水下气泡溃灭动力学过程的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会主义现代化进程的加速发展,我国的国防事业也得到进一步加强,海军的力量更是关乎国家主权实力的体现。作为海上力量,抗爆性是舰船生命力的一项重要指标,二战以来各国竞相在水中兵器方面展开研究,水下爆炸的理论也得到发展。
     水下爆炸是较为复杂的能量转换过程。现有理论认为根据能量及其破坏力可将水下爆炸划分为两个阶段:冲击波部分和气泡脉动部分。早期的学者研究范围仅局限在冲击波部分,认为高频冲击波是造成舰船毁伤的原因,研究方法多以实船实验和数学推导为主。后来人们发现,冲击波的作用仅是造成局部板架、舱段的破坏,因为冲击波的能量虽高,其频率的量级与板架相同,破坏是局部性的。随着实船实验和计算机数值模拟技术的发展,人们发现低频的脉动气泡与舰船固有频率相近,是造成舰船总体破坏折断的真正原因,脉动气泡成为学术研究热点。
     本文用数值模拟的方式对水下爆炸的气泡脉动的溃灭过程进行了研究,利用LS-DYNA对大量工况进行了数值计算,将结果进行了横向和纵向比较。包括有、无壳情况下相同、不同药包半径的气泡运动规律,网格对压力的影响,壳厚对压力的影响,气泡压力与形状的关系,运动过程中的旋度问题,重力的影响,不同观察点计算结果的差异等。
With the acceleration of socialist modernization of China's development, China's defense industry has also been further strengthened. The power of the navy is an authoritativeness symble of national sovereignty. As naval forces, antiknock ability is an important indicator of the vitality of ships. Underwater weapons have been studied competly by most contries since World War II, therefore the theory for underwater explosion theory has been developed.
     Underwater explosion is a more complex and conversion process with the energy. Existing theory suggests that according to the energy and the destructive power, an underwater explosion can be divided into two stages: shock wave and the pulse of the bubble. Scope of the study of early scholars in the shock wave is only limited to some that the high-frequency shock wave which they thought causes the ships' damage, research methods make more use of real ship experiments and mathematical analysis. Later it was found that the role of shock wave only caused partial damage, such like plate frame, compartment. That because even though the shock wave energy is high, but its frequency is at the same magnitude with the plates, that's why the destruction is partial. With the real ship experimental and numerical simulation developed, it was discovered that low-frequency pulse of the bubble is similar to the natural frequency of the ship which cause the overall damage of ship, therefore pulsating bubbles become the research hotspot.
     In this paper, underwater explosion bubble pulsation-Bubble Collapse process is studied with numerical simulation methods, using LS-DYNA on a large number of working conditions has been calculated; the results were horizontal and vertical comparison. Including, law of motion with and without shell cases, different radius of bubbles, same as the impact on the pressure results of the grid, the impact of shell thickness on the pressure results, the relationship between bubble pressure and the shape, rotation problems in the process of movement, the effect of gravity, the different calculation results with different observation points.
引文
[1]Cole P.水下爆炸[M].北京:国防工业出版社,1960.
    [2]Zamyshlyaev,B.V.,Yakovlev,Yu.S..Dynamic loads in Underwater Explosion[M].Washington,D.C:NTIS,1973.
    [3]刘建湖.舰船非接触水下爆炸动力学的理论和应用[D].无锡:中国船舶科学研究中心博士学位论文,2002.
    [4]江森.舰船结构水下非接触爆炸下动力响应研究[D].武汉:武汉理工大学,2007
    [5]Geers T L.Residual potential and approximate methods for three dimensional fluid-structure interaction problem[J].Acoust.Soc.Am.,1971,49:1505-1511.
    [6]Geers T L.Doubly asymptotic approximations for transient acoustic wave[J].Acoust.Soc.Am.,1978,64(5):1505-1508.
    [7]方斌,朱锡,张振华.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工程大学学报,2005,26(4):419-424.
    [8]李玉节,张效慈,吴有生,陈起富.水下爆炸气泡激起的船体鞭状运动[J].中国造船,2001,42(3):1-8.
    [9]Z.Zong.A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J].Fluids and Structures,2005(20):359-372.
    [10]董海,刘建湖,吴有生.水下爆炸气泡脉动作用下细长加筋圆柱壳的鞭状响应分析[J].船舶力学,2007,11(2).
    [11]汪俊,刘建湖,李玉节.加筋圆柱壳水下爆炸动响应数值模拟.船舶力学,2006,10(2).
    [12]张阿漫.水下爆炸载荷作用下的船体总强度计算方法研究[D].哈尔滨:哈尔滨工程大学,2005.
    [13]姚熊亮,张阿漫,许维军.基于ABAQUS软件的舰船水下爆炸研究[J].哈尔滨工程大学学报,2006,27(1).
    [14]姚熊亮,张阿漫,于秀波,李克杰.水下爆炸气泡与波浪载荷联合作用下的船体响应[j].哈尔滨工程大学学报,2007,1(28).
    [15]张阿漫,姚熊亮.近边界三维水下爆炸气泡动态特性研究[J].爆炸与冲击,2008,28(2).
    [16]LI Yu-jie,HANG Xicurci,WANG Jun,Yun-chuan.Underwater Explosion of TNT Dynamite with a Metal Shell and Annular Gap[J].Journal of Ship Mechanic,9(3).
    [17]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.
    [18]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strain,high strain rates and high temperatures.Proc.7th Int.Symp.Ballistics.the Netherlands:the Hague,1983.
    [19]范亚夫,段祝平.Johnson-Cook材料模型参数的实验测定[J].力学与实践,2003(05).
    [20]姚熊亮,于秀波,张阿漫,陈娟.基于SPH方法的水下爆炸初始爆轰过程研究[J].国舰船研究,2008,3(2).
    [21]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003.6.
    [22]Johnson GR,Cook WH.Fracture characteristics of three metals subjected to various strains,strains rates,temperatures and pressures.Engineering Fracture Mechanics,1985,21(1):31-48.
    [23]LSTC."LS-DYNA Keyword User's Manual,Volume 1".Livermore Software Technology Corporation(LSTC).http://lstc,com/pdf/1s-dyna_971_manual_k,pdf.Retrieved 2009-03-25.
    [24]张晓波.船底结构砰击时的流固耦合数值模拟[D].大连:大连理工大学,2007.
    [25]Jae-Hyun Kim,Hyung-Cheol Shin.Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank.Ocean Engineering,2008,(35):812-822.
    [26]经福谦.实验物态方程导引[M].第二版.北京:科学出版社,1999.
    [27]Royce E B.A three-phase eqution 0f condition for metals[R].UCRL-51121(1971).
    [28]卢校军,王蓉,黄毅民.两种含铝炸药作功能力与JWL状态方程研究[J].含能材料,2005.6,13(3):144-148.
    [29]孙承纬,卫玉章,周之李.应用爆轰物理[M].化京:国防工业出版社,2000.
    [30]薛再清,徐更光,王廷增.通用JWL状态方程及其应用[C].北京:第五次全国爆轰与冲击动力学学术会议,1997.
    [31]Lee E L,eL al.AdiahaLic Expansion of High Explosive Detonation Products.UCRL-50422.1968
    [32]于川,李良忠,黄毅民.含铝炸药爆轰产物JWL状态方程研究[J].爆炸与冲击,1999.19(3):274-279.
    [33]江厚满,张若棋,张寿齐.用遗传算法确定材料物态方程参数.高压物理学报,1998.18(1).
    [34]Mousavi Anijdan S H,Madaah—Hosseini H R,Bahrami A.Flow stress optimization for 304 stainless steel under cold and warm compression by artificial neural network and genetic algorithm[J].Materials&Design,2007,28(2):609-615.
    [35]Bodner S R,Patton Y.Constitutive equations for elasticviseo-plastic strainharding materials[J].ASME J Appl Mech,1975o 4-2:385-389.
    [36]鲁世红,何宁.TC4钦合金动态本构模型与高速切削有限元模拟[J].兵器材料科学与工程,2009,32(1):5-10.
    [37]范亚夫,段祝平.Johnson-Cook材料模型参数的实验测定[J].力学与实践,2003,25:40-43.
    [38]林木森,庞宝君,张伟,迟润强.5A06铝合金的动态本构关系实验[J].爆炸与冲击,2009,29(3):306-311.
    [39]胡昌明,贺全亮,胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击,2003,23(2):188-192.
    [40] Donald Lesuer。 Experimental Investigation of Material Models for Ti-6A1-4V and 2024-T3。 FAA Report DOT/FAA/AR-00/25, 2000.
    [41] Hallquist J O. LS-dyna keyword user' s manual v970[z]. Livermore Software Technology Corporation, California, 2003.
    [42] Boyce P & Debono S. Report of underwater explosion tests. Centre technique des systeme navals. France, 2003.
    [43] Holmquist T, Johnson G, Cook W. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [A]. In: Proc.14th Int. Symp. Ballistics[C]. Quebec: [s. n. ], 1995, 591~600.
    [44] Hicks A N. Explosion induced hull whipping[J]. Advances in Marine Structures,1986, 390-410.
    [45] Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading. AD-A178096,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700