基于核酸适体识别和生物酶信号放大检测可卡因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸适体(DNA aptamer)由于具有高亲和性及高特异性、分子量小、无免疫原性、配体广泛等优点,被越来越多的应用于目标分子(小分子或蛋白质)的识别和检测。而信号放大技术对不能进行直接扩增的低浓度待测分子的检测尤为重要,其中基于生物酶信号放大的荧光定量PCR技术和滚环复制(RCA)技术常用的体外扩增方法。在本论文的研究中,将核酸适体识别与生物酶信号放大的荧光分析法相结合,提出了一类新颖的、灵敏的可卡因的检测方法。其主要内容如下:
     1基于核酸适体和荧光定量PCR技术检测可卡因新方法的研究
     本章中,基于核酸适体识别与荧光定量PCR生物酶信号放大技术实现了可卡因的实时定量检测。为了实现低背景和高信噪比,本章利用磁珠分离技术实现了PCR模板链的彻底分离及富集,在很大程度上提高了检测方法的灵敏性。而荧光定量PCR技术对模板链进行了2n倍的扩增,更进一步地提高了检测方法的灵敏性。结合以上两种技术,该检测方法可检测到9 fmol级的可卡因,并显示出良好的特异性。在最佳检测条件下,可卡因浓度在10-10 mol/L ~ 10-6 mol/L之间时,PCR循环闭值Ct值与可卡因的浓度之间存在线性关系,检测限为3×10-11 mol/L。
     2基于核酸适体和滚环复制技术检测可卡因新方法的研究
     本章中,基于核酸适体识别及滚环复制生物酶信号放大技术,构建出一种高灵敏检测可卡因的荧光分析方法。当有目标物质可卡因存在时,可卡因与核酸适体A链上的序列特异性结合,将核酸适体互补链B链从A链上替换下来,再以替换下来的B链为引物环化探针C链,从而通过滚环复制技术实现可卡因的定量检测,检测限为20 pmol。DNA链也可以固定在芯片表面进行滚环复制扩增,但是芯片上的滚环复制产物很难实现定量检测,因此在均相中利用此技术进行信号放大对实现分析物的高灵敏定量检测变得尤为重要。另外,本实验方法还利用纳米金颗粒比表面积大,能够结合成百上千条DNA链的性质,提高检测方法的灵敏度。总之,本实验方法具有很高的灵敏度和良好的特异性,为复杂生物环境下物质的检测提供新的思路和模式。
Aptamer has caught more and more attention in the target molecule (small molecule or protein) identification and testing because of the high affinity and specificity, low molecular weight, non-immunogenicity characteristics. And the signal amplification technology is particularly important to detect the molecules that can not be tested by direct amplification in a low concentration. In vitro,the nucleic acid amplification is one of the most important means of biotechnology research. The biologic enzyme-based signal amplification technologies such as fluorescence quantitative PCR (FQ-PCR) and rolling circle amplification (RCA) are the most commonly used signal amplification technology. In this study, the novel and sensitive detection method had been designed combining aptamer recognition with the biologic enzyme-based signal amplification. The major contents of the thesis were as follows:
     1 An aptamer-based and FQ-PCR amplification method for the detection of cocaine
     In this chapter, a novel method based on aptamer identification and fluorescence quantitative PCR signal amplification technology for detection of cocaine was presented. In order to achieve low background and high signal/noise ratio, we used magnetic bead separation technology to achieve a complete separation and enrichment of PCR template chain. The sensitivity had been greatly improved. The template chain was amplified by 2n times by the fluorescence quantitative PCR technology, further improving the detection sensitivity. As a result of these two combined effects, 9 fmol level of cocaine could be detected using this method, and showed good specificity. In the optimum conditions, Ct exhibited a linear dependence on cocaine concentration in a wide range from 10-10 to 10-6 mol/L with a detection limit of 3×10-11 mol/L.
     2 An aptamer-based and RCA amplification method for the detection of cocaine
     In the present study, the method for highly sensitive detection of cocaine was developed based on aptamer identification and RCA signal amplification. When cocaine was in present, aptamer was specially combined with cocaine so that the supplementary B chain was replaced from aptamer. The B chain was directly used to cyclize probe C, and realized the quantitative detection of cocaine through the RCA technology. In this study, the detection limit of 20 pmol was achieved. When the DNA chain could also be adapted to surfaces of the chips, the quantitative RCA was proved difficult, further emphasizing the importance of real-time amplification methods for sensitive quantization in homogeneous phase solution. In addition, a single Au nanoparticle could be loaded with hundreds of DNA, which had greatly improved the sensitivity. In conclusion, this method exhibited excellent sensitivity, selectivity, good specificity, and provided a new idea and pattern for the molecular detection under complex biological environment.
引文
[1] Fields S., Proteomics in genomeland, Science, 2001, 291(5507): 1221-1224.
    [2] Murphy M.B., Fuller S.T., Richardson P.M., et al. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification, Nucleic. Acids. Res., 2003, 31(18): 110-108.
    [3] Service R.F., Searching for recipes for protein chips, Science, 2001, 294(5549): 2080-2082.
    [4] Blobel G., Wozniak R.W., Structural biology: proteomics for the pore, Nature, 2000, 403(6772): 835-836.
    [5] Abbott A., A post-genomic challenge: learning to read patterns of protein synthesis, Nature, 1999, 402(6763): 715-720.
    [6] Bullock T.L., Sherlin L.D., Perona J.J., Tertiary core rearrangements in a tight binding transfer RNA aptamer, Nat. Struct. Biol., 2000, 7(6): 497-504.
    [7] Ellington A.D., Szostak J.W., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, 346(467): 818-822.
    [8] Brody E.N., Gold L., Aptamers as therapeutic and diagnostic agents, Nat. Biotechnol., 2000, 74(1): 5-13.
    [9] Herman T., Patel D.J., Adaptive recognition by nucleic acid aptamers, Science, 2000, 287(5454): 820-825.
    [10] Tombelli S., Minunni M., Mascini M., Analytical applications of aptamers, Biosens. Bioelectron., 2005, 20(12): 2424-2434.
    [11] Merino E.J., Weeks K.M., Fluorogenic resolution of ligand binding by a nucleic acid aptamer, J. Am. Chem. Soc., 2003, 125(41): 12370-12371.
    [12] Stojanovic M.N., Landry D.W., Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc., 2002, 124(3): 9678-9679.
    [13] Radi A.E., Acero Sanchez J.L., Baldrich E., et al. Reusable impedimetric aptasensor, Anal. Chem., 2005, 77(19): 6320-6323.
    [14] Xu D., Xu D., Yu X., et al. Label-free electrochemical detection for aptamer-based array electrodes, Anal. Chem., 2005, 77(16): 5107-5113.
    [15] Liss M., Petersen B., Wolf H., et al. An aptamer-based quartz crystal protein biosensor, Anal. Chem., 2002, 74(17): 4488-4495.
    [16] Montgomery R.A., Dallman M.J., Semi-quantitative polymerase chain reation analysis of cytokine and cytokine receptor gene expreeion during thymic ontogeny, Cytokine, 1997, 97: 173-176.
    [17] Willard M.F., Kent E.V., Quantitative RT-PCR: pitfal and potential, Biotechniques, 1999, 26(1): 112-125.
    [18] Wall S.J., Edward D.R., Quantitative reverse transcription polymerase chain reaction (RT-PCR), Anal. Biochem., 2002, 300(2): 269-273.
    [19] Zhang D.Y., Liu B., Detection of target nucleic acids and proteins by amplification of circularizable probes, Expert. Rev. Mol. Diagn., 2003, 3: 237-248.
    [20] Eun J.C., Litao Y., Matthew L., et al. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte ATP, J. Am. Chem. Soc., 2005, 127: 2022-2023.
    [21] Ellington A.D., Szostak J.W., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, 346: 818-822.
    [22] Rhie A., Kirby L., Sager N., et al. Characterization of 2’- Fluoro- RNA aptamers that bind preferentially to disease-associated conformations of prionprotein and inhibit conversion, J. Biol. Chem., 2003, 278: 39697-39705.
    [23] Tuerk C., Gold L., Systematic evolution of ligands by exponential enrichment, Science, 1990, 249: 505-510.
    [24] Ellington A.E., Szostak J.W., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, 346: 818-822.
    [25] Tuerk C., Gold L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 1990, 249(4968): 505-510.
    [26] Sampson T., Aptamers and SELEX: the technique, World Patent Information, 2003, 25(2): 123-129.
    [27]刘晓静,刘韧,顾长国,核酸适体的研究进展生理科学进展, 2004, 35(4): 374-378.
    [28] Storhoff J.J., Elghanian R., Mucie R.C., et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes, J. Am. Chem. Soc., 1998, 120: 1959-1964.
    [29] Chad A., Letsinger R.L., A DNA-based method for rationally assembling nanoparticles intomacroscopic materials, Nature, 1996, 382: 607-609.
    [30] Taton T.A., Mueie R.C., Mirkin C.A., et al. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures, J. Am. Chem. Soc., 2000, 122: 6305-6306.
    [31] Hofmann H.P., Limmer S., Hornung V., et al. Ni2+ binding RNA mofifs with an asymmetric purine-rich internal loop and a G-A base pair, RNA., 1997, 3(11): 1289-1300.
    [32] Kawakami J., Imanaka H., Sugimoto N., et al. In vitro selection of atpamers that act with Zn2+, J. Inorg. Biochem., 2000, 82(2): 197-206.
    [33] Roth A., Breaker R.R., An amino acid as a cofactor for a catalytic polynuclotide, P. Natl. Acad. Sci. USA., 1998, 95(11): 6027-6031.
    [34] Geiger A., Burgstaller P., Vonder E., et al. RNA aptamers that bind L-arginine with submicromolar dissociation constants and high enantioselectivity, Nucleic. Acids. Res., 1996, 24(6): 1029-1036.
    [35] Jeremy R.B., Stephen R.A., Roger Y.T., et al. Aptamers switch on fluorescence of triphenylmethane dyes, J. Am. Chem. Soc., 2003, 125(48): 14716-14717.
    [36] Williams K., Ausiello A.D., Bartel P.D., et al. Bioactive and nuclease-resistant L-DNA ligand of vasopressin, P. Natl. Acad. Sci. USA., 1997, 94(21): 11285-11290.
    [37] Ellington A.D., Xu W., Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope, P. Natl. Acad. Sci. USA., 1996, 93(15): 7475-7480.
    [38] Jellinek D., Green L.S., Bell C., et al. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor, Biochemistry, 1994, 33(34): 10450-10456.
    [39] Gopinath S.C., Sakamaki Y., Kaxasaki K., et al. An efficient RNA aptamer against human influenza B virus hemagglutinin, Biochemistry, 2006, 139(5): 837-846.
    [40] Schneider D.J., Feigon J., Hostomsky Z., et al. High-affinity ssDNA inhibitors of the reverse transcriptase of type human immunodeficiency virus, Biochemistry, 1995, 34(29): 9599-9610.
    [41] Tereshko V., Skripkin E., Patel D.J., et al. Encapsulating streptomycin within a small 40mer RNA, Chem. Biol., 2003, 10(2): 175-187.
    [42] Schurer H., Stembera K., Knoll D., et al. Aptamers that bind to the antibiotic moenomycin, Bioorga. Med. Chem., 2001, 92(10): 2557-2563.
    [43] Shangguan D., Tang Z.W., Tan W.H., et al. Aptamers evolved from live cells as effective molecular probes for cancer study, P. Natl. Acad. Sci. USA., 2006, 103(32): 11838-11843.
    [44] Wang C., Zhang M., Yang G., et al. Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment, Nat. Biotechnol., 2003, 102(1): 15-22.
    [45] Cerchia L., Frédéric D., Pestourie C., et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase, Plos. Biol., 2005, 3(4): 123.
    [46] Chelyapov N., Allosteric aptamers controlling a signal amplification cascade allow visual detection of molecules at picomolar concentrations, Biochemistry, 2006, 45(7): 2461-2466.
    [47] Ellington A.D., Szostak J.W., Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures, Nature, 1992, 355(6363): 850-852.
    [48] Hermann T., Patel D.J., Adaptive recognition by nucleic acid aptamers, Science, 2000, 287(5454): 820-825.
    [49] Jenison R.D., Gill S.C., Pardi A., et al. High-resolution molecular discrimination by RNA, Science, 1994, 263(5152): 1425-1429.
    [50] Michaud M., Jourdan E., Immobilized DNA aptamers as target specific chiral stationary phases for resolution of nucleoside and amino acid derivative enan-tiomers, Anal. Chem., 2004, 76(4): 1015-1020.
    [51] Yang Y.S., Kochoyan M., Burgstaller P., et al. Structural basis of ligand discrimi-nation by two related RNA aptamers resolved by NMR spectroscopy, Science, 1996, 272(5266): 1343-1347.
    [52] Shoji A., Kuwahara M., Sawai H., et al. Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivety, Anal. Chem., 2007, 129(5): 1456-1464.
    [53] Stojanovic M.N., Landry D.W., Modular aptameric sensors, J. Am. Chem. Soc., 2002, 124(33): 9678-9679.
    [54] Yan L., Lan H.Q., Yage P., et al. Electrogenerated chemiluminescence aptamer based biosensor for the determination of cocaine, Electrochem. Commun., 2007, 9: 2571-2575.
    [55] Radi A.E., Acero Sanchez J.L., Baldrich E., et al. Reusable impedimetric aptasensor, Anal. Chem., 2005, 77(19): 6320-6323.
    [56] Le F.F., Ho H.A., Leclerc M., Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer, Anal. Chem., 2006, 78(13): 4727-4731.
    [57] Clark S.L., Remcho V.T., Aptamers as analytical reagents, Electrophoresis, 2002, 23(9): 1335-1340.
    [58] Zuo X., Song S., Zhang J., et al. Target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J. Am. Chem. Soc., 2007, 129(5): 1042-1043.
    [59] Lu Y., Li X., Zhang L., et al. Aptamer based electrochemical sensors with aptamer complementary DNA oligonucleotides as probe, Anal. Chem., 2008, 80(6): 1883-1890.
    [60] Li B., Wei H., Dong S., et al. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch, Chem. Commun., 2007, 73(1): 73-75.
    [61] Bock L.C., Griffin L.C., Latham J.A., et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, 1992, 355(6360): 564–566.
    [62] Tsiang M., Jain A.K., Dunn K.E., et al. Functional mapping of the surface residues of human thrombin, J. Biol. Chem., 1995, 270(28): 16854–16863.
    [63] Jing L.H., Zai S.W., Hui Z., et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine, Anal. Chem., 2010, 82(4): 1358-1364.
    [64] Fredriksson S., Gullberg M., Landegren U., et al. Protein detection using proximity-dependent DNA ligation assays, Nat. Biotechnol., 2002, 20(5): 473-477.
    [65] Shlyahovsky B., Di L., Weizmann Y., et al. Spotlighting of cocaine by an autonomous aptamer-based machine, J. Am. Chem. Soc., 2007, 129(33): 3814-3815.
    [66] Yang L., Fung C.W., Cho E.J., et al. Real-time rolling circle amplification for protein detection, Anal. Chem., 2007, 79(9): 3320-3329.
    [67] Yang L., Andrew D.E., Real-time PCR detection of protein analytes with conformation switching aptamers, Anal. Biochem., 2008, 380: 164-173.
    [68] Montgomery R.A., Dallman M.J., Semi-quantitative polymerase chain reation analysis of cyto kine and cytokine receptor gene expreeion during thymic ontogeny, Cytokine, 1997, 97: 173-176.
    [69] Wall S.J., Edward D.R., Quantitative reverse transcription polymerase chain reaction (RT-PCR), Anal. Biochem., 2002, 300(2): 269-273.
    [70] Woo T.H., Patel B.K., Identification of Ieptospira brflexa by realtime homegeneous detection of rapid cycle PCR product, J. Virol. Methods, 2002, 106: 241-244.
    [71] Tyery R., Rennie M., Quantification of Mareks disease virus in chicken Iymphocytes using the polymerase chain reaction with fluorescence detection, J. Virol. Methods, 1997, 65(1): 75-81.
    [72] Higuehi R., Dollinger G., Walsll P.S., et al. Simultaneous amplification and detection of specific DNA sequences, Nat. Biotechnol., 1992, 10: 413-417.
    [73]何闪英,吴小刚,赤潮研究中圆海链藻实时荧光定量PCR检测方法的建立, 2007, 31(2): 193-98.
    [74]孙唏,酶切保护PCR分析检测环境中二恶英类化合物的方法学研究,华中科技大学,同济医学院, 2004.
    [75] Szemes M., Bonants P., Weerdt M., et al. Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal microarrays, Nucleic. Acids. Res., 2005, 33(8): 701.
    [76] Zhang D.Y., Zhang W., Li X., et al. Detection of rare DNA targets by isothermal ramification amplification, Gene, 2001, 274(1-2): 209-216.
    [77] Wang B., Potter S.J., Lin Y., et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification, J. Clin. Microbiol., 2005, 43(5): 2339-2344.
    [78] Tyagi S., Kramer F.R., et al. Molecular beacons technology and its applications, Nat. Biotechnol., 2000, 18: 1191-1196.
    [79] Yao G., Tan W., .Molecular-beacon-based array for sensitive DNA analysis, Anal. Biochem., 2004, 331: 216-223.
    [80] Tang Z., Wang K., Tan W., et al. Real-time investigation of nucleic acids phosporylation process using molecular beacons, Nucleic. Acids. Res., 2005, 33(11): e97.
    [81] Petersena K., Vogelb U., Rockenbauerc E., et al. Short PNA molecular beacons for real-time PCR allelic discrimination of single nucleotide polymorphisms, Mol. Cell. Probe, 2004, 18: 117-122.
    [82] Kong D.M., Gu L., Shen H.X., A modified molecular beacon combining the properties of TaqMan Probe, Chem. Commun., 2002, 854-855.
    [83] Perlette J., Tan W., Real-time monitoring of intracellular mRNA hybridization inside single living cells, Anal. Chem., 2001, 73: 5544-5550.
    [84] Faruqi A.F., Hosono S., Driscoll M.D., et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification, BMC. Genomics, 2004, 2(1): 4.
    [85] Sirada K., Bin W., Kin M.T., Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the cryptococcus species complex, Electrophoresis, 2008, 29: 3183–3191.
    [86] Park Y.N., Abe K., Li H., et al. Detection of hepatitis C virus RNA using ligation-dependent polymerase chain reaction in formalin-fixed, paraffin-embedded liver tissues, Am. J. Pathol., 1996, 149(5): 1485-1491.
    [87] Christian A.T., Pattee M.S., Attix C.M., et al. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells, Proc. Natl. Acad. Sci. USA., 2001, 98(25): 14238-14243.
    [88] Jonas J., Jonas M., Jenny G., et al. Digital quantification using amplified single-moleculedetection, Nat. Methods, 2006, 3: 725-727.
    [89] Schweitzer B., Roberts S., Grimwade B., et al. Multiplexed protein profiling on microarrays by rolling-circle amplification, Nat. Biotechnol., 2002, 20(4): 359-365.
    [90] Miller J.C., Zhou H., Kwekel J., et al. Antibody microarray profiling of human prostate cancer sera antibody screening and identification of potential biomarkers, Proteomics, 2003, 3(1): 56-63.
    [91] Li T.Y., Christine W.F., Eun J.C., Real-Time rolling circle amplification for protein detection, Anal. Chem., 2007, 79: 3320-3329.
    [92] Stefan B., Patrick N., Friedrich C.S., Periodic DNA nanotemplates synthesized by rolling circle amplification, Nano. Lett., 2005, 5(4): 719-722.
    [93] Zhao W., Gao Y., Kandadai S.A., et al. DNA polymerization on gold nanoparticle through rolling circle amplification: towards novel scaffolds for three dimensional periodic nanoassemblies, Angew. Chem., 2006, 45: 2409-2413.
    [94] Cheglakov Z., Weizmann Y., Braunschweig A.B., et al. Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers, Angew. Chem., 2008, 120: 132-136.
    [95]李金主,可卡因类物质及其检测,中国药物依赖性杂志, 2002, 11(2): 90-92.
    [96] Clarke D.R., Hajar T.M., Detection and confirmation of cocaine use by chromatographic analysis for met hylecgonine in human urine, Clin. Chem., 1987, 33: 118-119.
    [97] Bailey D.N., Plasma cocaethylene concent ration in patient streated in the emergency room or trauma unit, Am. J. Clin. Pathol., 1993, 99: 120-127.
    [98] Virag L., Mets B., Jamdar S., Determination of cocaine, norcocaine, benzo ylecgonine and ecgonine methylester in ratplasma by high-performance liquid chromatography with ultraviolet detection, J. Chromatorgr., 1996, 681: 263-269.
    [99] Jamdar S.C., Pantuck C.B., Diaz J., et al. A rapid sensitive assay for cocaine and its metabolites in biological fluids using solid-phase extraction and high performance liquid chromatography, J. Anal. Toxicol., 2000, 24: 438-441.
    [100] Thompson L.K., Yousesnejad D., Kumor K., et al. Confirmation of cocaine in human saliva after intravenous use. J. Anal. Toxicol., 1987, 11: 36-38.
    [101] Bailey D.N., Thin-layer chromatographic detection of cocaethylene in human urine, Am. J. Clin. Pathol., 1994, 101: 342-345.
    [102] Trachta G., Schwarze B., Saegmuller B., et al. Combination of high performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine, Mol. Struct., 2004, 693(1-3): 175-185.
    [103] Montgomery R.A., Dallman M.J., Semi-quantitative polymerase chain reation analysis of cytokine and cytokine receptor gene expreeion during thymic onto geny, Cytokine, 1997, 97: 173-176.
    [104] Zhu N.N., Zhang A.P., Fang Y.Z., et al. Lead sulfide nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization, Electroanalysis, 2004, 16: 577-582.
    [105] Hansen J.A., Mukhopadhyay R., Hansen J.O., et al. Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles, J. Am. Chem. Soc., 2006, 128: 3860-3861.
    [106] Jie G., Liu B., Chen H.Y., CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification, Anal. Chem., 2007, 79: 5574-5581.
    [107] Nam J.M., Thaxton C.S., Mirkin C.A., Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science, 2003, 301: 1884-1886.
    [108] Nam J.M., Savka I.S., Mirkin C.A., Bio-bar-code-based DNA detection with PCR-like sensitivity, J. Am. Chem. Soc., 2004, 126: 5932-5933.
    [109] Grabar, K.C., Smith, P.C., Musick, M.D., et al. Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture, J. Am. Chem. Soc., 1996, 118: 1148-1153.
    [110] Stojanovic M.N., Landry D.W., Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc., 2002, 124: 9678–9679.
    [111] Shlyahovsky B., Li D., Weizmann Y., et al. Spotlighting of cocaine by an autonomous aptamer-based machine, J. Am. Chem. Soc., 2007, 129: 3814–3815.
    [112] Stojanovic M.N., Prada P., Landry D.W., Aptamer-based folding fluorescent sensor for cocaine, J. Am. Chem. Soc., 2001, 123: 4928–4931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700