ZnO粉体的水热合成及其形貌变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO作为一种直接禁带半导体材料,具有压电,光电和掺杂过渡族元素后表现出的磁性。由于其禁带宽度为3.37eV和激子结合能为60eV,作为氮化镓的良好的代替品,有望成为新一代的发光材料。在发光二极管,和激光器上有很大的应用前景,成为这几年的研究热点。在当前很多制备ZnO的方法中水热法作为一种工艺简单,廉价的方法被广泛的用于制备ZnO粉体。但用水热法制备ZnO的实验中影响实验结果的因素多,实验的规律性差。对于水热法实验生成的具有花状结构的ZnO生成机理的研究报告并不是很多。对于ZnO的稀磁性能的研究,用Co掺杂ZnO的系统研究也鲜有报告。本文用水热法制备ZnO,针对以上所讲的三个方面,主要的研究内容和结果如下:
     第一:在不同的反应条件下进行实验,研究不同反应条件对生成的ZnO形貌的影响,分别改变温度,时间,反应的pH值,和在实验中加入不同的添加物。反应得到的结论是:随着时间的增大生成的ZnO颗粒越来越大,结晶度越完整。而在温度逐渐升高的时候,ZnO是由颗粒状的小晶体到棒状的ZnO晶体再到具有三维结构的ZnO纳米花结构的一个变化过程。pH值对于ZnO形貌的影响是随着pH值的增大颗粒尺寸明显减小。花状结构出现在pH为9和9.5时。不同的添加物对形貌也有很大的影响。
     第二:花状结构ZnO的生长过程和生成机理的初步的研究,并对其发光性能做了探讨。生成的过程是以ZnO棒表面的缺损处为节点,形成二维的十字状结构,继而再以十字交叉点为节点,生成三维的ZnO结构。ZnO的PL光谱分析结果表明随着pH的增大,400nm附近的本征发光峰相对强度逐渐变弱,由深能级缺陷引起的600nm附近发光峰相对强度逐渐变大,并且出现大范围的蓝移现象。对退火前后ZnO的PL谱的研究表明,退火能有效的减少ZnO中的缺陷浓度。
     第三:用过度族元素Co掺杂制备ZnO的稀磁半导体。表明在普通的水热法中,Co在ZnO体系中的最大掺杂浓度为5%,同时还研究了不同的水热环境对Co掺杂浓度的影响,研究结果表明随着pH值的增大,Co在ZnO中的掺杂浓度会稍有提高。Co掺杂使得ZnO的各向异性减弱,出现的较短ZnO纳米棒。通过磁滞回线的测试,得到了Co掺杂ZnO在室温下具有铁磁性。
ZnO is a direct band gap semiconductor with piezoelectric and photoelectric properties. Because of its band gap of 3.37 eV and the exaction binding energy of 60 meV, it will be a good substitute for GaN and expected to be a new generation of light-emitting material. In the light-emitting diodes and lasers, ZnO has a great prospect and become a research focus in recent years.
     Hydrothermal method, as a simple and cheap route, is widely used to prepare ZnO powders. And the preparing process of ZnO powders is affected by many factors, thus leading to a bad law. The mechanism of flower-like structure ZnO is seldom reported. And the effect of Co doping on the diluted magnetic properties of ZnO prepared by hydrothermal method is also rarely reported. This research focus on the preparation of ZnO powders with the hydrothermal method and the discuss the formation, and the main contents and results are as follows:
     First:The impact of different reaction conditions, i.e., the temperature, time, reaction pH, and different additives on the morphology of ZnO was investigated. We conclude that the particle size and crystallization increase with the reaction time. However, with temperature gradually increasing, the formation of ZnO crystal changes from a granular shape to a rod shape and then to a three-dimensional nano-structure. The particle size of ZnO decreases obviously with the pH value. The flower-like structure appears in the pH value of 9-9.5. The additives also a effect the morphology of ZnO powders.
     Second:ZnO flower-like structure formation of the growth process was studied preliminarily, and their luminescent properties was also researched. The process generated by the surface defect ZnO rods for the nodes to form a two-dimensional cross-like structure, and then again to cross the intersection for the node, generate three-dimensional structure of ZnO. The density of intrinsic emission peak around 400nm was inhibited, and the deep level defect emission peak around 600 nm was increased and shown a big range of blue shift with a higher pH value. The study on PL spectrum of ZnO powders before and after annealing shown that annealing can reduce the concentration of defects in ZnO effectively.
     Third:Diluted magnetic semiconductor of ZnO was prepared by doping the transition elements Co. The samples were prepared by ordinary hydrothermal method, and the results indicated that the maximed doping concentration is 5% in the ZnO system. The impact of different hydrothermal environments on Co doping concentration was also studied. The result showsed that the doping concentration of Co was increasing with a higher pH value and anisotropy of ZnO was weakened by the doping of Co. Ferromagnetic properties of Co-doped ZnO were obtained at room temperature by the test of hysteresis loop.
引文
[1]R.E.Service.Materrials science-Will UV leaser beat the blues?[J]. Science,1997, 276(5314):895-895.
    [2]U. Ozgur,aYa.I.Alivov.A comprehensive review of ZnO materials and devices[J]. J.Appl.Phys,2005,98(04):1301-2005.
    [3]T, Odom T W, Lieber C M. Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes[J]. Acc Chem Res,1999,32(5): 435-445.
    [4]F, Yuan Z-Y, Du G-H, etal. High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties[J]. Appl Phys A,2007,86(2):181-185.
    [5]Dalchiele E A, Giorgi P,Marotti R E,etal. Elect rodeposition of ZnO thin films on Si (100) [J]. Solar Energy Materials Solar Cells,2001,70:245.
    [6]Wang Qingtao,Wang Guanzhong,Jie Jiansheng,etal.Annealing effect on optical properties of ZnO films fabricated by cathodic elet rodeposition [J].Thin Solid Films,2005,492:61.
    [7]M. H. Huang, S. Ma, H. Feick, H. Q. Yan, etal. Room-Temperature Ultraviolet Nanowire Nanolasers[J].Science,2001,292:1897.
    [8]Xu Peng-shou, Sun Yu-ming, Shi chao-shu, etal. Electronic structure of ZnO and its defects[J]. Sciencein China (A),2001,44 (9):1174-1181.
    [9]Vanheusden K,Seager C H,Warren W L, etal. Mechanisms behind green photolum inescence in ZnO phosphor powders [J]. J Appl Phys,1996,79 (1): 7983-7990.
    [10]Fukumura T, Toyosa ki H, Yamada Y. Magnetic oxide semiconductors [J]. Semicond Sci Technol,2005,20:S103.
    [11]Prellier W, Fouchet A, Mercey B. Oxide diluted magnetic semiconductors:a review of the experimental status[J]. Condens Matter,2003,15:R1583.
    [12]Pearton S J,Norton D P, Ip K,etal. Recent advances in processing of ZnO[J]. Vac Sci Technol B,2004,22:932.
    [13]Wolf S A, Awschalom D D, Buhrman R A,etal. Spintronics:A Sp in based Electronics Vision for the Future[J]. Science,2001,294 (16):1488-1495.
    [14]S-Han, J. W. Song, C-H Yang, etal. Growth of GaN films on porous SiC substrate by molecular-beam epitaxy [J].Appl. Phys. Lett,2002,81:4212.
    [15]]Nguyen Hoa Hong, Virginie Briz and Joe Sakai. Observation of ferromagnetism at room temperature in ZnO thin films[J].Appl.Phys.Lett,2005,86:082505.
    [16]Chang Y Q, Wang D B, Luo X H,etal. Syntesis optical and magnetic properties of diluted magnetic semiconductorZnl-xMnxO nanowires via vapor phase growt h[J]. Appl Phys Lett,2003,83 (19):4020-4022.
    [17]Bin L, Hua C Z. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm[J].J. Am. Chem. Soc.2003,9:125.
    [18]Wenwen Lin, Dagui Chen, Jiye Zhang, etal. Hydrothermal Growth of ZnO Single Crystals with High Carrier Mobility[J]. Crystal Growth & Design.2009,9:10.
    [19]S.Y.Gao,H.D.Li,etal. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction[J]. Applied Surface Science. 2010,256:2781-2785.
    [20]J.T. Chen, J. Wang, R.F. Zhuo,etal. The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process[J]. Applied Surface Science.2009,255:3959-3964.
    [21]Susie Eustis, Lawrence H. Robins,and Babak Nikoobakht. Patterns of Ensemble Variation of the Optical Properties of ZnO Nanowires Grown with Copper and Gold Catalysts[J]. J. Phys. Chem.2009,113:2277-2285.
    [22]Yi Zeng,Tong Zhang, Wuyou Fu, etal. Fabrication and Optical Properties of Large-Scale Nutlike ZnO Microcrystals via a Low-Temperature Hydrothermal Route[J]. J. Phys. Chem.2009,113:8016-8022.
    [23]Chuanwei Cheng, Bo Liu, Huiying Yang, Weiwei Zhou, etal. Hierarchical Assembly of ZnO Nanostructures on SnO2 Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties[J].ASCNANO.2009,3 (10):3069-3076.
    [24]H.S.Hsu,J.C.A.Huang.Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO[J]. Appl. Phys. Lett,2006,88:242507.
    [25]Mingxia Yuan, Wuyou Fu, Haibin Yang, etal. Structural and magnetic properties of Mn-doped ZnO nanorod arrays grown via a simple hydrothermal reaction[J]. Materials Letters.2009,2009,63:1574-1576.
    [26]W. Z. Xu, Z. Z. Ye,etal.ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J]. Appl. Phys. Lett,2006,88:173506.
    [27]Dietl T, Ohno H, Matsukura F, etal. ZenerModel Description of Ferromagnetism in zinc blende Magnetic Semiconductors[J]. Science,2000,287:1019.
    [28]Sato K, Katayama Yoshida H. Stabilization of Ferromagnetic States by Electron Doping in Fe, Coor Ni doped ZnO[J]. Jpn. J. Appl. Phys,2001,40:L3342336.
    [29]Sato K, Katayama Yoshida H. Material Design for Transparent Ferromagnetswith ZnO-based Magnetic Semiconductors [J]. Jpn. J. Appl. Phys,2000,39:L555.
    [30]Yamamoto T, Katayama Yoshida H. Solution Using a Cooping Method to Unipolarity for the Fabrication of p-type ZnO [J]. Jpn. J. Appl. Phys,1999,38: L166.
    [31]Huang H, Wu Y, Feick H, etal. Cont rolled precipitation of dyes into hollow polyelect rolyte capsules based on colloids and biocolloids[J].Adv.Mater, 2001,12:113.
    [32]Choi J H, Tabata H, Kawai T J. Initial preferred growth inzinc oxide thin films on Si and amorphous subst rates by apulsed laser deposition [J]. J Cryst Growth, 2001,226:493.
    [33]Li Y,Meng G W, Zhang L D,etal. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J]. Appl Phys Lett,2000,76:2011.
    [34]Holmes J D, Johnston K P, Doty R C, etal. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires[J]. Science,2000,287:1471-1473.
    [35]Yan H. L. Morphogenesis of one dimensional ZnO nano-and micro-crystals[J]. Adv.Mater,2003,15(5):402-405.
    [36]Gao H Y, Wang Y F, Li J M, etal. Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method[J].J.Phys D:Appl Phys,2007,40(2):3654-3659.
    [37]Huang M H, Wu Y Y, Feick H N, etal. Catalytic Growth of ZnO Nanowire by Vapor Transport[J]. Adv. Mater.,2001,13 (2):113-116.
    [38]Maria Elena Fragala,Cristina Satrianob and Graziella Malandrinoa.A novel approach to grow ZnO nanowires and nanoholes by combinedcolloidal lithography and MOCVD deposition[J] Chem. Commun.,2009,839-841.
    [39]Liu D H, Liao L, Li J C. Preparation and photoluminescence of ZnO nanostructures by thermal evaporation growth without catalysts[J]. Materials Science and Engineering,2005,B 121:77-80.
    [40]Lionel Vayssieres. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions[J]. Adv.Mater.,2003,15 (5):464-466.
    [41]Ke Yu, Yongsheng Zhang, Laiqiang Luo. Synthesis of ZnO nanostructures on CuO catalyzed porous silicon substrate[J]. Materials Letters,2005,59:3525-3529.
    [42]Wang Z L. Nanostructures of zinc oxide[J].Mater. Today,2004,7 (6):26-33.
    [43]J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren. ZnO Nanobridges and Nanonails[J].Nano Letters,2003,3 (2),235-238.
    [44]Bin Liu, and Hua Chun Zeng. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm[J]. Am. Chem. Soc.,2003,125 (15),4430-4431.
    [45]Clemens Burda, Xiaobo Chen,Radha Narayanan, and Mostafa A, E1-Sayed.Chemistry and Properties of Nanocrystals of Different Shapes[J].Chem. Rev.2005,105:1025-1102.
    [46]Bin Cheng and Edward T. Samulski. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios[J].Chem.Commun.,2004, 986-987.
    [47]Jae-Min Jang, Sung-Dai Kim, Hee-Man Choi, Jin-Yeol Kim,Woo-Gwang Jung. Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process[J]. Materials Chemistry and Physics, 2009,113:389-394.
    [48]Zhou J-P, Li D, Gu Y-s, Chang X-r, Zhao C-s., Li F-s, Qiao L-j, Tian Z-z., Fang G-d, Song Q-s.The structure and soft magnetic properties of Fe-N thin films[J], 2001 IEEE Trans Magn,37 3844-3849.
    [49]仲维卓,刘光照,施尔畏,等.在热液条件下晶体的生长基元与晶体形成机理[J].中国科学,B辑,1994,24(4):394.
    [50]施尔畏,陈之战.水热结晶学[M].北京:科学出版社,2004.
    [51]Lu S C, Zhang Y, Ruh H, etal. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires[J].Chem.Phys.Lett.,2002,363(1-2):134-138.
    [52]B. Karthikeyan, C. S. Suchand Sandeep, T. Pandiyarajan, P.Venkatesan,and Reji Philip. Optical and nonlinear absorption properties of Na doped ZnO nanoparticle dispersions[J]. Applied Physics Letters,2009,95,023118.
    [53]Xu Peng-shou, Sun Yu-ming,Shi Chao-shu,et al. Electronic structure of ZnO and its defects[J], Science in China(A),2001,44(9):1174-1181.
    [54]缪世群,ZnO薄膜的光谱及能级[J].南通工学院学报(自然科学版),2003,Vol.2,NO.3:25-28.
    [55]T.Diet, H.Ohno, F.Matsukura, etal.Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors[J]. Phys. Rev. B,2001,63:195205.
    [56]Jae.Hyun.Kim.Magnetic properties of epitaxially grown semiconducting Zn1-xCoxO thin films by pulsed laser deposition[J]. J.Appl.Phys.2002,92:6066.
    [57]Jung H. Park, Min G. Kim, etal.Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films[J]. Appl. Phys. Lett.2004,84:1338.
    [58]S.J. Pearton, D.P. Norton, K. Lp, Y.W. Heo, T. Steiner, Prog. Recent progress in processing and properties of ZnO[J]. Progress in Materials Science.2005,50:293-340
    [59]R. B. Griffiths, Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet[J]. Phys. Rev. Lett.1996,23.
    [60]赵伟,朱刚强,周剑平,水热法制备ZnO及其光致发光[J].功能材料.2010,41,1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700