出的本周期交流短路过渡焊接方法,采用双闭环控制原理,并配合变参数数字PI算法,成功实现焊接过程不同焊接状态的稳定、快速控制。通过合理设计相关程序,保证焊接极性转变过程中的时序要求,以及实现焊接过程中的引弧、焊接过程控制、断弧处理以及高压稳弧等相关过程的处理功能。
     由于所采用的本周期交流短路过渡焊接方法在一个周期中存在两次电流过零的时刻,因此如何保证过零时刻电弧的再引燃是实现焊接过程能够稳定进行的关键所在。本文通过施加高压稳弧脉冲的方法成功解决了再引燃的问题。并且,为了更好地了解所施加高压稳弧脉冲对过零电流再引燃情况的影响,通过改变稳弧电压的幅值、脉冲宽度、施加时刻、过零前电流大小等条件进行了相关研究,得出了电弧过零稳定的规律,并确定最终高压稳弧方案。
     为了对论文所提出的理论和公式进行验证,本文进行了大量的试验研究。试验结果证明本周期交流短路焊接方法是一种低热输入的焊接方法。同时论文还针对该方法焊接过程中各种参数大小对能量分配的实际影响作用进行相关试验研究,并得出相应了的规律。通过实际焊接过程中所测得的电流、电压波形、数值、焊缝成形、高速摄像等不同角度,对其进行论证,进一步证实了理论分析结果。
Welding is a set function manufacturing technology and makes the materials for permanent connection. With the rapid development of economy, the global competitiveness of manufacturing is growing up, especially in automotive, container and etc., more and more sheet thin plate are used, so low-energy requirement is put up for the welding of thin plates. In order to adapt to this rising demand, the short-circuit arc welding as low-cost and low-energy got attention, and can be tried to make more reasonable. However, this method is still in early stage of development, it has few information can be found at home and abroad. Therefore, it is hard and important to study the principle of control AC short-circuit transfer and energy distribution, to bring up an ideal control scheme and build up a welding system.
     In order to meet the process requirement of AC short-circuit arc welding, the system for welding thin plates based on DSP and CPLD was designed and investigated. The entire welding system included main circuit, control circuit and wire feed system. The main circuit was used of two inverters and high-voltage full-bridge arc stability circuit to re-igniting the arc. The control circuit was to achieve by DSP (TMS320F2812) and CPLD (EPM7192S), all sequential control and many core computing in the system were controlled by DSP, while CPLD was to transmit and distribute the signals from the DSP to external parts, as well as implement level compatibility. At the same time, CPLD had another important function, which is to transform the processed data from the DSP to digital PWM output signals.
     Energy input is a very sensitive factor, and the stability of wire feed system is a great impact on the accuracy and stability of the entire system, therefore, it can not be avoided to how to improve the accuracy and dynamic performance of wire feeding system. In this thesis, the closed-loop control of the wire feeding system was achieved through DSP (TMS320F2812) and electro-optical encoder to acquire the electrical wire feed speed directly. In order to improve the overall performance of system, the fuzzy PI algorithm was applied. The results showed that it had a perfect wire feeding stability, furthermore, the static and dynamic performance of the system were better than ordinary one.
     It is too hard to bring up a best project about the energy distribution on the short-circuit arc welding, because the welding method is new. In this thesis, a variety of factors impacting heat input were analyzed during different stages of the welding process. According to the theoretical study and combining to the analysis of actual welding waveform, a new and flexible AC short-circuit arc welding was brought up. It can complete the energy regulation in one short-circuit arcing cycle, make sure the stability of the welding process and increase the flexibility of energy regulation at the meantime.
     A new waveform control project was proposed to better transfer different welding process in the AC short-circuits arc welding. At the short circuit stage, multi-curvature waveform control was to control the ascending curvature of welding current to reduce spatter; at EN stage, constant current control was to make sure the current stability; at EP stage, multi-step voltage control was to implement welding arc length control through self-regulation of arc.
     Based on dual closed-loop control and varying parameters PI algorithm, a new AC short-circuit arc welding method was brought up to achieve stable and rapid control successfully during different status of welding process. Furthermore, rational procedures were designed to make sure the requirement of time sequence at polarity transferring, and complete the control of generating the arc, arc interruption, high-voltage arc stability and other related functions.
     There exits two current zero during one cycle in AC short-circuit arc welding, so it is a key to make sure arc re-ignition and stability at welding process. In the thesis, high-voltage pulse was to re-ignite arc successfully. In addition, in order to better understand the impact on arc re-ignition, the voltage amplitude, pulse width, the imposition of time and the current before zero-point were investigated to determine the best program.
     Many experiments were carried out for study the relation between the welding parameters and energy distribution in the AC short-circuit arc welding. The results of theoretical analysis were confirmed through measurement of welding current and voltage, the welding shape, high-speed camera pictures and etc.
引文
1.林尚扬,杜兵.焊接行业现状与自主创新战略.焊接. 2006(6).
    2.殷树言,徐鲁宁,丁京柱.熔化极气体保护焊的高效化研究.焊接技术. 2000,S1:4-7
    3.张孔群,周国胜.美国高效焊接技术一瞥.造船技术. 1997,10(2):7-10.
    4.庄建清.高效MAG焊的应用.焊接技术. 1991,5:29-32.
    5.林尚扬,关桥.《我国制造业焊接生产现状与发展战略研究》总结报告.中国工程院咨询项目.2003.
    6.殷树言.气体保护焊技术问答.机械工业出版社, 2004.
    7.殷树言.气体保护焊工艺基础.机械工业出版社, 2007.
    8.殷树言,邵清廉.CO2焊接技术及应用.哈尔滨工业大学出版社, 1992.
    9. Elliot K. Stava.The Surface-tension-transfer Power Source:a New ,Low-spatter Arc Welding Machine. Welding Journal. 1993,72(1):31-34
    10.冯曰海.短路过渡CO2气体保护焊数字控制技术研究.北京工业大学博士学位论文. 2005:27-30
    11.孙广.基于能量调节的DSP主控短路过渡GMAW智能控制研究.上海交通大学博士学位论文. 2005:52-54
    12. J.Wilden, J.P.Bergmann, M.Dolles, at al. Flux Free Joining of Zinc Coated Steek As Well As Stell/Aluninum Throgh Laser and Controlled Short Arc Technology. Picalo 2006, 2nd Pacific International Conference on Applications of Lasers and Optics,Peer Reviewed Cinference Proceeceings, Sessions Featuring: Laser Materials Procession Micro, Nano and Ultrafast Fabrication .2006:180-185
    13. HT Zhang, JC Feng, P He, Zhang BB, at al. The Arc Characteristics and Metal Transfer Behaviour of Cold Metal Transfer and Its Use In Joining Aluminium To Zinc-coated Steel. Materials Science and Engineering. 2009,499(1-2):111-113
    14. L. Agudo, S. Weber, H. Pinto. Study Of Microstructure And Residual Stresses In Dissimilar Al/Steels Welds Produced By Cold Metal Transfer . Materials Science Forum. 2008, 571/572: 347-353.
    15. Sanbao Lin, Chenglei Fan, Jianling Song, Chunli Yang.Research On CMT Welding Of Nickel-based Alloy With Stainless Steel.Welding Research Abroad .2008,54(4):11-14.
    16. J. Wang, J.C. Feng, Y.X. Wang.Microstructure Of Al-Mg Dissimilar Weld Made By Cold Metal Transfer MIG Welding .Materials Science and Technology .2008,24(7):827-831.
    17. Marc L.A.D., Mertens, G. Patron. Conversion Coatings On Zinc And Zinc Alloy Surfaces. Bulletin Du Cercle d'Etudes Des Metaux .2009,vol.XVIII(1):I1-I9.
    18. Cold Metal Transfer. International Sheet Metal Review. 2008,10(1):18-19.
    19. J. Bruckner. The CMT-process And Its Possible Applications, Especially Joining Of Steel With Aluminum. 7th International Conference On Brazing.High Temperature Brazing And Diffusion Welding, Aachen, Germany. 2004.
    20. J.Bruckner. Cold Metal Transfer Has A Future Joining Steel To Aluminum. Welding Journal. 2005,84(6):38-40.
    21. P. Johne. CMT Welding: Sputter-free Welding Thanks To Controlled Energy And Material Transfer. Aluminium. 2006,82(10):938-943.
    22. K.Furukawa. New CMT Arc Welding Process-welding Of Steel To Aluminium Dissimilar Metalsand Welding Of Super-thin Aluminium Sheets. Welding International. 2006, 20(6): 440-445
    23. H. Pinto, A. Pyzalla, H. Hackl. A Comparative Study Of Microstructure And Residual Stresses of CMT-, MIG- andLaser-Hybrid Welds. Materials Science Forum. 2006, 524/525: 627-632
    24. Volkswagen corporation. Getting Autobody Welding Down Cold Metal Transfer Helps Volksw-agen Meet Customer Demands. The Fabricator. 2006,36(4):54-55.
    25. J.Bruckner. Cold Metal Transfer/Een Revolutie In Kortsluitbooglassen. Lastechniek. 2005, 71(3):6-9
    26.杨修荣.超薄板的MIG/MAG焊-CMT冷金属过渡技术.电焊机. 2006,(6):5-7.
    27.杨修荣.钢与铝的焊接.航空制造技术. 2004, (12):96
    28.加藤淳.アルミニウム-鋼接合技術の開発.溶接学会論文集. 2005,23(1):169-174.
    29. J.Bruckner.Considering Thermal Processes For Dissimilar Metals. The Fabricator. 2003, 33(8):34-36
    30.Й.БРУКНЕР. Arc Joining Of Steel With Aluminium.АвтоматическаяСварка. 2003, (10-11):185-187
    31. H.T. Zhang, J.C. Feng, P. He, et al. Interfacial Microstructure And Mechanical Properties Of Aluminium-zinc-coated Steel Joints Made By A Modified Metal Inert Gas Welding-brazing Process. Materials Characterization. 2006
    32.石常亮.铝和镀锌钢CMT法MIG钎焊工艺研究.哈尔滨工业大学硕士学位论文,2006
    33.张撼鹏,黄鹏飞,殷树言等.钢铝异种金属新型电弧连接法研究现状.焊接. 2005, (12):9-13
    34.张撼鹏,黄鹏飞,殷树言等.新型低热输入数字化焊接电源控制系统的研制.焊接学报. 2007,28(1):89-92(EI:071310514162)
    35.张撼鹏,黄鹏飞,殷树言等.新型低能量输入电弧焊接系统的研制.电焊机. 2007, 37(2):37-39
    36.张撼鹏,卢振洋,黄鹏飞等.低能量输入焊接法参数匹配对能量输入的影响.北京工业大学学报, 2007, 33(4):13-18
    37.张撼鹏.新型低能量输入电弧焊接系统及其过程控制研究.北京工业大学博士学位论文, 2007
    38.卢振洋,黄鹏飞,张撼鹏等.一种低能量输入电弧焊接系统及方法.发明专利,申请号:200610144292.1
    39. J. Wilden, J. P. Bergmann, S. Reich,at al. Set Of A High Power Diode Laser In Order To Enhance Wettability Conditions And Process Speed In A Controlled Short Arc Brazing Process Of Zinc Coated Steels. 25th International Congress On Applications Of Lasers & Electro-Optics (ICALEO 2006) .2006:743-751
    40. J Wilden, S Jahn·, S Reich, S Dal-Canton. Cladding Of Aluminum Substrates With Iron Based Wear Resistant Materials Using Controlled Short Arc Technology. Surface & Coatings Technology. 2008,202(18):4509-4514
    41. J. MATUSIAK, B.CZWORNOG .Niskoenergetyczne Procesy Spawania Lukowego W oslonie Gazow Do Laczenia Cienkich Blach Stalowych. Hutnik, Wiadomosci hutnicze. 2008,LXXV(1):10-16
    42. E. Altmann. Fugetechnik: EWM-Brenner Feiern Auf Der EuroBLECH Premiere. Produktion. 2008,42:s7
    43. Sven-Frithjof Goecke.Fugeverfahren--coldArc verbindet Stahl und Aluminium. Metallbau. 2006,3:58-61.
    44. S.-F. Goecke. Energiereduziertes Liehtbogen-Fugeverfahren Fur WarmeempfandSiche Werkstoffe. DVS-Berichte. 2005,237:44-48.
    45. http://www.cloos.de
    46. J. Wilden, J. P. Bergmann, M. Dolles, at al. Cladding With New Short Arc Devices. 2006 International Thermal Spray Conference (ITSC 2006).2006:1347-1351
    47.张洪.有效控制电弧能量的冷弧焊.现代焊接工程. 2006,(6):44-45
    48. http://www.ewm.de/
    49.上山智之,周栄慶一,恵良哲生,西坂太志.通过CBT方法开发低热输入、低飞溅CO2/MAG交流焊接系统.金属加工:08’中国焊接产业论坛-北京埃森焊接展专刊.2008,增刊2:104-107
    50.杭争翔,殷树言,方臣富. AC MIG与DC MIG焊接工艺及控制的分析.电焊机. 2001,31(9):17-21
    51.焦向东,潘际銮,张骅.交流MIG焊接电弧控制系统的研究.电焊机. 1994(2):9-11
    52.张骅,焦向东,潘际銮.交流MIG焊电弧稳定性控制.中国机械工程. 1994,5(6):67-68
    53.焦向东,潘际銮,张骅.双凹波形脉冲氩弧焊的焊接电源.焊接学报. 1996,17(1):56-61
    54.焦向东,潘际銮,张骅. AC/DCRP交替MIG焊接方法的研究.中国机械工程. 1996,7(2):88-89
    55.焦向东等.新型交流脉冲MIG焊接法的研究.石油机械. 2002,30(9):8-10
    56.焦向东,潘际銮,张骅.交流MAG焊接电弧稳定性及其控制.焊接学报. 1998,19(1):47-53
    57.焦向东,黄松涛,潘际銮,张骅.新型交流脉冲MIG焊接法的研究.石油机械. 2002, 30(9):8-10
    58.潘际銮.现代弧焊控制.机械工业出版社. 2000.6:143-168
    59.杭争翔,殷树言,黄鹏飞.交流脉冲MIG弧焊电源及弧长控制.焊接学报. 2003,24(2):83-85,88
    60.杭争翔,殷树言,黄鹏飞,等.逆变弧焊电源输出变极性过程.电焊机. 2003,33(6):13-15, 38
    61.杭争翔. AC PMIG焊接设备及工艺特性的研究.北京工业大学博士学位论文. 2003
    62.杭争翔,徐英,李利.变极性脉冲MIG焊双逆变弧焊电源.电力电子技术. 2006, 40(3):96-98
    63.杭争翔,汪江,李利,等.变极性脉冲MIG焊的控制.电焊机. 2006,36(2):30-32
    64.杭争翔,宋政.交流脉冲MIG电弧稳定性及其控制.沈阳工业大学学报. 2002, 24(5): 374-377
    65.杭争翔,宋政,常小芳. AC PMIG电源动特性.沈阳工业大学学报. 2004,26(3):254-257
    66.杭争翔,殷树言,宋政.交流脉冲MIG焊接铝合金薄板的工艺特性.焊接学报. 2004, 25(2):99-106.
    67.廖平,殷树言,黄鹏飞,等.变极性脉冲MIG焊稳弧系统研究.电焊机. 2006,36(2):33-35
    68.廖平,黄鹏飞,卢振洋,等.变极性脉冲MIG焊控制系统.焊接学报. 2006, 27(3):53-56(EI:06249938113)
    69.廖平,黄鹏飞,卢振洋,殷树言,白立来.铝合金VP PMIG焊电弧过零稳定性.焊接学报. 2006, 27(11):13-16
    70.廖平.薄板铝合金VP PMIG焊接设备及电弧稳定性研究.北京工业大学博士学位论文. 2006.4
    71.杭争翔,殷树言,黄鹏飞,廖平.逆变弧焊电源输出变极性过程.电焊机. 2003, 33(6):13-15,38
    72. H.Tong, T.Ueyama, S.Harada, at al.Quality And Productivity Improvement In Aluminium Alloy Thin Sheet Welding Using Alternating Current Pulsed Metal Inert Gas Welding System. Science and Technology of Welding and Joining. 2001,6(4):203-208
    73. H.j. Tong, I. Yazawa, T. Ueyama. High Speed Welding of Aluminum Alloy Sheets Using Laser Assisted AC Pulsed MIG Process. 2003汽车焊接国际论坛论文集.上海.2003:133-142
    74. T. Ueyama, H.j Tong, S. Harada. Improve Sheet Metal Welding Quality & Productivity with AC Pulsed MIG Welding System. IIW DOC.Ⅻ-1629-00
    75. H.Tong, T.Ueyama, M.Tanaka, at al. Observations of The Phenomenon of Abnormal Arc Voltage Occurring In Pulsed Metal Inert Gas Welding of Aluminium Alloy. Science and Technology of Welding and Joining. 2005,10(6):695-700
    76.仝紅軍,上山智之,田中学,牛尾誠夫.交流及び直流パルスミグ溶接における異常なアーク電圧発生現象の観察. .軽金属溶接. 2005,43(3):121-127
    77.仝紅軍,上山智之, H. TONG, T. UEYAMA.交流パルスミグ溶接における微小スパッタ及びアーク切れ問題の対策.溶接学会論文集. 2004,22(2):240-247
    78. D. Bohme,W. Rosenfeld, L. Baum, at al. MIG-welding of Very Thin Al-Sheets by AC Pulsed Arc. IIW Doc.Ⅻ-1720-02
    79.上山智之,牛尾誠夫.交流パルスミグ溶接のワイヤ溶融現象およびピード形成現象に関する研究.溶接学会論文集. 2004,22(3):389-397
    80.仝紅軍,上山智之,木原貴行.レーザ·交流パルスミグハイブリッド溶接法による薄板アルミニウム合金溶接の高速化.溶接学会論文集. 2004,22(1):27-36
    81.仝紅軍,上山智之,田中学.交流および直流パルスミグ溶接のアーク安定化制御方法に関する.溶接学会論文集. 2005,23(1):53-64
    82.上山智之,原田章二,三田常夫.交流GMA溶接にぉける日本の现状につぃて.轻金属溶接. 2000,38(8):1-7
    83.仝红军,上山智之.低频调制型脉冲MIG焊接工艺方法的特点.焊接. 2001(11):33-40
    84.仝红军,上山智之.交流脉冲MIG焊接机器人系统的工艺特点.焊接. 2002(1):20-22
    85. D.D. Hwrwing, J.E. Dierksheide, D. Yapp, at al. Droplet Burnoff Rate Measurements on The VP-GMAW Process. IIW Doc.Ⅻ-1858-05
    86. H. Matsui,S. Harada,M. Ushio. Current Topics on Sheet Metal Welding in the Japanese Automobile Industry Pulsed GMA Welding of Hot-dip Galvanized Steel and AC Pulsed GMA Welding of Al Alloys. IIW Doc.Ⅻ-1674-00
    87. T. Ueyama, H. Tong. Observation and Control of The Arc Phenomena in AC Pulsed Arc Welding. Technical Commission on Welding Arc Physics of JWS. 99-1608,nov.26,1999
    88.河合,谷本,平本.交流パルスMIG溶接の检讨.溶接法研究委员会资料. NO.SW-2391-95(1995)
    89.丸山,冈田,本田.极性比率制御GMA溶接电源について.溶接法研究委员会资料. NO.SW-1868-88(1988)
    90.三田常夫.アーク溶接の现状と展望.溶接技术. 1998,46(4):72-80
    91.三田常夫.アーク溶接技术の进步.溶接学会志. 2000,69(3):6-12
    92. R. Suzuki. T. Nakano. Development of MAW Welding Wires for Thin Steel Sheets in Automotive Industry. IIW Doc.Ⅻ-1679-01
    93.上山智之.最近のミグ/マグ熔接电源の开发と特征.溶接技术. 2000,48(1):104-110
    94.山本英幸.アーク溶接电源ー溶接电弧现象の制御とその进步.溶接学会志. 1997,66(8):49-63
    95.上山智之,益城浩司.最近のアーク溶接机器.溶接技术. 2000,48(4): 65-70
    96.丸山德治.极性比率制御GMA溶接电源の特性.神户制钢技报. 1989,(4):46-51
    97.三田常夫.アルミニウム溶接における新交流波形制御.轻金属溶接. 1999,37(5):11-20
    98. Ushio, Nakata, Tohng. Fume Generation in Al-Mg Alloy Welding with AC-Pulsed GMA Welding Method,Trans. JWRI 1994,23(1):21-27
    99. S. Harada, T. Ueyama. The State of the Art of AC GMAW Process in Japan. IIW Doc.Ⅻ-1589-99
    100.谷本顺三,平本朗子,片山尚彦.ツインバータ制御交流パルスミグ自动溶接机“バナスターACパルス200”.轻金属溶接. 1994,32(8):12-17
    101.丸山德治,冈田雅志.アルミニウム合金薄板用溶こみ制御パルスミグ溶接机“センサークAL350”について.轻金属溶接. 1992,30(5):210-216
    102.冈崎勳夫,片山尚彦.最近のロボット用アルミニウムMIG溶接电源.轻金属溶接. 1998,36(7):25-29
    103.佐藤英市.アルミニウム合金用溶こみ制御パルスMIG溶接机.轻金属溶接. 1998,36(7):30-33
    104.三田常夫.パルスマグ溶接.溶接学会志. 1998,67(4):50-54
    105. S.F. Goecke, L. Dorn. Research On The Influence Of Process Control And Shielding Gas Composition On Spatter Formation And Groove Geometry In MAG Short Arc Welding Of Thin Steel Sheets Less Than 0.5 mm Thick. Final Report DFG (Deutsche Forschungsgemeinschaft;German Research Association). 2000,3: 202/26-3, (2000)
    106. S. F. Goecke, L. Dorn , M. Hübner: MAG ChopArc Welding For Minimum-thickness Sheets≥0.2 mm. Individual Conference Report In The Conference Volume For The Great Welding Conference– GST 2000, Nürnberg. 27-29 Sep. 2000, 209:163-168
    107. S. F. Goecke, E Metzke. A Spille-Kohoff, M Langula. ChopArc– MSG arc welding for ultralightweight construction. Bmb+f-gef?rdertes Verbundprojekt, Final Report. Fraunhofer IRBVerlag. 2005, ISBN 3-8167-6766-4
    108. G Huismann. Direct control of the material transfer, the Controlled Short Circuiting (CSC)- MIG process. ICAWT 2000: Gas Metal Arc Welding for the 21st Century. Dec. 6-8, 2000. Orlando, Florida
    109. S. Kr?ger,R. Killing. Software For Creating And Managing Parameters For MIG/MAGWelding. German Welding Association Yearbook. 2004:150-161
    110. T. Era, A. Ide, T. Uezono. Spatter Reduction Of Steel Sheets Welding Using Controlled Bridge Transfer (CBT). Materials Science Forum. 2008,580/582 :303-306
    111.恵良哲生,西坂太志,井手章博,廣田周吾,上山智之. CBT (Controlled BridgeTransfer)法による低入熱·低スパッタCO2マグ交流溶接システムの開発.溶接技術. 2007, 55(12):62-67
    112.恵良哲生,上山智之.電流波形制御によるGMA溶接のスパッタ低減.溶接学会誌. 2006,75(7):19-23
    113.魏占静,约克·希勒.変极性MIG/MAG焊接工艺及应用. 2009先进焊接与连接学术会议暨第一届焊接高层论坛. 2009,1:58-61
    114.魏占静,周大胜.変极性MIG/MAG焊接设备-德国CLOOS CP冷焊介绍.中国焊接咨询网
    115.刘嘉,卢振洋,殷树言.电焊接的数字化.焊接学报. 2002,23(1):88-92
    116.朱志明.,陈杰.数字化焊接电源的发展及应用.金属加工: 08’中国焊接产业论坛-北京埃森焊接展专刊.2008,增刊2:78-87
    117.刘嘉.弧焊逆变电源的数字化控制.北京工业大学博士学位论文. 2002,4:10-12
    118.陈裕川.现代全数字控制MIG/MAG焊机(四).现代焊接. 2006,47(11):10-14
    119. Fronis产品手册
    120. OTC产品手册
    121. TI. TMS320F28x DSP CPU and Instruction Set Reference Guide . 2002
    122. lUwe Meyer-Baese. Digital Signal Progcessing with Field Programmable Gate Arrays. Second Edition.刘凌.第二版.清华大学出版社. 2006:92-123
    123.周霖. DSP算法设计与系统方案.国防工业出版社. 2004:15-25
    124.陶永华.新型PID控制及其应用.第二版. 2005
    125.ЛесковГ.И.ЭлектрическаяСварочнаяДугаМашиностроениеМосква. 1970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700