基于微波谐振腔技术的水分仪设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航天航空领域中,飞行器前期的制件环节、组装连接环节、推进剂储藏环节、飞行中监控环节、地球外环境物质探测环节等都需要对物质含水率进行测量和分析。物质中水分含量的定量分析已经被列为各类物质理化分析的基本参数之一,往往会影响到物质本身的一些特殊的性质及性能参数。因此,研制出体积小、便于携带和测量、可以适应多种测量、多种环境及用途,高精度、智能化的物质水分仪是一项亟待解决的科研问题,也有广阔的工程应用前景。
     本论文“基于微波谐振腔技术的水分仪设计”对采用谐振腔进行物质水分测量所涉及的理论、方法和关键技术进行深入的研究:
     首先,通过系统分析国内外微波法物料水分测量技术的发展现状,在现有水分测量方法的基础上,指出红外法、中子法、自由空间微波法在水分测量中存在的不足,基于此提出了一种微波同轴谐振腔水分传感器。
     其次,分析讨论了设计本论文系统所需的相关理论基础。论文从麦克斯韦方程出发,详细论述了微波谐振腔内的电磁场分布、边界条件、微波的网络分析、时域有限差分法等内容,进而说明了本论文系统的各项参数指标的由来及相关条件。
     再次,从谐振腔微扰原理出发,利用时域有限差分法(FDTD)对谐振腔空间进行网格划分并求解,建立了谐振腔传感器仿真模型。以该模型为基础,分析了传感器和物料作用后的内外电磁场分布,利用CST软件,研究了谐振腔空载、无耗条件、有耗条件下的谐振频率等参数与物质含水率的关系:均近似成线性关系,从而验证了本文所述理论的正确性与模型的可行性。
     同时,设计了与传感器相关匹配的电路系统。系统分为前端测量模块和后端控制模块,对控制器、微波源、功率检测器、电源等重要电子器件的选区进行了较详细分析与介绍。
     最后,针对同轴谐振腔水分传感器的稳定性、分辨能力和重复性进行了实验研究,实验结果表明本水分仪已经达到系统设计时提出的标准和要求。
In aerospace-field, previous-part-manufacturing of spacecraft, assembly, propellant storage, flight monitoring, space environment detection, all need analysis of materials water cut. Analysis of materials water cut has already regarded as one of basic parameters in physico-chemical analysis, water cut always could effect other properties of materials. Therefore, development of moisture sensor which is high precise, portable,rapid,multipurpose is necessary and has wide application prospect.
     In this study, some key technologies, related theories and methods on the design of microwave coxial resonant moisture sensor, are adopted and researched. The main research works are as follows:
     Firstly, high precise and rapid moisture content measurements have become the main problem that some industries face. On the base of analyzing existing moisture content measurement techniques, some disadvantages about infrared and free space microwave are presented. So, coaxial resonant cavity as moisture content sensor are presented.
     Secondly, this study systematical analizes theories which related the system, benging with Maxwell Formulation, detailed descripts distribution of electromagnetic field in microwave coxial resonant, boundary conditions, net, FDTD. Because of those, origin and requirements of moisture csensor parameters are presented.
     On perturation theory resonant cavity model is built by FDTD dividing grids of resonant cavity space and solving them. On the base of the model, electromagnetic fields distribution inside and outside of resonant cavity; state of no-load and lossy are studied by CST, that is relationship of parameters and water cut.
     Meanwhile, a circuit system which matches the sensor is designed.This system includes 2 parts: front-end measuring module and back-end concrol module.Choises of improtent componets have been presented in detail.
     Last, samples prepared for experiment are introduced. Experiments of stability, resolution and repeatability on open-ended resonant cavity sensor are researched. Results of experiments show that: this moisture csensor meets the qualification.
引文
1 Lay-Keow Ng, Michel Hupe. Effects of Moisture Content in Cigar Tobacco on Nicotine Extraction Similaritv between Soxhlet and Focused Open Vessel Microwave Assisted Techinques.Journal of Chromatography. 2003,1011:213~219
    2佘新平,刘传清,γ射线密度传感器.传感器技术.1998,17(4):47~48
    3 Kent, M.Simultaneous Determination of Composition and Other Material Properties by Using Microwave Sensors.Sensors Update. 2000,7:3~25
    4冯鹏,刘荣堂,厉卫宏,张蕴薇.紫花苜蓿种子含水量对卫星搭载诱变效应的影响.草地学报.2008,11
    5彭友军,金淮.航天返回舱着陆冲击模拟实验床建造过程控制研究.岩土工程技术.2007,4:2~5
    6杨时敏.固体火箭发动机符合固化层的研制.国防科技大学硕士论文.2008:2~10
    7王中和,屈小红,乔晓鹏,张小军.杂质对混合硝酸酯及其含能粘合安定性的影响.含能材料.2008,2
    8 Philip G., Bartley, Ronald W.McClendon.Moisture Determination with an Artificial Neural Network from Microwave Measurement on Wheat.IEEE Instrumentation and Measurement Technology Conference. 2003,5:19~21
    9 Andrzej W.Kraszewski.Microwave Aquametry Needs and Perspectives.IEEE Transactions on Microwave Theory and Techniques.2004,9(5):828~836
    10 Shivola,A.H.Self-consistency Aspects of Dielectric Mixing Theories.IEEE Transaction on Geoscience and Remote Sensing.2001,27(4):403~415
    11倪祖荣,吕文选.谐振腔体外微扰及应用研究.微波学报.2000,16(3):305~309
    12肖芬,吕文选.同轴腔微扰法测量物质介电常数的研究.厦门大学学报.1995,34(4):536~541
    13 William F.Egan.Practical RF System Design.John Wiley & Sons,2003
    14 Jonathan Y.Stein.Digital Signal Processing:A Computer Science Perspective.John Wiley & Sons,2003
    15 Trond Ytterdal,Yuhua Chen,Tor A.Fjeldly.Device Modeling for Analog andFRCMOS Circuit Desing.John Wiley & Sons,2003
    16 M.Farina,Trans.Rozzi.Full-Wave Modeling of linear FETs for Millimeter Waves.IEEE Trans.Microwave Theory Tech.2004,49(8):1443~1450
    17 J.Johansson,O.Hagman,J.Oja.Predicting Mositure Content and Density of Scots Pine by Microwave Scanning of Sawn Timber.Computers and Electronics in Agriculture.2003,41:85~90
    18冯启宁,李晓明,郑和华. 1KHz~15KH岩石介电常数的实验研究.地球物理学报.1995,26(3):331~336
    19张秀成,赵振声,冯则坤等.微波铁氧体吸收剂复介电常数的研究.功能材料.1995,26(3):251~254
    20康士峰,孙芳,罗贤云.地物介电常数测量和分析.电波科学学报.2003,12(2):161~168
    21 Dai Yisong,Xu Jiansheng.The Noise Analysis and Noise Reliability Indicators of Optoelectron Coupled Devices.Solid-State Electronics.2000,44:1945~1500
    22 P.Queffelec.New Method for Determining the Permeabiliy Tensor of Magnetized Ferrites in a Wide Frequency Range.IEEE Trans.on MTT.2004,4(8)81344~1350
    23 J.Hinoiosa.S-Parameter Broadband Measurements on-Coplanar and Fast Extraction Components Letters.2001,11(2):80~82
    24 Chun Yu Chen,Chieh Hsiung Kuan.Design and Calibration of a Noise Measurement System.IEEE Trans.Instrum.Meas..2003,49(1):77~82
    25 P.Heymann.M.Rudolph.R.Doerner.F.Lend.Modeling of Low-Frequency Noise in GaInP/GaAs Hetero-Bipolar Transistors.IEEE.2004
    26 A.W.Kraszewski.S.O.Nelson.Resonant Microwave Cavities for Sensing Properties of Agricultural Products.Trans.ASAE.1992,35(4):1315~1321
    27 Zeland公司.FIDELITY:www.zeland.com
    28 DSI3D:http://www.11n1.gov/eng/ee/erd/ceeta/emdsi3d.htm
    29杨国胜,高悦,王建琪.2450MHz介质复介电常数的测量.北京生物医学工程.2002,21(3):198~200
    30 S.Trabelsi.Phase-Shift Ambiguity in Microwave Dielectrei Properties Measurements.IEEE Trans.On IM.2004,49(1):56~60
    31 Mohamed Ben Slima,Roman Z.Morawski.Calibration of aMicrowave System for Measuring Grain Moisture Content.IEEE Instrumentation and Measurement Technology Conference.2001:18~20
    32 Andrzej W.Kraszewski , S.Trabelsi.Simple Grain Moistrue Content Determination from Microwave Measurement.Trans.American Society of Agriculture Engineers.1998,41(1):129~134
    33 Andrzej W.Kraszewski,Tian-Su You.Microwave Resonator Technique for Moisture Content Determination in Single Soybean Seeds.IEEE Transactions on Instrumentation and Measurement.1989,38(1):79~85
    34 J.M.C.Civera.A Simple Procedure to Determine the Complex Permittivety of Materials without Ambiguity from Reflection Measruements,Microwave and Optical Technology Letters.2003,25(3):191~194
    35 B.J.Wolfson.Complex Permittivity and Permeability measurement Using Rectangular Waveguide.Microwave and Optical Technology Letters.2005,27(3):180~182
    36 R.Follmann , J.borkes.Extraction and Modeling Methods For FET Devices.IEEE Microwave.2002:49~45
    37 W.Kraszewski,S.Trabelsi,S.O.Nelson.Comparison of Density-Independent Expressions for Moisture Content Determination in Wheat at Microwave Frequencies.J.Agric.Engng Res.1998,71,227~237
    38 T.Yakaba.Six-Port Baed Wave Correlator with Application to Beam Direction Finding.IEEE Trans.IM.2005,50(2):377~380
    39 W.Kraszewski,S.O.Nelson,T.S.You.Use of a Microwave Cavity for Sensing Dielectric Properties of Arbitrarily Shaped Biological Objects.IEEE Trans.Microwave Theory Tech..1990,38:77~87
    40 W.Kraszewski.Microwave Aquametry-Electromagnetic Wave Interaction with Water Containing Materials.New York:IEEE Press,1996
    41 S.P.Yeo.Improved Design for Multistate Reflectomenter(with Two Power
    42贺明寿,黄卡玛.反应混合物等效介电常数与温度关系得经验插值公式.电波科学学报. 2001, 16(3):414~417
    43 Detectors) for Measuring Reflection Coefficients of Microwave Devices.IEEE Trans.on IM.2003,49(1):61~65
    44 K.P Thakru.An Inverse Techniques to Evaluate Pennittivety of Material in a Cavity.IEEE Trans.on.MTT.2004,49(6):1129~1132
    45 EMA有限公司.EMA3D:www.csn.net/emaden
    46 Noriaki Kaneda.Bijan Houshmand.Tatsuo Itoh.FDTD Analysis of DielectricResonators with Curved Surfaces.IEEE Transactions on Microwave Theory and Techniques.2005,45:1008~1018
    47阎玉波,石守元,葛德彪.用于FDTD的复杂目标的建模.西安电子科技大学学报. 2004
    48 S.O.Nelson,A.W.Kraszewski,S.Trabelsi.Using Cereal Grain Permittivity for Sensing Moisture Content.IEEE Trans.Instrum.Meas..2003,49:470~475
    49 S.Okamura.High-Moisture Content Measurement of Grain by Microwaves.J.Microw.Power Electromagn.Energy.2004,16(3):253~256
    50 Lee J F,Palandech R,Mittra R.Modeling Three Dimensional Discontinuities in Wave Guides Using Nonthogonal FDTD Algorithm.IEEE Trans.On MTT.2003,40(2):346~351
    51宋述显,高本庆,孙明云.时域有限差分法德三维曲面共形技术及其再卡塞格伦天线系统中的应用.电子学报. 1996,24(9): 31(2):48~52
    52 Jurgens T G,Taflove A.Finite Difference Time Domain of Scattering from Single and Multile Bodies.IEEE Trans.on AP,2002,41(12):1703~1708
    53 Laner.FDTD Simulations of Indoor Propagation.Proc.IEEE Vehicular Technology Conference(VTC).2004,2:883~886
    54 Emu.FDTD:A 3D Maxwell Solver,Department of Electronic & Computer Engineering.Brunel University,UK,http://www.brunel.ac.uk
    55张梅,邢欣.互联网上时域有限差分法程序分析.电子科技大学学报.2001,30(1):107~110
    56姜宇,曹军,杨国辉.基于IA-BP优化算法的物料含水率测量技术.自动化仪表.2006,5.Vol.27 No.5:21~24
    57杨国辉.基于微波谐振腔的物料水分传感器研制.哈尔滨工业大学工学硕士学位论文.2006:24~30
    58姜宇,曹军,杨国辉.微波谐振腔含水率传感器设计方法.现代科学仪器. 2006,2:26~29
    59姜宇,丁雪梅,杨国辉.微波谐振腔技术的湿度传感器设计研究.仪器技术与传感器.2006,2:2~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700