重组人干扰素-α2b与内皮抑素肽融合蛋白抗肿瘤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人干扰素(Interferon)α2b是重要的肿瘤免疫治疗药物,在许多医院中作为一线的肿瘤治疗药物被广泛使用。己获美国FDA批准用于多种病毒性疾病和恶性肿瘤的治疗。然而,IFNα2b在临床治疗中需要大剂量长期给药,因此常常引发如急性和慢性毒性、神经系统损害和血液系统损害等明显的毒副作用,严重制约了其在临床上的广泛应用。
     人血管内皮抑素(Endostatin)是血管生成的抑制剂,在抑制肿瘤血管生成类药物中表现优秀,2009年被SFDA批准用于治疗肿瘤。经过大量的研究证实,人血管内皮抑素N末端的27个氨基酸是其核心功能区域。在内皮抑素N末端的27个氨基酸基础上进行氨基酸的替换和增补,引入串联的RGD(Arg-Gly-Asp)序列,形成内皮抑素多肽(29amino acid, EP29),在保持内皮抑素抑制肿瘤血管生成活性的同时,RGD序列赋予内皮抑素27肽靶向肿瘤血管内皮细胞、抑制肿瘤细胞生长与转移和增强其抗肿瘤活性的效果。实验室研究证实,EP29体外抗肿瘤活性明显高于天然内皮抑素,体内抗肿瘤活性也略高于天然内皮抑素,病理切片研究显示肿瘤组织大面积坏死,肿瘤萎缩。因此,有望成为新一代抗肿瘤小分子药物。
     在本研究中,我们采用基因工程技术,将EP29融合在IFNα2b的C末端形成IFNα2b-内皮抑素29个氨基酸多肽(IEP29)融合蛋白,在大肠杆菌中进行表达。期望该融合蛋白通过EP29的RGD序列与肿瘤新生血管内皮细胞的整合素αvβ3/αvβ5特异结合,使IEP29在肿瘤组织的新生血管处富集,既能针对性地发挥EP29抑制肿瘤血管生成和抗肿瘤作用,又可以抑制整合素介导的新生血管形成,从而降低IFNα2b临床用药量,提高量效比。通过一系列的体内和体外实验分析证实,IEP29蛋白具有较高的生物活性,能够抑制肿瘤生长和肿瘤血管生成,同时具有良好的肿瘤靶向性。因此,符合最初的设计,具有较高的临床应用开发价值,有望成为新一代抗肿瘤药物。研究具体内容如下:
     1. IEP29融合蛋白上游研究
     本实验采用DNA重组技术,成功构建含IEP29融合基因的原核表达载体pET3a-IEP29,将表达载体转染BL21工程菌,经IPTG诱导后以包涵体形式表达重组蛋白,表达量占菌体总蛋白的10%左右,重组蛋白条带能够和抗IFNα2b单克隆抗体特异性结合。重组工程菌使用5L的NBS发酵罐培养,收集菌体经裂解、包涵体洗涤、溶解变性和透析复性,最后经亲和层析和离子交换柱纯化获得纯度大于95%的重组蛋白,内毒素检测完全符合药典标准。
     为适应临床前试验研究的需要,我们优化了发酵和纯化工艺,并将发酵和纯化工艺放大至中试规模。采用NBS5L发酵罐连续培养三批工程菌,每批次收获湿菌体约150g,IEP29蛋白表达量约占总蛋白量的10%。纯化三批次IEP29蛋白,纯度均达到95%以上,蛋白产量为每批30~50mg,生产规模基本达到中试要求。按照基因工程药物质量标准的要求对IEP29融合蛋白的理化性质、纯度、生物活性、内毒素含量和杂质残留等进行检测和控制。
     2. IEP29融合蛋白活性研究
     为了验证融合蛋白是否同时具有IFNα2b和EP29的生物活性,我们通过肿瘤细胞侵袭和肿瘤细胞生长抑制实验来验证融合蛋白体外活性。通过内皮细胞粘附实验来验证融合蛋白在体外与肿瘤特异的内皮细胞亲和能力。结果说明,在体外IEP29融合蛋白有效抑制肿瘤细胞繁殖和迁移,其能力明显高于IFNα2b和EP29,同时特异粘附于内皮细胞。
     3. IEP29融合蛋白抗肿瘤研究
     通过小鼠体内抑瘤实验、药物体内分布研究、肿瘤病理组织切片研究、鸡胚尿囊膜试验等,一方面研究和探讨IEP29融合蛋白在小鼠体内的抑瘤效果和间接证明药物的肿瘤靶向性。另一方面初步探讨融合蛋白抑制肿瘤生长的作用机理。结果显示IEP29的抗肿瘤效果比IFNα2b和EP29更加显著,有效抑制肿瘤血管生成,具有肿瘤靶向性。为了进一步研究IEP29是否保持着IFNα2b和EP29的生物学功能,我们进行了一系列的抗肿瘤研究,有助于揭示靶向性药物的作用途径,同时对融合蛋白药物的开发也具有指导意义。
     在抑瘤实验中,IEP29融合蛋白能明显减轻S180、H22和Lewis肿瘤细胞荷瘤裸鼠的瘤重,和对照组比具有显著性差别,并且具有明显的量效关系。IEP29融合蛋白组抑瘤率均明显高于同剂量的EP29组,且和同剂量IFNα2b组比较有显著性差别。体内分布试验显示,给药30min后IEP29在肿瘤组织的浓度是IFNα2b的5倍,给药1h后IEP29在肿瘤组织的浓度是IFNα2b的1.8倍,表明IEP29可以在小鼠肿瘤组织中有效聚集。
     在鸡胚绒毛尿囊膜实验中,EP29、IFNα2b和IEP29蛋白在不影响原有血管的前提下,均有一定程度的抑制新生血管的生长。EP29和IEP29抑制新生血管的能力明显强于IFNα2b。从结果可以看出对照组血管生长良好,毛细血管清晰可见,主血管粗壮,分支适中。IFNα2b组有部分毛细血管减少,但不明显。EP29组毛细血管数量部分减少,局部血管变模糊。而IEP29组的血管抑制较明显,许多毛细血管开始消失,大部分血管变模糊。
     综上所述,我们获得了IEP29蛋白,经过体内和体外实验研究证实IEP29融合蛋白与IFNα2b和EP29相比,是一种高效抗肿瘤新生血管形成和抑制肿瘤生长的药物,本研究结果为IEP29重组蛋白将来的工业化生产和临床研究奠定了基础。此外,建立了比较稳定的生产工艺流程,确定了优化的融合蛋白表达和纯化系统及质量控制标准。
Interferon α2b is an important tumor immunotherapy drug, as first-line drugs arewidely used in cancer treatment. It has been approved by FDA for the treatment ofvarious viral diseases and cancer. However, IFNα2b in the clinical treatment oflong-term administration of large doses required, as so often lead to acute and chronictoxicity, damage to the nervous system and blood system and other significant sideeffects, has seriously hampered its wide application in clinical practice.
     Human endostatin is an inhibitor of angiogenesis, the inhibition of tumorangiogenesis drugs in outstanding performance in2009, approved by SFDA for thetreatment of tumors. After a number of studies confirm that human endostatinN-terminal27amino acids is the core functional areas. It on the basis of the replacementand addition, the introduction of series of RGD (Arg-Gly-Asp) sequence, formationendostatin peptide (29amino acid, EP29), while maintaining the endostatin inhibition oftumor angiogenesis activity and given by the endostatin27peptide-RGD targetingtumor vascular endothelial cells, inhibit tumor cell growth, metastasis and enhancing theeffectiveness of its anti-tumor activity. Laboratory studies have confirmed, EP29in vitroanti-tumor activity was significantly higher than the natural endostatin, in vivoanti-tumor activity of endostatin is also slightly higher than the natural, pathologicalstudies have shown that a large area of tumor necrosis and shrinkage. Therefore, it wasexpected to become a new generation of small molecule anti-cancer drugs.
     In this study, we used genetic engineering techniques to integrate the IFNα2b andEP29formation IFNα2b-endostatin29peptide (IEP29) fusion protein in E. coli forexpression. Expect that the RGD sequence of fusion protein can specific bindintegrin-αvβ3/αvβ5of endothelial cells within tumor angiogenesis. IEP29enriched attumor tissue to play targeted inhibition tumor angiogenesis of EP29and anti-tumor roleof IFNα2b, but also can inhibit integrin-mediated angiogenesis, thereby reducing theIFNα2b clinical dosage, increased dose-effect ratio. Through a series of in vivo and invitro analysis confirmed that, IEP29protein with high biological activity, can inhibittumor growth and tumor angiogenesis, but also has good tumor targeting. Therefore,according with the original design, with a high clinical application development value,is expected to become a new generation of anticancer drugs. Research details are as follows:
     1. IEP29fusion protein upstream research
     In this study, we successfully constructed IEP29prokaryotic expression vectorpET3a-IEP29by DNA recombinant technology, the vector was transfected into BL21engineering bacteria and induced by IPTG as inclusion bodies after expression, IEP29expression about10%of total bacterial protein. IEP29can be specific binding withmonoclonal antibodies of anti-IFNα2b. Re-engineering of bacteria using5L NBSfermentor cultivation, collection of bacteria by lysis, inclusion body wash, dissolve thedenaturation and refolding dialysis, and finally by affinity chromatography andion-exchange column purification the purity greater than95%of the recombinantprotein, in full compliance with USP standards for toxin detection.
     In order to meet the needs of pre-clinical study, we optimized the fermentation andpurification process to enlarge and pilot scale. Continuous fermentation using NBS5LFermentation batches, each batch of wet biomass harvest of about150g, IEP29proteinfusion protein is about the total amount of10%. Consecutive batches of IEP29purifiedfusion protein, more than95%purity, yield30~50mg/batch scale of production toachieve the basic test requirements. IEP29by physical and chemical properties, purity,biological activity, endotoxin content, residual impurities and other aspects of control,confirm IEP29protein gene engineering drugs meet quality standards.
     2. Activity analsis of IEP29protein
     In order to verify that both the biological activity of IFNα2b and EP29, the tumorcell growth inhibition and invasion assay were adopted. The experimental validation invitro fusion protein can effectively inhibit tumor cell invasion. Endothelial cell adhesionassay verificated the fusion protein in vitro effective adhesion endothelial cells andtumor-specific high affinity. Results indicate that IEP29in vitro inhibition of tumor cellproliferation and migration was significantly higher than IFNα2b and EP29, whilespecific adhesion to endothelial cells, statistically significant higher.
     3. IEP29fusion protein anti-cancer research
     Experiments of drug biodistribution studies, tumor pathology biopsy study, chickchorioallantoic membrane test, etc shows the IEP29protein inhibitory effect of tumor.The other hand, some assaies study the mechanism of inhibition of tumor growth. Theresults showed that IEP29anti-tumor effective than IFNα2b and EP29. It is more significant and effective inhibition of tumor angiogenesis, targeting both the tumor. Tofurther study if the IEP29is maintained IFNα2b and EP29of the biological function, weconducted a series of studies, help to reveal the pathway-targeted drug, while the fusionprotein drug development is also instructive.
     In tumor inhibition assay, IEP29was significantly reduced tumor weight thattumor-bearing nude mice was injected tumor cells H22and Lewis's, and the controlgroup was significant difference between the rate of tumor weight in a dose-dependentinhibition. IEP29group were significantly higher than the same dose of the EP29group,and the same dose IFNα2b significantly different. In vivo distribution studies show that30min after administration of tumor tissue the concentration of IEP29is IFNα2b5times,60min after administration of tumor tissue the concentration of IEP29is1.8times IFNα2b. IEP29can effectively gather in tumor tissue in mice.
     In the chick embryo chorioallantoic membrane experiments, EP29, IFNα2b andIEP29protein without affecting the blood vessels under the premise of the original,there is a certain degree of inhibition of the growth of new blood vessels. EP29andIEP29inhibition of angiogenesis was significantly stronger than IFNα2b. The resultscan be seen from the control group grew well in blood vessels, capillaries clearly visible,the main blood vessel stout, branch moderate. IFNα2b group shows part of the capillaryto reduce, but not obvious. EP29group significantly reduced the number of capillaries,blood vessels become thin and blurred. IEP29group was more obvious, a large numberof capillaries disappear, the main blood vessels as well as some disappear.
     In summary, we have established a relatively stable IEP29protein productionprocess, the establishment of an optimized expression and purification system andquality control standards. In vivo and in vitro experiments have confirmed that, IEP29and EP29fusion protein compared with IFNα2b, is a highly effective anti-tumorangiogenesis and inhibit tumor growth, results of this study shows IEP29is hopefulindustrial production and laid the foundation for clinical trials in the future.
引文
1DePinho RA. The Age of Cancer. Nature.2000,408(6809):248~54.
    2Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., Porter, D., etal.. Molecular Characterization of The Tumor Microenvironment in Breast Cancer. Cancer Cell.2004,6:17~32.
    3Harley, C.B. Telomerase and Cancer Therapeutics. Nat. Rev. Cancer.2008,8:167~179.
    4Hartwell, L.H., and Kastan, M.B. Cell Cycle Control and Cancer. Science.1994,266:1821~1828.
    5Ahmedin Jemal, DVM, Freddie Bray, Melissa M. Center, Jacques Ferlay, Elizabeth Ward, DavidForman. Global Cancer Statistics. CA Cancer J Clin.2011,000:000~000.
    6Ashwell, S., and Zabludoff, S. DNA Damage Detection and Repair Pathways–Recent AdvancesWith Inhibitors of Checkpoint Kinases in Cancer Therapy. Clin.C ancer Res.2008,14:4032~4037.
    7Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M.,Nesland, J.M., Lukas, C., et al. DNA Damage Response As a Candidate Anti-cancer Barrier inEarly Human Tumorigenesis. Nature.2005,434:864~870.
    8Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., Vassiliou, L.V.,Kolettas, E., Niforou, K., Zoumpourlis, V.C., et al. Oncogene-induced Senescence is Part of TheTumorigenesis Barrier Imposed By DNA Damage Checkpoints. Nature.2006,444:633~637.
    9Bonnet, S., Archer, S.L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C.T.,Lopaschuk, G.D., Puttagunta, L., Harry, G., et al. A Mitochondria-K+Channel Axis isSuppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth.Cancer Cell.2007,11:37~51.
    10Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth,M., Curtin, N.J., Helleday, T. Specific Killing of BRCA2-deficient Tumours With Inhibitors ofPoly (ADP-ribose) Polymerase. Nature.2005,434:913~917.
    11Cahill, D.P., Lengauer, C., Yu, J., Riggins, G.J., Willson, J.K., Markowitz, S.D., Kinzler, K.W.,and Vogelstein, B. Mutations of Mitotic Checkpoint Genes in Human Cancers. Nature.1998,392:300~303.
    12Cancer Genome Atlas Research Network. Comprehensive Genomic Characterization DefinesHuman Glioblastoma Genes and Core Pathways. Nature.2008,455:1061~1068.
    13Carlo-Stella, C., Lavazza, C., Locatelli, A., Vigano, L., Gianni, A.M., and Gianni, L. TargetingTRAIL Agonistic Receptors For Cancer Therapy. Clin. Cancer Res.2007,13:313~2317.
    14Carpinelli, P., and Moll, J. Aurora Kinases and Their Inhibitors: More Than One Target AndOne Drug. Adv. Exp. Med. Biol.2008,610:54~73.
    15Chen, Z., Xiao, Z., Gu, W.Z., Xue, J., Bui, M.H., Kovar, P., Li, G., Wang, G., Tao, Z.F., Tong, Y.,et al. Selective Chk1Inhibitors Differentially Sensitize p53-deficient Cancer Cells To CancerTherapeutics. Int. J. Cancer.2006.119:2784~2794.
    16Chin, L., Tam, A., Pomerantz, J., Wong, M., Holash, J., Bardeesy, N., Shen, Q., O’Hagan, R.,Pantginis, J., Zhou, H., et al. Essential Role For Oncogenic Ras In Tumour Maintenance.Nature.1999,400:468~472.
    17Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R.,Fleming, M.D., Schreiber, S.L., and Cantley, L.C. The M2Splice Isoform Of Pyruvate Kinase IsImportant For Cancer Metabolism And Tumour Growth. Nature.2008,452:230~233.
    18Collins, S.R., Miller, K.M., Maas, N.L., Roguev, A., Fillingham, J., Chu, C.S., Schuldiner, M.,Gebbia, M., Recht, J., Shales, M., et al. Functional Dissection Of Protein Complexes InvolvedIn Yeast Chromosome Biology Using A Genetic Interaction Map. Nature.2007,446:806~810.
    19Conde, C., Mark, M., Oliver, F.J., Huber, A., de Murcia, G., and Menissier-de Murcia, J. LossOf Poly (ADP-ribose) Polymerase-1Causes Increased Tumour Latency In p53-deficient Mice.EMBO J.2001,20:3535~3543.
    20Dai, C., Whitesell, L., Rogers, A.B., and Lindquist, S. Heat Shock Factor1Is A PowerfulMultifaceted Modifier Of Carcinogenesis. Cell.2007,130:1005~1018.
    21DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., andThompson, C.B. Beyond Aerobic Glycolysis: Transformed Cells Can Engage In GlutamineMetabolism That Exceeds The Requirement For Protein And Nucleotide Synthesis. Proc. Natl.Acad. Sci. USA.2007,104:19345~19350.
    22DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. The Biology Of Cancer:Metabolic Reprogramming Fuels Cell Growth And Proliferation. Cell Metab.2008,7:11~20.
    23Denko, N.C., Giaccia, A.J., Stringer, J.R., and Stambrook, P.J. The Human Ha-ras OncogeneInduces Genomic Instability In Murine Fibroblasts Within One Cell Cycle. Proc. Natl. Acad. Sci.USA.1994,91:5124~5128.
    24Denoyelle, C., Abou-Rjaily, G., Bezrookove, V., Verhaegen, M., Johnson, T.M., Fullen, D.R.,Pointer, J.N., Gruber, S.B., Su, L.D., Nikiforov, M.A., et al. Anti-oncogenic Role Of TheEndoplasmic Reticulum Differentially Activated By Mutations In The MAPK Pathway. Nat. CellBiol.2006,8:1053~1063.
    25Dewhirst, M.W., Cao, Y., and Moeller, B. Cycling Hypoxia And Free Radicals RegulateAngiogenesis And Radiotherapy Response. Nat. Rev. Cancer.2008,8:425~437.
    26Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., Schurra, C.,Garre, M., Nuciforo, P.G., Bensimon, A., et al. Oncogeneinduced Senescence Is A DNA DamageResponse Triggered By DNA Hyperreplication. Nature.2006,444:638~642.
    27Dickins, R.A., McJunkin, K., Hernando, E., Premsrirut, P.K., Krizhanovsky, V., Burgess, D.J.,Kim, S.Y., Cordon-Cardo, C., Zender, L., Hannon, G.J., et al. Tissue-specific And ReversibleRNA Interference In Transgenic Mice. Nat. Genet.2007,39:914~921.
    28Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects Of Chemotherapy AndHormonal Therapy For Early Breast Cancer On Recurrence And15-year Survival: AnOverview Of The Randomised Trials. Lancet.2005,365:1687~1717.
    29Rapp E, Pater JL, Willan A, et al. Chemotherapy Can Prolong Survival In Patients WithDdvanced Non-small-Cell Lung Cancer--Report Of A Canadian Multicenter Randomized Trial.J Clin Oncol.1988,6:633~641.
    30Cullen M, Billingham J, Woodraffe C, et al. Mitomycin, Ifosfamide And Cisplatin InUnresectable Non-small-cell Lung Cancer: Effects On Survival And Quality Of Life. J ClinOncol.1999,17:3188~3194.
    31Langer CJ, Leighton JC, Comis RL, et al. Paclitaxel And Carboplatin In Combination In TheTreatment Of Advanced Non-small-cell Lung Cancer: A Phase II Toxicity, Response, AndSurvival Analysis. J Clin Oncol.1995,13:1860~1870.
    32Romond EH, Perez EA, Bryant J, et al. Trastuzumab Plus Adjuvant Chemotherapy ForOperable HER2-positive Breast Cancer. N Engl J Med.2005,353:1673~1684.
    33Medical Research Council Rectal Cancer Working Party. Randomised Trial Of Surgery AloneVersus Radiotherapy Followed By Surgery For Potentially Operable Locally Advanced RectalCancer. Lancet.1996,348:1605~1610.
    34Swedish Rectal Cancer Trial Group. Improved Survival With Preoperative Radiotherapy InResectable Rectal Cancer. N Engl J Med.1997,336:980~987.
    35Bosset JF, Calais G, Mineur L, et al. Enhanced Tumoricidal Effect Of Chemotherapy WithPreoperative Radiotherapy For rectal Cancer: Preliminary Results--EORTC22921. J ClinOncol.2005,23:5620~5627.
    36I. Schwegler, A. von Holzen, J.-P. Gutzwiller, R. Schlumpf, S. Mühlebach, Z. Stanga,Nutritional Risk Is A Clinical Predictor Of Postoperative Mortality And Morbidity In SurgeryFor Colorectal Cancer. British Journal of Surgery.2010,97:1.
    37Lionel Powell, Joseph M. Garfield. Anesthetic Considerations For Gynecologic Cancer Surgery.Seminars in Surgical Oncology.1990:6~3.
    38Joseph N. Blattman and Philip D. Greenberg. Cancer Immunotherapy: A Treatment for theMasses. Science.2004,(305):200~205.
    39Melief CJ, Toes RE, Medema JP, van der Burg SH, Ossendorp F, Offringa R. Strategies forImmunotherapy of Cancer. Adv Immunol.2000,75:235~82.
    40Murphy JF. Trends in Cancer Immunotherapy. Clin Med Insights Oncol.2010,14(4):67~80.
    41Yoshizawa H, Kagamu H, Gejyo F. Cancer Immunogene Therapy. Arch Immunol Ther Exp(Warsz).2001,49(5):337~43.
    42Boura P, Kountouras J, Lygidakis NJ. TumorImmunity and Immunotherapy. Hepatogastroent-erology.2001,48(40):1040~4.
    43E.S. Scott Wadler, New Advances in Interferon Therapy of Cancer. The Oncologist.1997,(1):254~267.
    44P.P. Rasi G, Sinibaldi VP, Colella F, Garaci E, Combination Therapy in the Treatment ofChronic Viral Hepatitis and Prevention of Hepatocellular Carcinoma. Int Immunopharmacol.2003,(3):1169~1176.
    45W.K.R. Jared A. Gollob, Tina M. Richmond, Christine B. Marino, John J. Wright, Phase IITrial of Sorafenib Plus Interferon Alfa-2b As First-or Second-Line Therapy in Patients WithMetastatic Renal Cell Cancer. Journal of Clinical Oncology.2007,25:3288~3295.
    46M.P. Di B, Lisker-Melman M, Kassianides C, Korenman J, Bergasa NV, Baker B, HoofnagleJH, Therapy of Chronic Delta Hepatitis with Interferon alfa-2b. J Hepatol.1990,11(Suppl1):151~154.
    47S. Joel W, Paul Perrotte,Keiji Inoue,Colin P. N. Dinney, Isaiah J. Fidler, Interferon-α-mediatedDown-Regulation of Angiogenesis-related Genes and Therapy of Bladder Cancer AreDependent on Optimization of Biological Dose and Schedule. Clinical Cancer Research.1999,5:2726~2734.
    48Shankaran, V. et al. IFN-g and Lymphocytes Prevent Primary Tumour Development and ShapeTumour Immunogenicity. Nature.2001,410:1107~1111.
    49Dunn, G.P. et al. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. Nat.Immunol.2002,3:991~998.
    50Gavin P Dunn, Allen T Bruce, Kathleen C F Sheehan1et al. A Critical Function For Type IInterferons in Cancer Immunoediting. Nature immunology.2005,6:722~729.
    51Jieru Meng, Zhen Yan, Yongjie Wu, Yingqi Zhang, Preclinical Safety Evaluation ofIFNα2a-NGR. Regulatory Toxicology and Pharmacology.2008,50:294~302.
    52F.G.H. Eric jonasch, Interferon in Oncological Practice: Review of Interferon Biology, ClinicalApplications, and Toxicities. The Oncologist.2001,6:34~55.
    53W.L. Radhakrishnan R, Hruza A, Reichert P, Trotta PP, Nagabhushan TL, Walter MR, ZincMediated Dimer of Human Interferon α2b Revealed by X-ray Crystallography. Structure.1996,4:1153~1163.
    54C.D.K. Sidney Pestka, Mark R. Walter, Interferons, Interferon-like Cytokines, and TheirReceptors. Immunological Reviews.2004,202:18~32.
    55Adriana Albini, Chiara Marchisone, Federica Del Grosso, Roberto Benelli,Leonardo Santi,andDouglas M. Noonan. Inhibition of Angiogenesis and Vascular Tumor Growth by Interferon-Producing Cells. American Journal of Pathology.2000,156:1381~1393.
    56Sheppard P, Kindsvogel W, Xu W, et al. IL28, IL29and Their Class II Cytokine ReceptorIL228R. Nature Immunol.2003,4(1):63~68.
    57Stark GR. How Cells Respond to Interferons Revisited: From Early History to CurrentComplexity. Cytokine&Growth Factor Rev.2007,18(5-6):419~423.
    58Einat M, Resnitzky D. Kimchi A. Close Link Between Reduction of c-myc Expression byInterferon and G0/G1Arrest. Nature,1985,313(6003):597~600.
    59Tiefenbrun N, Melamed D, Levy N, et al. Alpha Interferon Suppresses the Cyclin D3andcdc25A Genes, Leading to a Reversible G0Like Arrest. Mol Cell Biol.1996,16(7):3934~3944.
    60Shang Y, Baumricker CR, Green MH. c-Myc is a Major Mediator of the Synergistic GrowthInhibitory Effects of Retinoic Acid and Interferon in Breast Cancer Cells. J Biol Chem.1998,273(46):30608~30613.
    61Azzimonti B, Pagano M, Mondini M,et al. Altered Patterns of the Interferon Inducible GeneIFI16Expression in Head and Neck Squamous Cell Carcinoma: Immunohistochemical StudyIncluding Correlation with Retinoblastoma Protein, Human Papillomavirus Infection andProliferation Index. Histopathology.2004,45(6):560~572.
    62Yamamoto Yamaguchi Y, Okabe Kado J, Honma Y, et al. Induction of Apoptosis byCombined Treatment with Differentiation Inducing Agents and Interferon Alpha in Human LungCancer Cells. Anticancer Res.2003,23(3B):2537~2548.
    63Yang X, Wu Y, Wang S, et al. A Randomized Clinical Trial on Adjuvant Interferon Alpha forCompletely Resected Stage I-II Non Small Cell Lung Cancer. Chinese Journal of LungCancer.2003,6(5):339~343.
    64Kito M, Akao Y, Ohishi N, et al. Induction of Apoptosis in Cultured Colon Cancer Cells byTransfection with Human Interferon β Gene. Biochem Biophys Res Commun.1999,257(3):771~776.
    65Belka C, Rudner J, Wesselborg S, et al. Differential Role of Caspase-8and BID ActivationDuring Radiation and CD95Induced Apoptosis. Oncogene.2000,19(9):1181~1190.
    66Hengartner MO. The Biochemistry of Apoptosis. Nature.2000,407(6805):770~776.
    67Ramana CV, Grammatikakis N, Chernov M, et al. Regulation of c-myc Expression byIFN-gamma Through Stat1Dependent and Independent Pathways. EMBO J.2000,19(2):263~272.
    68Kominsky SL, Hobeika AC, Lake FA, et al. Down Regulation of Neu/HER2byInterferon-gamma in Prostate Cancer Cells. Cancer Res.2000,60(14):3904~3908.
    69Kim KY, Blatt L, Taylor MW. The Effects of Interferon on the Expression of HumanPapillomavirus Oncogenes. J General Virol.2000,81(3):695~700.
    70潘烨,郑起.干扰素在肿瘤治疗中应用的研究进.国际外科学杂志,2005,32(1):10~13.
    71Tran PL, Vigneron JP, Pericat D, et al. Gene Therapy for Hepatocellular Carcinoma Using NonViral Rectors Composed of Bisgnanidinium Trencholesterol and Plasmids Encoding the TissueInhibitors of Metallopro Teinases TIMP2and TIMP3. Cancer Gene Ther.2003,10(6):435~444.
    72Ma Z, Qin H, Benveniste EN, et al. Transcriptional Suppression of Matrix Metalloproteinase9Gene Expression by IFN-γ and IFN-β: Critical Role of STAT1α. J Immunol.2001,167(90):5150~5159.
    73Sharma B, Iozzo RV. Transcriptional Silencing of Perlecan Gene Expression byInterferon-gamma. Biol Chem.1998,273(8):4642~4646.
    74Lindner DJ, Kolla V, Kalvakolanu DV. Tamoxifen Enhances Interferon Regulated GeneExpression in Breast Cancer Cells. Mol Cell Biol.1997,167(1-2):169~177.
    75Iacopino F, Robustellidella Cuna G, Sica G. Natural Interferon Alpha Activity in HormoneSensitive, Hormone Resistant and Autonomous Human Breast Cancer Cell Lines. Int J Cancer.1997,71(6):1103~1108.
    76Matsui W, Huff CA, Vala M, et al. Anti-tumour Activity of Interferon Alpha in MultipleMyeloma: Role of Interleukin6and Tumor Cell Differentiation. British J Haematol.2003,121(2):251~258.
    77Xu D, Erickson S, Szeps M, et al. Interferon Alpha Down Regulates Telomerase ReverseTranscriptase and Telomerase Activity in Human Malignant and Nonmalignant Hematopoieticcells. Blood.2000,96(13):4313~4318.
    78陈妍,何跃东,潘小玲等.重组高效复合干扰素增强宫颈癌CaSki细胞对CTL杀伤作用敏感性及机制的研究.四川大学学报(医学版).2008,39(5):715~718.
    79曾洁萍,余勤,梁茂植等.高效复合干扰素人体药动学及生物等效性的研究.现代预防医学.2008,35(5):982~984.
    80Dunn, G.P., Old, L.J.&Schreiber, R.D. The Three Es of Cancer Immunoediting. Annu. Rev.Immunol.2004,22:329~360.
    81Dunn, G.P., Old, L.J.&Schreiber, R.D. The Immunobiology of Cancer Immunosurveillanceand Immunoediting. Immunity.2004,21:137~148.
    82Y. Terry W.Mood, Thymosin Alpha1as a Chemopreventive Agent in Lung and Breast Cancer.Annals of the New York Academy of Sciences.2007,1112:297-304.
    83F.G.H. Eric jonasch, Interferon in Oncological Practice: Review of Interferon Biology, ClinicalApplications, and Toxicities. The Oncologist.2001,6:34~55.
    84Allavena P, Peccatori F, Maggioni D, Erroi A, Sironi M, Colombo N, Lissoni A, Galazka A,Meiers W, Mangioni C and Mantovani A. Intraperitoneal Recombinant γ-interferon in Patientswith Recurrent Ascitic Ovarian Carcinoma: Modulation of Cytotoxicity and CytokineProduction in Tumor-associated Effectors and of Major Histocompatibility Antigen Expressionon Tumor Cells. Cancer Res.1990,50:7318~7323.
    85Aulitzky W, Gastl G, Aulitzky WE, Nachbaur K, Lanske B, Kemmler G, Flener R, Frick J andHuber C. Interferon-g for the Treatment of Metastatic Renal Cancer: Dose-dependentStimulation and Downregulation of beta-2Microglobulin and Neopterin Responses.Immunobiology.1987,176:85~95.
    86Berek JS, Hacker NF, Lichtenstein A, Jung T, Spina C, Knox RM, Brady J, Greene T, EttingerLM, Lagasse LD, Bonnem EM, Spiegel RJ and Zighelboim J. Intraperitoneal Recombinanta-interferon for ‘salvage’ Immunotherapy in Stage III Epithelial Ovarian Cancer: a GynecologicOncology Group study. Cancer Res.1985,45:4447~4453.
    87Billiau A. Interferon-g: Biology and Role in Pathogenesis. Adv Immunol.1996,62:61~130.
    88Boehm U, Klamp T, Groot M and Howard JC. Cellular Responses to Interferon-g. Annu RevImmunol.1997,15:749~795.
    89Colombo N, Peccatori F, Paganin C, Bini S, Brandley M, Mangioni C, Mantovani A andAllavena P. Anti-tumor and Immunomodulatory Activity of Intraperitoneal IFN-gamma inOvarian Carcinoma Patients with Minimal Residual Tumor after Chemotherapy. Int J Cancer.1992,51:42~46.
    90D’Acquisto R, Markman M, Hakes T, Rubin S, Hoskins W and Lewis JL. A phase I Trial ofIntraperitoneal Recombinant gamma-interferon in Advanced Ovarian Carcinoma. J Clin Oncol.1988,6:689~695.
    91Dighe AS, Richards E, Old LJ and Schreiber RD. Enhanced in Vivo Growth and Resistance toRejection of Tumor Cells Expressing Dominant Negative IFN-g Receptors. Immunity.1994,1:447~456.
    92Hancock MC, Langton BC, Chan T, Toy P, Monahan JJ, Mischak RP and Shawver LK. AMonoclonal Antibody Against the c-erbB-2Protein Enhances the Cytotoxicity ofCis-diaminedichloroplatinum Against Human Breast and Ovarian Tumor Cell Lines. CancerRes.1991,51:4575~4580.
    93Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ and Schreiber RD.Demonstration of an Interferon g-dependent Tumor Surveillance System in Immunocompetentmice. Proc Natl Acad Sci USA.1998,95:7556~7561.
    94Kleinerman ES, Kurzrock R, Wyatt D, Quesada JR, Gutterman JU and Fidler IJ. Activation orSuppression of the Tumoricidal Properties of Monocytes from Cancer Patients FollowingTreatment with Recombinant g-interferon. Cancer Res.1986,46:5401~5405.
    95Malik STA, Knowles RG, East N, Lando D, Stamp G and Balkwill FR. Antitumor Activity ofg-interferon in Ascitic and Solid Tumor Models of Human Ovarian Cancer. Cancer Res.1991,51:6643~6649.
    96Maluish AE, Urba WJ, Longo DL, Overton WR, Coggin D, Crisp ER, Williams R, Sherwin SA,Gordon K and Steis RG. The Determination of an Immunologically Active Dose ofInterferon-gamma in Patients with Melanoma. J Clin Oncol.1988,6:434~445.
    97Folkman J. Tumor Angiogenesis: Therapeutic Implications. N Engl J Med.1971,285(21):1182~6.
    98O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, SageEH, Folkman J. Angiostatin: a Novel Angiogenesis Inhibitor that Mediates the Suppression ofMetastases by a Lewis Lung Carcinoma. Cell.1994,79(2):315~28.
    99O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR,Folkman J. Endostatin: an Endogenous Inhibitor of Angiogenesis and Tumor Growth. Cell.1997,88(2):277~85.
    100Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, HynesRO, Kalluri R. Tumstatin, an Endothelial Cell-specific Inhibitor of Protein Synthesis. Science.2002,295(5552):140~3.
    101Ramchandran R, Dhanabal M, Volk R, Waterman MJ, Segal M, Lu H, Knebelmann B,Sukhatme VP. Antiangiogenic Activity of Restin, NC10Domain of Human Collagen XV:Comparison to Endostatin. Biochem Biophys Res Commun.1999,255(3):735~9.
    102Song Z, Qichang Z, Li W, Xiong J, Shang D, Shu X. Prokaryotic Expression and BiologicalActivity Analysis of Human Arresten Gene. J Huazhong Univ Sci Technolog Med Sci.2005,25(1):8!12.
    103Narazaki M, Tosato G. Canstatin: an Inhibitor of Angiogenesis and Tumor Growth Revisited.Cancer J.2006,12(2):110~2.
    104Okroj M, Stawikowska D, Slominska EM, Mysliwski A, Bigda J. The Atypical Pattern of CellDeath in B16F10Melanoma Cells Treated with TNP-470. Cell Mol Biol Lett.2006,11(3):384~95.
    105Huh MI, Lee YM, Seo SK, Kang BS, Chang Y, Lee YS, Fini ME, Kang SS, Jung JC. Roles ofMMP/TIMP in Regulating Matrix Swelling and Cell Migration During Chick CornealDevelopment. J Cell Biochem.2007,101:1222–1237.
    106Cai W, Chen X. Anti-angiogenic Cancer Therapy Based on Integrin Alphavbeta3Antagonism.Anticancer Agents Med Chem.2006,6(5):407~28.
    107Hehlgans S, Haase M, Cordes N. Signalling Via Integrins: Implications for Cell Survival andAnticancer Strategies. Biochim Biophys Acta.2007,1775(1):163~80.
    108Jiang XT, Tao HQ, Zou SC. Effect of Angiogenesis Inhibitor SU6668on the Growth andMetastasis of Gastric Cancer in SCID Mice. Zhonghua Wei Chang Wai Ke Za Zhi.2006,9(4):335~7.
    109Marshall E. Cancer therapy. Setbacks for Endostatin. Science.2002;295(5563):2198~9.
    110Sasaki T, Larsson H, Kreuger J, Salmivirta M, Claesson-Welsh L, Lindahl U, Hohenester E,Timpl R. Structural Basis and Potential Role of Heparin/heparan Sulfate Binding to theAngiogenesis Inhibitor Endostatin. EMBO J.1999,18(22):6240~8.
    111Hohenester E, Sasaki T, Olsen BR, Timpl R. Crystal Structure of the Angiogenesis InhibitorEndostatin at1.5A Resolution. EMBO J.1998,17(6):1656~64.
    112Ding YH, Javaherian K, Lo KM, Chopra R, Boehm T, Lanciotti J, Harris BA, Li Y, Shapiro R,Hohenester E, Timpl R, Folkman J, Wiley DC. Zinc-dependent Dimers Observed in Crystalsof Human Endostatin.Proc Natl Acad Sci U S A.1998,95(18):10443~8.
    113Boehm T, O'reilly MS, Keough K, Shiloach J, Shapiro R, Folkman J. Zinc-binding ofEndostatin is Essential for its Antiangiogenic Activity. Biochem Biophys Res Commun.1998,252(1):190~4.
    114Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R. Human Tumanstain andHuman Endostatin Exhibit Distinct Antiangiogenic Activities Mediated by Alpha v beta3and alpha5beta1Integrins. Proc Nall Acad Sci USA.2003,100(8):4766~71.
    115Wickstrom SA, Alitalo K, Keski-Oja J. Endostatin Associates with Integrin alpha5beta1andcaveolin-1, and Activates Src via a Tyrosyl Phosphatase-dependent Pathway in HumanEndothelial Cells.Cancer Res.2002,62(19):5580~9.
    116Kim YM, Hwang S, Kim YM, Pyun BJ, Kim TY, Lee ST, Gho YS, Kwon YG. EndostatinBlocks Vascular Endothelial Growth Factor-mediated Signaling via Direct Interaction withKDR/Flk-1.J Biol Chem.2002,277(31):27872~9.
    117Kim YM, Jang JW, Lee OH, Yeon J, Choi EY, Kim KW, Lee ST, Kwon YG. EndostatinInhibits Endothelial and Tumor Cellular Invasion by Blocking the Activation and CatalyticActivity of Matrix Metalloproteinase. Cancer Res.2000,60(19):5410~3.
    118Nyberg P, Heikkila P, Sorsa T, Luostarinen J, Heljasvaara R, Stenman UH, Pihlajaniemi T,Salo T. Endostatin Inhibits Human Tongue Carcinoma Cell Invasion and Intravasation andBlocks the Activation of Matrix Metalloprotease-2,-9, and-13. J Biol Chem.2003,278(25):22404~11.
    119Lee SJ, Jang JW, Kim YM, Lee HI, Jeon JY, Kwon YG, Lee ST. Endostatin Binds to theCatalytic Domain of Matrix Metalloproteinase-2. FEBS Lett.2002,519(1-3):147~52.
    120MacDonald NJ, Shivers WY, Narum DL, Plum SM, Wingard JN, Fuhrmann SR, Liang H,Holland-Linn J, Chen DH, Sim BK. Endostatin Binds Tropomyosin. A Potential Modulator ofthe Antitumor Activity of Endostatin. J Biol Chem.2001,276(27):25190~6.
    121Hanai J, Dhanabal M, Karumanchi SA, Albanese C, Waterman M, Chan B, Ramchandran R,Pestell R, Sukhatme VP. Endostatin Causes G1Arrest of Endothelial Cells Through Inhibitionof Cyclin D1. J Biol Chem.2002,277(19):16464~9.
    122Folkman J. Tumor Suppression by p53is Mediated in Part by the Antiangiogenic Activity ofEndostatin and Tumstatin. Sci STKE.2006,354:35-36.
    123Kuo CJ, LaMontagne KR Jr, Garcia-Cardena G, Ackley BD, Kalman D, Park S, ChristoffersonR, Kamihara J, Ding YH, Lo KM, Gillies S, Folkman J, Mulligan RC, Javaherian K.Oligomerization-dependent Regulation of Motility and Morphogenesis by the Collagen XVIIINC1/endostatin Domain. J Cell Biol.2001,152(6):1233~46.
    124Shichiri M, Hirata Y. Antiangiogenesis Signals by Endostatin. FASEB J2001,15(6):1044~53.
    125Abdollahi A, Hahnfeldt P, Maercker C, Grone HJ, Debus J, Ansorge W, Folkman J, Hlatky L,Huber PE. Endostatin's Antiangiogenic Signaling Network. Mol Cell.2004,13(5):649~63.
    126Wickstrom SA, Alitalo K, Keski-Oja J. An Endostatin Derived Peptide Interacts withIntegrins and Regulates Actin Cytoskeleton and Migration of Endothelial Cells. J Biol Chem.2004,279(19):20178~85.
    127Cattaneo MG, Pola S, Francescato P, Chillemi F, Vicentini LM. Human Endostatin-derivedSynthetic Peptides Possess Potent Antiangiogenic Properties in Vitro and in Vivo. Exp CellRes.2003,283(2):230~6.
    128Chillemi F, Francescato P, Ragg E, Cattaneo MG, Pola S, Vicentini L. Studies on theStructure-activity Relationship of Endostatin: Synthesis of Human Endostatin PeptidesExhibiting Potent Antiangiogenic Activities. J Med Chem.2003,46(19):4165~72.
    129Morbidelli L, Donnini S, Chillemi F, Giachetti A, Ziche M. Angiosuppressive andAngiostimulatory Effects Exerted by Synthetic Partial Sequences of Endostatin. Clin CancerRes.2003,9(14):5358~69.
    130Robert M, Tjin Tham Sjin RM, Satchi-Fainaro R, Birsner AE, Ramanujam VM, Folkman J,Javaherian K. A27-Amino-Acid Synthetic Peptide Corresponding to the NH2-TerminalZinc-Binding Domain of Endostatin Is Responsible for Its Antitumor Activity. Cancer Res.2005,65(9):3656~63.
    131Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic Therapy of ExperimentalCancer Does not Induce Acquired Drug Resistance. Nature.1997,390(6658):404~7.
    132Kirsch M, Weigel P, Pinzer T, Carroll RS, Black PM, Schackert HK, Schackert G. Therapy ofHematogenous Melanoma Brain Metastases with Endostatin.Clin Cancer Res.2005,11(3):1259~67.
    133Blezinger P, Wang J, Gondo M, Quezada A, Mehrens D, French M, Singhal A, Sullivan S,Rolland A, Ralston R, Min W. Systemic Inhibition of Tumor Growth and Tumor Metastases byIntramuscular Administration of the Endostatin Gene. Nat Biotechnol.1999,17(4):343~8.
    134Yamanaka R, Tanaka R. Gene Therapy of Brain Tumor with Endostatin. Drugs Today(Barc).2004,40(11):931~4.
    135Bertolini F, Fusetti L, Mancuso P, Gobbi A, Corsini C, Ferrucci PF, Martinelli G, Pruneri G.Endostatin, an Antiangiogenic Drug, Induces Tumor Stabilization after Chemotherapy oranti-CD20Therapy in a NOD/SCID Mouse Model of Human High-grade Non-HodgkinLymphoma.Blood.2000,96(1):282~7.
    136Hanna NN,Seetharam S,Mauceri HJ,Beckett MA,Jaskowiak NT, SalloumEM,HariD,Dhanabal M,Ramchandran R,Kalluri R,Sukhatme VP,Kufe DW,Weichselbaum RR.Antitumor Interaction of Short-course Endostatin and Ionizing Radiation. Cancer J.2000,6(5):287~93.
    137Saiki I.Cell Adhesion Molecules and Cancer Metastasis. Jpn J Pharmacol.1997,75(3):215~42.
    138Yamada KM, Geiger B. Molecular Interactions in Cell Adhesion Complexes. Curr Opin CellBiol.1997,9(1):76~85.
    139Ruoslahti E. The RGD Story: a Personal Account. Matrix Biol.2003,22(6):459~65.
    140Bloch W, Forsberg E, Lentini S, Brakebusch C, Martin K, Krell HW, Weidle UH, Addicks K,Fassler R. Beta1Integrin is Essential for Teratoma Growth and Angiogenesis. J Cell Biol.1997,139(1):265~78.
    141Suda H, Asami Y, Murata E, Fujita K, Akita M. Immuno-histochemical Expression of Alpha1,alpha2and alpha3Integrin Subunits During Angiogenesis in Vitro. Histol Histopathol.2004,19(3):735~42.
    142Max R, Gerritsen RR, Nooijen PT, Goodman SL, Sutter A, Keilholz U, Ruiter DJ, De WaalRM. Immunohistochemical Analysis of Integrin alpha vbeta3Expression on Tumor-associatedVessels of Human Carcinomas. Int J Cancer.1997,71(3):320~4.
    143Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha v beta3Rescues Melanoma Cellsfrom Apoptosis in Three-dimensional Dermal Collagen. Proc Natl Acad Sci U S A.1994,91(19):8856~60.
    144Haubner R. Alpha(v)beta (3)-integrin imaging: a new Approach to Characterise Angiogenesis?Eur J Nucl Med Mol Imaging.2006,33Suppl13:54~63.
    145De S, Razorenova O, McCabe NP, O'Toole T, Qin J, Byzova TV. VEGF-integrin InterplayControls Tumor Growth and Vascularization. Proc Natl Acad Sci U S A.2005,102(21):7589~94.
    146Robinson EE, Zazzali KM, Corbett SA, Foty RA. Alpha5beta1Integrin Mediates StrongTissue Cohesion. J Cell Sci.2003,116(Pt2):377~86.
    147Yao M, Zhou XD, Zha XL, Shi DR, Fu J, He JY, Lu HF, Tang ZY. Expression of the Integrinalpha5Subunit and its Mediated Cell Adhesion in Hepatocellular Carcinoma. J Cancer ResClin Oncol.1997,123(8):435~40.
    148Mojgan Kavoosi, A. Louise Creagh, Douglas G. Kilburn, Charles A. Haynes. Strategy forSelecting and Characterizing Linker Peptides for CBM9-tagged Fusion Proteins Expressed inEscherichia coli. Biotechnol Bioeng.2007,98(3):599~610.
    149Jordan H Chill, Sabine R Quadt, Rina Levy, Gideon Schreiber, Jacob Anglister. The HumanType I Interferon Receptor: NMR Structure Reveals the Molecular Basis of Ligand Binding.Structure.2003,11(7):791~802.
    150Lei Wan and Tse Wen Chang, Site-Specific Lipophilic Modification of Interferon-α. Journal ofProtein Chemistry.2002,21(6):371~381.
    151Satoru Misawa, Izumi Kumagai. Refolding of Therapeutic Proteins Produced in Escherichiacoli as Inclusion Bodies. Peptide Science.1999,51(4):297~307.
    152Hauke Lilie, Elisabeth Schwarz, Rainer Rudolph. Advances in Refolding of Proteins Producedin E. coli. Current Opinion in Biotechnology.1998,9(5):497~501.
    153Ashok K. Patraa, R. Mukhopadhyaya, R. Mukhijab, Anuja Krishnanb, L. C. Gargb andAmulya K. Panda. Optimization of Inclusion Body Solubilization and Renaturation ofRecombinant Human Growth Hormone from Escherichia coli. Protein Expression andPurification.2000,18(2):182~192.
    154Folkman J. The role of Angiogenesis in Tumor Growth. Semin Cancer Biol.1992,3(2):65~71.
    155Robert S. Kerbel, Tumor Angiogenesis: Past, Present and the Near Future, Carcinogenesis.2000,21(3):505~515.
    156Bruce R. Zetter, Angiogenesis and Tumor Metastasis. Annu. Rev. Med.1998,49:407~24.
    157Robert S. Kerbel, Tumor Angiogenesis. N Engl J Med.2008,358:2039~2049.
    158Folkman J. Angiogenesis: an Organizing Principle for Drug Discovery? Nat Rev Drug Discov.2007,6:273~286.
    159Jain RK. Normalization of Tumor Vasculature: an Emerging Concept in AntiangiogenicTherapy. Science.2005,307:58~62.
    160Yumi Yokoyama, S.ramakrishnan. Addition of Integrin Binding Sequence to Mutant HumanEndostatin Improves Inhibition of Tumor Growth. Int. J. Cancer.2004,111:839~848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700