ACE2激活对大鼠重度肺动脉高压的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     致病因素的作用下,肺循环调节功能的失衡启动一系列病理生理改变,包括内皮功能障碍、炎症激活等,引起肺血管异常收缩,进而平滑肌细胞增殖、血管重构,最终导致肺动脉高压。肾素血管紧张素系统是心血管系统的重要调节系统,它在肺动脉高压发病过程中发挥重要作用,但是干预经典的肾素血管紧张素系统(ACE-Ang Ⅱ-AT1R轴)治疗肺动脉高压的效果欠佳。血管紧张素转化酶2(ACE2)及其参与的ACE2-Ang-(1-7)-Mas轴是肾素血管紧张素系统的新成员,起着拮抗经典肾素血管紧张素轴的作用,而且在呼吸系统疾病中发挥着广泛的作用。本研究应用ACE2激动剂Resorcinolnaphthalein(Rec)干预野百合碱联合肺叶切除构建重度肺动脉高压模型,探讨ACE2激活在预防和逆转重度肺动脉高压中的作用及其机制。
     方法
     1.实验动物和分组:SD大鼠,随机分为6组:空白对照组,ACE2对照组,肺动脉高压组,ACE2预防组,ACE2治疗组,Mas受体拮抗组(Rec+A-779)。左肺切除后1周,皮下注射野百合碱诱导重度肺动脉高压。ACE2对照和ACE2预防组在野百合碱注射后第1天开始持续注射Rec, ACE2治疗组第14天开始注射Rec, Mas受体拮抗组第1天开始同时注射Rec和Mas受体拮抗剂A-779。
     2.干预2周后,除ACE2治疗组外(干预42天),其余各组取8只,心导管测定平均肺动脉压和动脉收缩压,分离右心室测定右心室肥厚指数,弹力纤维染色(Verhoeff-铁苏木素染色)后分析肺动脉(100-200gm)中膜厚度和肺小动脉(50-100gm)内膜梗阻性增生程度。
     3.内皮功能检测:肺动脉内注射不同浓度的乙酰胆碱和硝普钠,检测内皮依赖的血管舒张反应的变化。
     4.活性荧光共振能量转移法检测肺组织ACE2酶活性。
     5.生存分析:采用Kaplan-Meier生存分析图分析。
     6. ELISA检测肺组织Ang Ⅱ和Ang-(1-7)浓度,Western blot检测肺组织ACE, ACE2, AT1R, Mas表达水平。
     7.免疫组化检测直径50-100μm肺动脉管壁平滑肌抗体(a-SMA)和增殖细胞核抗原表达,分析肺动脉平滑肌细胞增殖情况。
     8. RT-PCR检测肺组织炎症因子IL-6, MCP-1, TNF-α, IL-10。
     结果
     1.Rec对大鼠肺组织ACE2酶活性的影响ACE2对照组ACE2酶活性是正常的1.74倍;肺动脉高压组ACE2酶活性下降38.2%,ACE2预防和治疗组ACE2酶活性则分别比肺动脉高压组升高1.87和1.78倍,提示Rec可以激活大鼠肺组织ACE2。
     2.ACE2激活对PAH大鼠生存率的影响
     实验终点时,肺动脉高压大鼠和Mas受体拮抗组大鼠全部死亡,ACE2预防组未出现死亡,ACE2治疗组生存率为80%。统计学分析,ACE2治疗组和预防组与肺动脉高压组差异显著。
     3.ACE2激活对血液动力学和右心室的影响
     大鼠左肺切除联合野百合碱注射2周后,肺动脉压力升高,右心室肥大;ACE2对照组肺动脉压力没有明显变化。ACE2激活可以防止肺动脉高压和右心室肥厚,同样ACE2治疗4周也可以降低肺动脉压力,但是无法逆转肥厚的右心室。各处理组大鼠动脉收缩压没有变化。
     4.ACE2激活对肺动脉内皮细胞功能的影响
     在相同的基础肺动脉压力下,肺动脉高压大鼠乙酰胆碱诱导的内皮依赖的舒张反应减弱,ACE2不但可以抑制它的减弱,而且可以修复受损的舒张反应。硝普钠诱导的肺内皮依赖的舒张反应各组之间没有明显差异。
     5.ACE2激活对肺动脉中膜肥厚和内膜增生的影响
     肺动脉高压大鼠的直径为100-200gm的肺小动脉主要表现为中膜肥厚,ACE2激活可以抑制和逆转中膜肥厚。直径为50-100μm的肺小动脉主要表现为内膜增生,梗阻明显,ACE2预防组大鼠则主要表现为中膜肥厚,ACE2治疗组大鼠小动脉梗阻程度也显著下降。
     6.Mas受体对ACE2效果的影响
     同时应用ACE2激活剂Rec和Mas受体阻断剂A-779,肺动脉高压预防作用消失,包括改善生存率,降低肺动脉压力,抑制右心室肥厚,肺小动脉中膜肥厚和内膜增生。
     7.ACE2激活对肾素血管紧张素系统各主要成份的影响
     肺动脉高压形成以后,ACE和AT1R上升为正常的2.49和2.75倍,Ang IⅡ则由25.06±3.81pg/mg上升到91.00±6.70pg/mg,ACE2激活可抑制ACE(78.5%), AT1R(78.9%)和Ang Ⅱ(46.60±10.00pg/mg)的上升,但是肺动脉形成以后再激活ACE2,ACE和AT1R下降不明显,仅能降低Ang Ⅱ(52.01±7.61pg/mg,).
     肺动脉高压大鼠肺组织ACE2降低为正常的41.67%,而预防和治疗组ACE2则达到肺动脉高压大鼠的2.52和2.35倍。肺动脉高压对Mas和Ang-(1-7)的影响不大,ACE2激活后,Mas则分别升高了的2.43和2.51倍,Ang-(1-7)也相应升高。
     肺动脉高压大鼠肺组织ACE/ACE2和AT1R/Mas比值明显升高,而预防组和治疗组这两个比值则降低。
     8.ACE2激活对肺动脉平滑肌细胞增殖的影响
     各组直径为50-100gm肺小动脉壁均广泛表达平滑肌细胞抗体,提示平滑肌细胞在其病变中占重要地位。肺动脉高压大鼠肺动脉增殖细胞核抗原阳性率显著升高,ACE2激活后可以降低平滑肌细胞的增殖细胞核抗原阳性率,抑制增殖。
     9.ACE2激活对肺组织炎症因子的影响
     大鼠肺动脉高压形成后,IL-6上升47倍,MCP-1上升31倍,TNF-a上升16倍,IL-10下降79%;而预防组IL-6降低85%,MCP-1降低86%, TNF-α降低82%,IL-10上升11倍,治疗组则IL-6降低82%,MCP-1降低80%, TNF-α降低78%,IL-10升高9倍。
     结论
     1.Rec持续注射可以在大鼠体内有效的激活肺组织ACE2
     2.ACE2激活可预防左肺切除联合野百合碱注射诱导的大鼠重度肺动脉高压形成
     3.ACE2激活一定程度上逆转大鼠重度肺动脉高压的血液动力学和病理学改变
     4.ACE2激活通过调控肾素血管紧张素系统内缩血管/促增殖轴(ACE-AngⅡ-AT1R轴)和血管保护轴(ACE2-Ang-(1-7)-Mas轴)之间的平衡起作用。
     5.在大鼠肺动脉高压的形成和进展过程中激活ACE2,可修复内皮依赖的血管舒张反应,改善内皮功能;可减少新生内膜中平滑肌细胞PCNA的表达,抑制平滑肌细胞增生;可降低肺组织促炎因子IL-6, MCP-1, TNF-α,升高抗炎因子IL-10,从而减轻炎症反应。
[Background and objective]
     The imbalance of the physiological regulation caused by the etiological factors in the pulmonary circulation initiating a cascade of pathophysiological events including endothelial dysfunction and inflammation lead to abnormal vasoconstriction and proliferation of vascular cells, which results in vascular remodeling and pulmonary arterial hypertension (PAH). Previous data have shown the involvement of classic rennin-angiotensin axis [angiotensin-converting-enzyme (ACE)-angiotensin Ⅱ (Ang Ⅱ)-angiotensin Ⅱ receptor1(AT1R)] which is one of the most important regulation system of cardiovascular function during the pathogenesis of pulmonary arterial hypertension, but the results of pharmacological blockade with ACE inhibitors or AT1R antagonists in medical use were unsatisfactory. A recent discovered ACE homologue, angiotensin-converting enzyme2(ACE2), has opposite effects on classical RAS and was deeply involved in lung disease, indicating a promising agent against PAH. In current study, we evaluated the activation of ACE2by a small synthetic molecule resorcinolnaphthalein (Rec) in preventing and reversing severe PAH induced by monocrotaline injection following left pneumonectomy in rats and further explored its underlying mechanisms.
     [Methods]
     1. Treatment and groups
     Eighty male SD rats were randomly divided into the following six treatment groups. Placebo control group (n=8), ACE2control group (n=8), PAH group (n=18), ACE2preventive group (n=18), ACE2therapeutic group (n=10), Mas receptor blocked group (n=18). The rats in the two control group received sham operation and vehicle; the other rats were injected monocrotaline one week following left pneumonectomy for inducing severe PAH. Rec was started injection with the dose of120μg/kg at the first day after MCT injection in ACE2control group and ACE2preventive group and at the fourteenth day in ACE2therapeutic group. The rats in Mas receptor blocked group received simultaneous injection of Rec and A-779both at the dose of120μg/kg since the first day after MCT injection.
     2. The hemodynamics including mean pulmonary arterial pressure (mPAP) and systolic blood pressure (SBP) were measured by catheterization after two weeks treatment in8rats in the all the groups except ACE2therapeutic group (6weeks treatment). The ratio of right ventricular to left ventricular plus septum weight (RV/LV+S) was calculated for each animal as an index of right ventricular hypotrophy (RVHI). The pulmonary arteries were stained for elastic lamina by Verhoeff iron hematoxylin method, then the percent of wall thickness (WT%) were calculated to analyze media hypertrophy in pulmonary arteries with the diameter of100-200μm and mean vascular obstruction score (mVOS) were calculated as an index of neointima in arteries with the diameter of50-100μm.
     3. Endothelium-dependent vasorelaxation was assessed by the reductions in mPAP in response to bolus injection of acetylcholine (0.1,0.3,1.0μg/Kg) and sodium nitroprusside (5,10,15μg/Kg) into pulmonary artery. In order to keep similar baseline of pulmonary arterial pressure, the arteries were preconstricted by a continuous infusion of U46619, if necessary
     4. The enzymatic activity of ACE2in lungs was examined by its ability to cleave the fluorescent peptide substrate Mca-Ala-Pro-Lys(Dnp)-OH.
     5. Survival analysis:The differences of survival were analyzed by Kaplan-Meier survival plot among the ACE2preventive group (the rest of the10rats), Mas receptor blocked group (the rest of the10rats), PAH group and ACE2therapeutic group。The rat was sacrificed when it lose more than20%of its weight. Both the sacrificed and died rats during the42days treatment were included in the analysis.
     6. Ang Ⅱ and Ang-(1-7) levels in lungs of the rats were determined by ELISA; ACE, ACE2, AT1R, Mas protein expression were detected by Western blot analysis.
     7. The proliferation of pulmonary smooth muscle cells were analyzed by stain for a-smooth muscle actin and proliferating cell nuclear antigen with immunohistochemical method in small pulmonary arterial in diameter of50-100μm.
     8. Real-time quantitative polymerase chain reaction (RT-PCR) was used for measuring tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1(MCP-1), interleukin-6(IL-6), and IL-10gene levels in the lungs.
     [Result]
     1. The activation of ACE2by Rec in lungs The ACE2activity increased by1.74folds in ACE2control group when compared the values in Placebo control group, while the enzyme activity decreased38.2%in PAH group (P<0.05). Compared to PAH group, ACE2activity respectively increased1.87fold and1.78fold in ACE2preventive group (P<0.05) and ACE2therapeutic group (P<0.05)
     2. The activation of ACE2improved survival rates The rats in PAH group and Mas receptor blocked group were sacrificed or died before the experimental endpoint without exception (survival,0), whereas rats in ACE2preventive group were active and without death in the42days experimental duration (survival,100%). Rats in ACE2therapeutic group showed a low mortality (survival,80%). These data indicated that Rec treatment resulted in an increased survival in severe PAH rats (ACE2preventibe group vs PAH group, ACE2therapeutic group vs PAH group, all p<0.05).
     3. The effects of ACE2activation on PAH Compared to Placebo control group (15±2mmHg), the mPAP was similar in ACE2control group (17±2mmHg) but increased in PAH group (45±6mmHg)(p<0.05). The mPAP in ACE2preventive group (22±5mmHg) and ACE2therapeutic group (30±5mmHg) were significant lower than the values in PAH group (45±6mmHg). Similarly, ACE2activation prevented the increase in RVHI (ACE2preventive group,0.36±0.06vs PAH group,0.59±0.12, p<0.05) but did not reverse the increased RVHI (ACE2therapeutic group,0.53±0.05vs PAH group,0.59±0.12, p>0.05). The systolic blood pressure was not changed in rats among the groups.
     4. The effects of ACE2activation on endothelial function in pulmonary arteries The decrease of mPAP in response to acetylcholine injection under the similar initiating pressure conditions were smaller in PAH group than in placebo control group (p<0.05) and the values in both ACE2preventive group and ACE2therapeutic group were significantly increased when compared to PAH group. However, the decrease of mPAP in response to sodium nitroprusside injection was similar among the groups.
     5. The effects of ACE2activation on pulmonary vascular remodeling The pulmonary arteries with the diameter between100-200μm from PAH rats showed media hypertrophy with higher WT%than the values in control rats (Placebo control group,16.37±3.20%vs PAH group,52.13±11.06%, P<0.05). In contrast, WT%in ACE2preventive group and ACE2therapeutic group were decreased (PAH group,52.13±11.06%μs ACE2preventive group,31.38±8.49%, P<0.05; PAH group,52.13±11.06%vs ACE2therapeutic group,36.13±4.39%, P<0.05). Neointima formed in small pulmonary arteries in diameter of50-100μm from PAH rats with increased mVOS when compared to control rats (Placebo control group vs PAH group, P<0.05). The mVOS in ACE2preventive group and ACE2therapeutic group were lower than in PAH group (P<0.05).
     6. The Role of Mas in the effect of ACE2activation on PAH The beneficial effects of ACE2activation on survival, mPAP, RVHI, WT%and mVOS in PAH rats were abolished by simultaneous injection of Mas receptor inhibitor A-779.
     7. The change of the renin-angiotensin system components in the lung The PAH caused2.49folds and2.75folds increase in ACE and ATIR protein expression in lungs, and increased Ang Ⅱ from25.06±3.81pg/mg to91.00±6.70pg/mg, while ACE2activation inhibited the increase in ACE(78.5%), ATIR (78.9%) and Ang Ⅱ(46.68±10.00pg/mg). However, ACE2activation had insignificant effect on ACE and ATIR except for the significant decrease in Ang Ⅱ (52.01±7.61pg/mg).
     The protein level of ACE2in PAH group decreased to41.67%of the values in Placebo control group while increased to2.52and2.35folds of the values in PAH group. The levels of Mas increased to2.43and2.51folds of PAH group in ACE2preventive group and ACE2therapeutic group respectively, and Ang-(1-7) increased from32.74±4.72pg/mg in PAH group to59.28±8.91pg/mg in ACE2preventive group and53.10±7.34pg/mg in ACE2therapeutic group.
     The ratios of ACE/ACE2and ATIR/Mas were significant higher in PAH group than in Placebo control group, but markedly lower in ACE2preventive group and ACE2therapeutic group than PAH group.
     8. The effects of ACE2activation on pulmonary smooth muscle proliferation The a-SMA were widely expressed on small pulmonary arteries with the diameter between50-100μm, indicating the critical role of smooth muscle cells in the pathological change during the development of PAH. The PCNA positive rate were higher in PAH group (13.63±3.42%) than in placebo control group (3.88±1.36%)(p<0.05), but the rate decreased in both ACE2preventive group (3.38±0.92%) and ACE2therapeutic group(4.75±1.04%)group when compared the values in PAH group (p<0.05).
     9. ACE2activation mediated the levels of cytokines
     The gene levels of IL-6, MCP-1and TNF-α were increased47folds,31folds,16folds of the values in placebo control group in PAH group (p<0.05), while IL-10decreased79%. In contrast, the levels of IL-6, MCP-1and TNF-α decreased85%,86%,82%but IL-10was increased11folds in ACE2preventive group respectively, when compared to PAH group, and in ACE2therapeutic group, IL-6decreased82%, MCP-1decreased80%, TNF-a decreased78%, but IL-10increased9folds(p<0.05).
     [Conclusions]
     1. Rec infusion effectively activated ACE2in lungs from rats.
     2. ACE2activation prevented the development of severe PAH induced by momocrotaline injection following left pneumonectomy in rats.
     3. ACE2activation partially reversed the hemodynamics and pathological change in rats with severe PAH.
     4. ACE2activation shifted the vasoconstrictive proliferative axis (ACE-Ang II-AT1R) toward vasoprotective axis (ACE2-Ang-(1-7)-Mas) in RAS.
     5. ACE2activation improved endothelial function, inhibited the proliferation of pulmonary smooth muscle cells and mediated inflammation by decreasing IL-6, MCP-1,TNF-α and increasing IL-10in both preventive and therapeutic protocols.
引文
1 Runo JR., Loyd JE. Primary pulmonary hypertension[J]. Lancet,2003,361:1533-1544.
    2 Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9[J]. Circ Res,2000,87:E1-E9
    3 Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP.Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension[J]. Circulation,2008,118:722-730.
    4 Farber HW, Loscalzo J. Pulmonary arterial hypertension[J]. N Engl J Med,2004,351: 1655-1665.
    5 Chan SY, Loscalzo J. Pathogenic mechanisms of pulmonary arterial hypertension[J]. J Mol Cell Cardiol,2008,44:14-30.
    6 Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia[J]. Proc Natl Acad Sci USA, 2001,98:8798-8803.
    7 Marshall RP. The pulmonary renin-angiotensin system[J]. Curr Pharm Des,2003; 9: 715-722.
    8 Studdy PR, Lapworth R, Bird R. Angiotensin-converting enzyme and its clinical significance-a review[J]. J Clin Pathol,1983,36:938-947.
    9 Lefebvre F, Pre'fontaine A, Calderone A, Caron A, Jasmin JF, Villeneuve L, Dupuis J. Modification of the pulmonary renin-angiotensin system and lung structural remodelling in congestive heart failure[J]. Clin Sci (Lond),2006,111:217-224.
    10 Lourenco AP, Roncon-Albuquerque R Jr, Bras-Silva C, Faria B, Wieland J, Henriques-Coelho T, Correia-Pinto J, Leite-Moreira AF. Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats[J]. Am J Physiol,2006,291(4):H1587-1594.
    11 Usui S, Yao A, Hatano M, Kohmoto O, Takahashi T, Nagai R, Kinugawa K. Upregulated neurohumoral factors are associated with left ventricular remodeling and poor prognosis in rats with monocrotaline-induced pulmonary arterial hypertension[J]. Circ J,2006, 70(9):1208-1215.
    12 Orte C, Polak JM, Haworth SG, Yacoub MH, Morrell NW. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension[J]. J Pathol,2000,192(3):379-384.
    13 Kanno S, Wu YJ, Lee PC, Billiar TR, Ho C. Angiotensin-converting enzyme inhibitor preserves p21 and endothelial nitric oxide synthase expression in monocrotaline-induced pulmonary arterial hypertension in rats[J]. Circulation,2001,104:945-950.
    14 Jeffery TK, Wanstall JC. Perindopril, an angiotensin converting enzyme inhibitor, in pulmonary hypertensive rats:comparative effects on pulmonary vascular structure and function[J]. Br J Pharmacol,1999,128:1407-1418.
    15 Han SX, He GM, Wang T, Chen L, Ning YY, Luo F, An J, Yang T, Dong JJ, Liao ZL, Xu D, Wen FQ. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats:possible involvement of angiotensin-converting enzyme-2[J]. Toxicol Appl Pharmacol,2010,245:100-107.
    16 Tavli T, Gocer H. Effects of cilazapril on endothelial function and pulmonary hypertension in patients with congestive heart failure[J]. Jpn Heart J,2002,43:667-674.
    17 Niazova ZA, Batyraliev TA, Aikimbaev KS, Kudaiberdieva GZ, Akgul F, Soodanbekova YK, Birand A. High-altitude pulmonary hypertension:effects of captopril on pulmonary and systemic arterial pressures[J]. J Hum Hypertens,1996,10(Suppl 3):S141-S142.
    18 Bilan A, Chibowska M, Makaruk B, Palusinski R, Weglarz J, Ostrowski S, Witczak A, Hanzlik J, Krasowska D. Enalapril (10 mg/day) in systemic sclerosis. One year, double blind, randomised study (ESS-1):echocardiographic substudy-three months follow-up [J]. Adv Exp Med Biol,1999,455:279-283.
    19 Zielinski J, Hawrylkiewicz I, Gorecka D, Gluskowski J, Koscinska M. Captopril effects on pulmonary and systemic hemodynamics in chronic cor pulmonale[J]. Chest,1986,90: 562-565.
    20 Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase[J]. J Biol Chem,2000,275(43):33238-43.
    21 Turner AJ,Hooper NM.The angiotensin-converting enzyme gene family:genomits and pharmacology.Trends Pharmacol Sci,2002,23:177-183.
    22 Santos RA, Ferreira AJ, Simoes E Silva AC.Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis[J]. Exp Physiol,2008,93(5): 519-27.
    23 Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK. Evidence for Angiotensin-converting Enzyme 2 as a Therapeutic Target for the Prevention of Pulmonary Hypertension[J]. Am J Respir Crit Care Med,2009,179:1048-1054.
    24 Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. J Pathol,2004,203:631-637.
    25 Li X, Molina-Molina M, Abdul-Hafez A, Uhal V, Xaubet A, Uhal BD. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis[J]. Am J Physiol Lung Cell Mol Physiol,2008,295:L178-L185.
    26 Riviere G, Michaud A, Breton C, VanCamp G, Laborie C, Enache M, Lesage J, Deloof S, Corvol P, Vieau D. Angiotensin-converting enzyme 2 (ACE2) and ACE activities display tissue-specific sensitivity to under nutrition-programmed hypertension in the adult rat[J]. Hypertension,2005,46:1169-1174.
    27 Wiener RS, Cao YX, Hinds A, Ramirez MI, Williams MC. Angiotensin converting enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung[J]. J Cell Biochem,2007,101:1278-1291.
    28 Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure[J]. Nature,2005,436:112-116.
    29 Zisman LS, Keller RS, Weaver B, Lin Q, Speth R, Bristow MR, Canver CC. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles:evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2[J]. Circulation, 2003,108:1707-1712.
    30 Okada K, Tanaka Y, Bernstein M, Zhang W, PattersonGA, Botney MD. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension[J]. Am J Pathol,1997,151(4):1019-1025.
    31 Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase[J]. J Biol Chem, 2002,277(17):14838-14843.
    32 Jeffery TK, Wanstall JC. Pulmonary vascular remodeling:a target for therapeutic intervention in pulmonary hypertension[J]. Pharmacol Ther,2001,92(1):1-20.
    33 Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system:ACE-angiotensin Ⅱ-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis[J]. Hypertens Res, 2009,32(7):533-6.
    34 Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM. Angiotensin-converting enzyme 2 is an essential regulator of heart function[J]. Nature,2002,417(6891):822-8.
    35 Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM. Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1-7) expression in the aorta of spontaneously hypertensive rats[J]. Am J Physiol Heart Circ Physiol,2005,289(3):H1013-9.
    36 Igase M, Kohara K, Nagai T, Miki T, Ferrario CM. Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin Ⅱ type 1 receptor blockade[J]. Hypertens Res,2008,31(3):553-9.
    37 Diez-Freire C, Vazquez J, Correa de Adjounian MF, Ferrari MF, Yuan L, Silver X, Torres R, Raizada MK. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR[J]. Physiol Genomics,2006,27(1):12-9.
    38 Hernandez Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RA, Castellano RK, Lampkins AJ, Gubala V, Ostrov DA, Raizada MK. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents[J]. Hypertension,2008,51(5):1312-7.
    39 Huentelman MJ, Grobe JL, Vazquez J, Stewart JM, Mecca AP, Katovich MJ, Ferrario CM, Raizada MK. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats[J]. Exp Physiol,2005,90(5): 783-90.
    40 Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE. Effect of angiotensin-converting enzyme inhibition and angiotensin Ⅱ receptor blockers on cardiac angiotensin-converting enzyme 2[J]. Circulation,2005; 111(20):2605-10.
    41 Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, Yuan L, Bradford CN, Shenoy V, Oh SP, Katovich MJ, Raizada MK. Prevention of Pulmonary Hypertension by Angiotensin-Converting Enzyme 2 Gene Transfer[J]. Hypertension, 2009,54:365-371.
    42 Rosenberg HC, Rabinovitch M. Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension[J]. Am J Physiol,1988,255:H1484-H1491.
    43 Nicod LP. The endothelium and genetics in pulmonary arterial hypertension[J]. Swiss Med Wkly,2007,137(31-32):437-42.
    44 Vallerie V. McLaughlin and Michael D. McGoon. Pulmonary Arterial Hypertension[J]. Circulation,2006,114:1417-1431
    45 Danilczyk U, Eriksson U, Ouditd GY, Penninger JM. Physiological roles of angiotensin-converting enzyme 2[J]. Cell Mol Life Sci,2004,61:2714-2719
    46 Treml B, Neu N, Kleinsasser A, Gritsch C, Finsterwalder T, Geiger R, Schuster M, Janzek E, Loibner H, Penninger J, Loeckinger A. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets[J]. Crit Care Med,2010,38(2): 596-601.
    47 Reeves JT, Groves BM, Turkevich D. The case for treatment of selected patients with primary pulmonary hypertension[J]. Am Rev Respir Dis,1986,134:342-346.
    48 Hacking WJ, VanBavel E, Spaan JA. Shear stress is not sufficient to control growth of vascular networks:a model study [J]. Am J Physiol,1996,270:H364-H375.
    49 Pasterkamp G, Galis ZS, de Kleijn DP. Expansive arterial remodeling:location, location, location[J]. Arterioscler Thromb Vase Biol,2004,24:650-657.
    50 Zhang C, Zhao YX, Zhang YH, Zhu L, Deng BP, Zhou ZL, Li SY, Lu XT, Song LL, Lei XM, Tang WB, Wang N, Pan CM, Song HD, Liu CX, Dong B, Zhang Y, Cao Y.Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells[J]. Proc Natl Acad Sci USA,2010,107:15886-15891.
    51 Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Diez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ. The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension [J]. Am J Respir Crit Care Med,2010,182:1065-1072.
    52 Hayashi N, Yamamoto K, Ohishi M, Tatara Y, Takeya Y, Shiota A, Oguro R, Iwamoto Y, Takeda M, Rakugi H. The counterregulating role of ACE2 and ACE2-mediated angiotensin 1-7 signaling against angiotensin Ⅱ stimulation in vascular cells[J]. Hypertens Res,2010,33:1182-1185.
    53 Jin XQ, Lu ZQ, Lin X. Effect of ACE2 gene transfection on the proliferation of vascular smooth muscle cells in rats[J]. Zhonghua Yi Xue Za Zhi,2011,91:125-128.
    54 Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM. Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells[J]. Hypertension,2007,50:1093-1098.
    55 Bronicki RA, Baden HP. Pathophysiology of right ventricular failure in pulmonary hypertension[J]. Pediatr Crit Care Med,2010,11(2 Suppl.):S15-S22.
    56 Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure:cellular and molecular mechanisms of right-heart failure in pulmonary hypertension[J]. Chest,2009,135:794-804.
    57 Zisman LS, Asano K, Dutcher DL, Ferdensi A, Robertson AD, Jenkin M, Bush EW, Bohlmeyer T, Perryman MB, Bristow MR. Differential regulation of cardiac angiotensin converting enzyme binding sites and AT1 receptor density in the failing human heart[J]. Circulation,1998,98:1735-1741.
    58 Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury[J]. Nat Med, 2005,11:875-879.
    59 Imai Y, Kuba K, Penninger JM. Angiotensin-converting enzyme 2 in acute respiratory distress syndrome[J]. Cell Mol Life Sci,2007,64:2006-2012.
    60 Santos RA, Ferreira AJ, Pinheiro SV, Sampaio WO, Touyz R, Campagnole-Santos MJ. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs[J]. Expert Opin Investig Drugs,2005,14(8):1019-31
    61 Ren Y, Garvin JL, Carretero AO. Receptor-mediated vasodilation effect of angiotensin 1-7 (Ang 1-7) in the isolated afferent arteriole (Af-Art) [J]. Am J Hypertens,1999,12(4): 58A, (abstract).
    1 Dorfmuller P, Perros F, Balabanian K, Humber M. Inflammation in pulmonary arterial hypertension[J]. Eur Respir J,2003,22:8-363.
    2 Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation[J]. Trends Pharmacol Sci,2008,29:367-374.
    3 Rajamma Mathew. Inflammation and Pulmonary Hypertension[J]. Cardiology in Review,2010,18:67-72
    4 Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, Dartevelle P, Simonneau G, Adnot S, Eddahibi S. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2007, 176(10):1041-7.
    5 Itoh T, Nagaya N, Ishibashi-Ueda H, Kyotani S, Oya H, Sakamaki F, Kimura H, Nakanishi N.Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension[J]. Respirology,2006,11(2):158-63.
    6 Dorfmuller P, Zarka V, Durand-Gasselin I, Monti G, Balabanian K, Garcia G, Capron F, Coulomb-Lhermine A, Marfaing-Koka A, Simonneau G, Emilie D, Humbert M. Chemokine RANTES in severe pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2002,165:534-539.
    7 Bayraktutan U. Free radicals, diabetes and endothelial dysfunction[J]. Diabetes Obes Metab,2002,4:224-238.
    8 Rohit B, Rubin MT, Paul MH. Endothelial Dysfunction in Pulmonary Hypertension [J]. Circulation,2004,109:159-165.
    9 Liischer TF. Endothelial dysfunction:the role and impact of the renin-angiotensin system[J]. Heart,2000,84(Suppl 1):i20-2.
    10 Hyman AL, Hao Q, Tower A, Kadowitz PJ, Champion HC, Gumusel B, Lippton H. Novel catheterization technique for the in vivo measurement of pulmonary vascular responses in rats[J]. Am J Physiol,1998,274:H1218-H1229.
    11 Mathew R, Huang J, Shah M, Patel K, Gewitz M, Sehgal PB. Disruption of endothelial-cell caveolin-lalpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension[J]. Circulation,2004,110: 1499-1506.
    12 Ito KM, Sato M, Ushijima K, Nakai M, Ito K. Alterations of endothelium and smooth muscle function in monocrotaline-induced pulmonary hypertensive arteries[J]. Am J Physiol Heart Circ Physiol,2000,279:H1786-H1795.
    13 Syed R. Baber, Weiwen Deng, Ryan G. Master, Bruce A. Bunnell, Bradley K.Taylor, Subramanyam N. Murthy, Albert L. Hyman and Philip J. Kadowitz. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction[J]. Am J Physiol Heart Circ Physiol,2007, 292:H1120-H1128,.
    14 Thomas MC, Pickering RJ, Tsorotes D, Koitka A, Sheehy K, Bernardi S, Toffoli B, Nguyen-Huu TP, Head GA, Fu Y, Chin-Dusting J, Cooper ME, Tikellis C. Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse[J]. Circ Res,2010,107(7):888-97.
    15 Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, Baltatu OC, Santos RA, Bader M. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function[J]. Hypertension,2008,52:967-973.
    16 Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, Levitt KS, Oudit GY, Al-Omran M, Stewart DJ, Slutsky AS, Peterson MD, Backx PH, Penninger JM, Verma S. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis[J]. Am J Physiol Heart Circ Physiol,2008,295: H1377-H1384.
    17 Santos RA, Brosnihan KB, Jacobsen DW, DiCorleto PE, Ferrario CM. Production of angiotensin-(1-7) by human vascular endothelium[J]. Hypertension,1992,19: Ⅱ56-Ⅱ61.
    18 Tallant EA, Lu X, Weiss RB, Chappell MC, Ferrario CM. Bovine aortic endothelial cells contain an angiotensin-(1-7) receptor[J]. Hypertension,1997,29:388-393.
    19 Faria-Silva R, Duarte FV, Santos RA. Short-term angiotensin(1-7) receptor MAS stimulation improves endothelial function in normotensive rats[J]. Hypertension, 2005,46:948-952.
    20 Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology[J]. Br J Pharmacol,2006,147:S193-S201.
    21 Nakashima H, Suzuki H, Ohtsu H, Chao JY, Utsunomiya H, Frank GD, Eguchi S. Angiotensin Ⅱ regulates vascular and endothelial dysfunction:recent topics of Angiotensin Ⅱ type-1 receptor signaling in the vasculature[J]. Curr Vasc Pharmacol, 2006,4:67-78.
    22 Santos RA, Simo~es e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T. Angiotensin-(1-7) is an endogenous ligand for the G proteincoupled receptor Mas[J]. Proc Natl Acad Sci U S A,2003,100:8258-8263.
    23 Sampaio WO, dos Santos RA, Faria-Silva R, de Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways [J]. Hypertension,2007,49: 185-192.
    24 Gwathmey TM, Pendergrass KD, Reid SD, Rose JC, Diz DI, Chappell MC. Angiotensin-(1-7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus[J]. Hypertension,2010,55: 166-171.
    25 Nishimura T, Faul JL, Berry GJ, Kao PN, Pearl RG. Effect of a surgical aortocaval fistula on monocrotaline-induced pulmonary hypertension[J]. Crit Care Med,2003, 31:1213-1218.
    26 Sakao S, Tatsumi K, Voelkel NF. Reversible or irreversible remodeling in pulmonary arterial hypertension[J]. Am J Respir Cell Mol Biol,2010,43(6):629-34.
    27 Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS, Gebb S, Jones PL. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats:a new model of severe pulmonary arterial hypertension[J]. Circulation,2005,111(22):2988-96.
    28 Lavrentyev EN, Estes AM, Malik KU. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells[J]. Circ Res,2007, 101(5):455-64.
    29晋学庆,卢卓强,林旭.血管紧张素转换酶2基因转染抑制平滑肌细胞增殖.中华医学杂志[J].2011:11;91(2):125-8.
    30 Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of HIF-1 alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol,2009, 297(4):L631-40.
    31 Zhang C, Zhao YX, Zhang YH, Zhu L, Deng BP, Zhou ZL, Li SY, Lu XT, Song LL, Lei XM, Tang WB, Wang N, Pan CM, Song HD, Liu CX, Dong B, Zhang Y, Cao Y.Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells[J]. Proc Natl Acad Sci U S A,2010,107(36):15886-91.
    32 Medzhitov R. Origin and physiological roles of inflammation[J]. Nature,2008,454: 428-435.
    33 Davis C, Fischer J, Ley K, Sarembock IJ. The role of inflammation in vascular injury and repair[J]. J Thromb Haemost,2003,1:1699-1709.
    34 Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension[J]. Am J Respir Crit Care Med,1995,151(5):1628-31.
    35 Voelkel NF, Tuder RM, Bridges J, Arend WP.Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline[J]. Am J Respir Cell Mol Biol,1994,11(6):664-75.
    36 Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension[J]. Circ Res,2009, 104(2):236-44
    37 Fujita M, Mason RJ, Cool C, Shannon JM, Hara N, Fagan KA. Pulmonary hypertension in TNF-alpha-overexpressing mice is associated with decreased VEGF gene expression[J]. J Appl Physiol,2002,93(6):2162-70.
    38 Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK. Evidence for Angiotensin-converting Enzyme 2 as a Therapeutic Target for the Prevention of Pulmonary Hypertension[J]. Am J Respir Crit Care Med,2009,179:1048-1054.
    39 Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY. Loss of angiotensin-converting enzyme 2 enhances TGF-β/Smad-mediated renal fibrosis and NF-KB-driven renal inflammation in a mouse model of obstructive nephropathy[J]. Lab Invest,2012, doi: 10.1038/labinvest.2012.2.
    40 Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, Yuan L, Bradford CN, Shenoy V, Oh SP, Katovich MJ, Raizada MK. Prevention of Pulmonary Hypertension by Angiotensin-Converting Enzyme 2 Gene Transfer[J]. Hypertension,2009,54:365-371.
    1 Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary hypertension[J]. J Am Coll Cardiol,2009, 54(1 Suppl):S43-54.
    2 Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Simonneau G. Pulmonary arterial hypertension in France: results from a national registry [J]. Am J Respir Crit Care Med,2006,173(9):1023-1030.
    3 Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension[J]. Eur Respir J,2007,30(1):104-109.
    4 Butrous G, Ghofrani HA, Grimminger F. Pulmonary vascular disease in the developing world[J]. Circulation,2008,118(17):1758-1766.
    5 Fruchter O, Yigla M. Underlying aetiology of pulmonary hypertension in 191 patients:a single centre experience [J]. Respirology,2008,13(6):825-831.
    6 Robbins IM, Newman JH, Johnson RF, Hemnes AR, Fremont RD, Piana RN, Zhao DX, Byrne DW. Association of the metabolic syndrome with pulmonary venous hypertension[J]. Chest,2009,136(1):31-6.
    7 Thenappan T, Shah SJ, Rich S, Gomberg-Maitland M. A USA-based registry for pulmonary arterial hypertension:1982-2006[J]. Eur Respir J,2007,30(6):1103-1110.
    8 Hopkins WE, Ochoa LL, Richardson GW, Trulock EP. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome [J]. Journal of Heart and Lung Transplantation,1996,15: 100-105.
    9 Condliffe R, Kiely D, Peacock A, Corris P, Gibbs J, Vrapi F, Das C, Elliot C, Johnson M, DeSoyza J, Torpy C, Goldsmith K, Hodgkins D, Hughes R, Pepke-Zaba J, Coghlan J. Connective tissue disease-associated pulmonary arterial hypertension in the modern treatment era[J]. Am J Respir Crit Care Med,2009,179:91-92.
    10 Kuhn KP, Byrne DW, Arbogast PG, Doyle TP, Loyd J, Robbins I. Outcome in 91 consecutive patients with pulmonary arterial hypertension receiving epoprostenol[J]. AJRCCM,2003,167(4):580-586.
    11 Tuder RM, Chacon M, Alger L, Wang J, Taraseviciene-Stewart L, Kasahara Y, Cool CD, Bishop AE, Geraci M, Semenza GL, Yacoub M, Polak JM, Voelkel NF. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis[J]. J Pathol,2001,195(3):367-374.
    12 Levy NT, Liapis H, Eisenberg PR, Botney MD, Trulock EP. Pathologic regression of primary pulmonary hypertension in left native lung following right single-lung transplantation[J]. J Heart Lung Transplant,2001,20(3):381-384.
    13 McMurty IF. Animal Models of Human Severe PAH[J]. Advances in Pulmonary Hypertension,2008,7(3):346-349.
    14 Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells[J]. Faseb J,2005,19(9):1178-80.
    15 Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ. Attenuated K+ channel gene transcription in primary pulmonary hypertension[J]. Lancet,1998,351(9104):726-727.
    16 Guignabert C, Izikki M, Tu LI, Li Z, Zadigue P, Barlier-Mur AM, Hanoun N, Rodman D, Hamon M, Adnot S, Eddahibi S. Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension[J]. Circ Res,2006,98(10):1323-1330.
    17 Young KA, Ivester C, West J, Carr M, Rodman DM. BMP signaling controls PASMC KV channel expression in vitro and in vivo[J]. Am J Physiol Lung Cell Mol Physiol, 2006,290(5):L841-848.
    18 Machado RD, Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, Gruenig E, Janssen B, Koehler R, Seeger W, Eickelberg O, Olschewski H, Elliott CG, Glissmeyer E, Carlquist J, Kim M, Torbicki A, Fijalkowska A, Szewczyk G, Parma J, Abramowicz MJ, Galie N, Morisaki H, Kyotani S, Nakanishi N, Morisaki T, Humbert M, Simonneau G, Sitbon O, Soubrier F, Coulet F, Morrell NW, Trembath RC. Mutations of the TGF-β type II receptor BMPR2 in pulmonary arterial hypertension[J]. Hum Mutat,2006,27:121-32.
    19 Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. The International PPH Consortium[J]. Nat Genet,2000,26:81-4.
    20 Thomson JR, Machado RD, Pauciulo MW, et al. Thomson J, Machado R, Pauciulo M, Morgan N, Humbert M, Elliott G, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs J, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd J, Trembath R, Nichols W.Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family[J]. J Med Genet,2000,37:741-5.
    21 Nickel J, Kotzsch A, Sebald W, Mueller TD. A single residue of GDF-5 defines binding specificity to BMP receptor IB[J]. J Mol Biol,2005,349:933-47.
    22 Upton PD, Long L, Trembath RC, Morrell NW. Functional characterization of bone morphogenetic protein binding sites and Smadl/5 activation in human vascular cells [J]. Mol Pharmacol,2008,73:539-52.
    23 Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, Simonneau G, Galie N, Loyd JE, Humbert M, Nichols WC, Morrell NW, Berg J, Manes A, McGaughran J, Pauciulo M, Wheeler L. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia[J]. N Engl J Med,2001,345:325-34.
    24 Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC, Morrell NW. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor[J]. Circulation,2002,105: 1672-8.
    25 Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension[J]. Circ Res,2005,96:1053-63.
    26 Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JX. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol,2003, 285:L740-54.
    27 Valdimarsdottir G, Goumans MJ, Rosendahl A, Brugman M, Itoh S, Lebrin F, Sideras P, ten Dijke P. Stimulation of Idl expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells [J]. Circulation,2002,106:2263-70.
    28 Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, Granton J, Stewart DJ. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival:implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension[J]. Circ Res,2006,98:209-17.
    29 Eddahibi S, Chaouat A, Morrell N, Fadel E, Fuhrman C, Bugnet A, Dartevelle P, Housset B, Hamon M, Weitzenblum E, Adnot S. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease[J]. Circulation, 2003,108:1839-1844.
    30 Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D, Nicholson A, Rana BK, Channick RN, Rubin LJ, O'Connor DT, Yuan JX. Function of Kvl.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension[J]. Am J Physiol Cell Physiol,2007,292(5):C1837-1853.
    31 Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY, Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, Rubin LJ, Yuan JX. A Functional Single-Nucleotide Polymorphism in the TRPC6 Gene Promoter Associated With Idiopathic Pulmonary Arterial Hypertension[J]. Circulation,2009,119(17): 2313-2322.
    32 Voelkel NF, Cool C, Lee SD, Wright L, Geraci MW, Tuder RM. Primary pulmonary hypertension between inflammation and cancer[J]. Chest,1998,114:225S-230S.
    33 Hanahan D, Weinberg R. The hallmarks of cancer[J]. Cell,2000,100:57-70.
    34 Levy M, Maurey C, Celermajer DS, Vouhe PR, Danel C, Bonnet D, Israel-Biet D. Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease[J]. J Am Coll Cardiol,2007,49:803-810.
    35 McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis ED. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension[J]. J Clin Invest,2005,115:1479-1491.
    36 Norton L, Massague J. Is cancer a disease of self-seeding[J]? Nat Med,2006,12: 875-878
    37 Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D, Voelkel NF. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension[J]. Am J Respir Crit Care Med,1999,159:1925-1932.
    38 Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC. Alterations of cellular bioenergetics in pulmonary artery endothelial cells[J]. Proc Natl Acad Sci USA, 2007,104:1342-1347.
    39 Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet SN, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir E, Archer SL. An abnormal mitochondrial-HIF-1-Kv channel pathway disrupts oxygen-sensing and triggers pulmonary arterial hypertension (PAH) in fawn-hooded rats:similarities to human PAH[J]. Circulation,2006,113:2630-2641.
    40 Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED. A mitochondria-K+channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth[J]. Cancer Cell,2007, 11(1):37-51.
    41 Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK. Mitochondrial metabolism, redox signaling, and fusion:a mitochondria-ROS-HIF-1alpha-Kvl.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer[J]. Am J Physiol Heart Circ Physiol,2008,294(2):H570-8.
    42 McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis[J]. Circ Res,2004,95(8):830-840.
    43 Simonneau G, Fartoukh M, Sitbon O, Humbert M, Jagot JL, Herve P. Primary pulmonary hypertension associated with the use of fenfluramine derivatives [J]. Chest,1998,114: 195S-9S.
    44 Klings ES, Hill NS, Ieong MH, Simms RW, Korn JH, Farber HW Systemic sclerosis-associated pulmonary hypertension:Short-and long-term effects of epoprostenol (prostacyclin) [J]. Arthritis Rheum,1999,42:2638-45.
    45 Sitbon O, Humbert M, Ms X, loos V, Hamid AM, Provencher S, Garcia G, Parent F, Herve P, Simonneau G. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension[J]. Circulation,2005,111:3105-11.
    46 Morales-Blanhir J, Santos S, de Jover L, Sala E, Pare C, Roca J, Rodriguez-Roisin R, Barbera JA. Clinical value of vasodilator test with inhaled nitric oxide for predicting long-term response to oral vasodilators in pulmonary hypertension[J]. Respir Med,2004, 98:225-34.
    47 Schrader BJ, Inber S, Kaufman L. Comparison of the effects of adenosine and nifedipine in pulmonary hypertension[J]. J Am Coll Cardiol,1992,19:1060-4.
    48 Barst RJ, Gibbs JS, Ghofrani HA, Hoeper MM, McLaughlin VV, Rubin LJ, Sitbon O, Tapson VF, Galie N. Updated evidence-based treatment algorithm in pulmonary arterial hypertension[J]. J Am Coll Cardiol,2009,54:S78-84
    49 Galie N, Manes A, Negro L, Palazzini M, Bacchi-Reggiani ML, Branzi A. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension[J]. Eur Heart J,2009,30:394-403.
    50 Rich S, Seidlitz M, Dodin E, Osimani D, Judd D, Genthner D, McLaughlin V, Francis G. The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension[J]. Chest,1998,114:787-92.
    51 Johnson SR, Mehta S, Granton JT. Anticoagulation in pulmonary arterial hypertension:a qualitative systematic review[J]. Eur Respir J,2006,28:999-1004.
    52 Rubin LJ, Groves BM, Reeves JT, Frosolono M, Handel F, Cato AE. Prostacyclin-induced acute pulmonary vasodilation in primary pulmonary hypertension[J]. Circulation,1982,66:334-8.
    53 Simonneau G, Rubin LJ, Galie N, Barst RJ, Fleming TR, Frost AE, Engel PJ, Kramer MR, Burgess G, Collings L, Cossons N, Sitbon O, Badesch DB. Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension:a randomized trial[J]. Ann Intern Med,2008,149(8):521-530.
    54 Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R, Haromy A, St Aubin C, Webster L, Rebeyka IM, Ross DB, Light PE, Dyck JR, Michelakis ED. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility [J]. Circulation, 2007,116:238-48.
    55 Hampl V, Tristani-Firouzi M, Hutsell TC, Archer SL. Nebulized nitric oxide/nucleophile adduct reduces chronic pulmonary hypertension[J]. Cardiovasc Res,1996,31(1):55-62.
    56 Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension:comparison with inhaled nitric oxide[J]. Circulation,2002,105(20): 2398-2403.
    57 Archer SL, Michelakis ED. Phosphodiesterase Type 5 Inhibitors for Pulmonary Arterial Hypertension[J]. N Engl J Med,2009,361:1862-1869.
    58 Rubens C, Ewert R, Halank M, Wensel R, Orzechowski HD, Schultheiss HP, Hoeffken G. Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension[J]. Chest,2001,120:1562-9.
    59 Vatter H, Zimmermann M, Jung C, Weyrauch E, Lang J, Seifert V. Effect of the novel endothelin (A) receptor antagonist LU 208075 on contraction and relaxation of isolated rat basilar artery[J]. Clin Sci (Lond),2002; 103(Suppl 48):408S-13S.
    60 Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F, Rubin LJ. Effects of the dual endothelin-receptor anatgonist bosentan in patients with pulmonary hypertension:A randomized placebo-controlled study [J]. Lancet,2001,358:1119-23.
    61 Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Leconte I, Landzberg M, Simonneau G. Bosentan therapy for pulmonary arterial hypertension[J]. N Engl J Med,2002,346:896-903.
    62 Galie N, Rubin Lj, Hoeper M, Jansa P, Al-Hiti H, Meyer G, Chiossi E, Kusic-Pajic A, Simonneau G.Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (early study):A double-blind, randomised controlled trial[J]. Lancet,2008,371:2093-100.
    63 Galie N, Beghetti M, Gatzoulis MA, Granton J, Berger RM, Lauer A, Chiossi E, Landzberg M; Bosentan Randomized Trial of Endothelin Antagonist Therapy-5 (BREATHE-5) Investigators.Bosetan therapy in patients with eisenmenger Syndrom:A multicenter, double-blind, randomized, placebo-controlled study[J]. Circulation,2006, 114:48-54.
    64 Kawut S, Horn E, Berekashvili K, Lederer D, Widlitz A, Rosenzweig E, Barst R. Selective serotonin reuptake inhibitor use and outcomes in pulmonary arterial hypertension[J]. Pulm Pharmacol Ther,2006,19:370-374.
    65 Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotalineinduced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells:efficacy of combined cell and eNOS gene therapy in established disease[J]. Circ Res,2005,96(4):442-450.
    66 Wang XX, Zhang FR, Shang YP, Zhu JH, Xie XD, Tao QM, Zhu JH, Chen JZ. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension:a pilot randomized controlled trial[J]. J Am Coll Cardiol,2007,49(14):1566-1571
    67 Zhu JH, Wang XX, Zhang FR, Shang YP, Tao QM, Zhu JH, Chen JZ. Safety and efficacy of autologous endothelial progenitor cells transplantation in children with idiopathic pulmonary arterial hypertension:Open-label pilot study[J]. Pediatr Transplant, 2008,12(6):650-655.
    1 Studdy PR, Lapworth R, Bird R. Angiotensin-converting enzyme and its clinical significance-a review[J]. J Clin Pathol,1983,36:938-947.
    2 Lavoie JL, Sigmund CD. Minireview:overview of the reninangiotensin system-an endocrine and paracrine system[J]. Endocrinology,2003,144:2179-2183.
    3 Orte C, Polak JM, Haworth SG, Yacoub MH, Morrell NW. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension[J]. J Pathol,2000,192:379-384.
    4 Morrell NW, Morris KG, Stenmark KR. Role of angiotensin converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension[J]. Am J Physiol,1995, 269:H1186-H1194.
    5 Dezso B, Nielsen AH, Poulsen K. Identification of renin in resident alveolar macrophages and monocytes:HPLC and immunohistochemical study[J]. J Cell Sci,1988, 91:155-159.
    6 Ohkubo H, Nakayama K, Tanaka T, Nakanishi S. Tissue distribution of rat angiotensinogen mRNA and structural analysis of its heterogeneity [J]. J Biol Chem,1986, 261:319-323.
    7 Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD. Angiotensin II type-1 receptor subtype cDNAs:differential tissue expression and hormonal regulation[J]. Biochem Biophys Res Commun,1992,183:1090-1096.
    8 Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature,2003,426:450-454.
    9 Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-conver-ting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase[J]. J Biol Chem,2000,275:33238-33243.
    10 Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxyp ptidase(ACE2) converts angiotensin I to angiotensin 1-9[J]. Circ Res,2000,87:E1-E9.
    11 Turner AJ,Hooper NM. The angiotensin-converting enzyme gene family:genomits and pharmacology[J].Trends Pharmacol Sci,2002,23:177-183.
    12 Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, Wang H, Lin S, Kanwar YS, Makino H. Collectrin,a collecting duct-specific transmembrane glycopro tein,is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys[J]. J Biol Chem,2001,276:17132-17139.
    13 Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1-7)[J]. Hypertension,1997,30:535-541.
    14 Brosnihihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide[J]. Hypertension,1996,27:523-528.
    15 Yamamoto K, Ohishi M, Katsuya T, Ito N, Ikushima M, Kaibe M, Tatara Y, Shiota A, Sugano S, Takeda S, Rakugi H, Ogihara T. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II[J]. Hypertension,2006,47:718-726.
    16 Gorelik G, Carbini LA, Scicli AG. Angiotensin-(1-7) induces bradykinin-mediated relaxation in porcine coronary artery[J]. J Pharmacol Exp Ther,1998,286:403-410.
    17 Deddish PA, Marcic B, Jackman HL, Wang H-Z, Skidgel RA, Erdos EG. N-domain-specific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotenisn-(1-7) and keto-ACE[J]. Hypertension,1998,31:912-917.
    18 Minshall RD, Tan F, Nakamura F, Rabito SF, Becker RP, Marcic B, Erdo's EG. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells[J]. Circ Res,1997,81:848-856
    19 Benzing T, Fleming I, Blaukat A, Muller-Esterl W, Busse R. Angiotensin-converting enzyme inhibitor ramiprilat interferes with the sequenstration of the B2 kinin receptor within the plasma membrane of native endothelial cells[J]. Circulation,1999,99: 2034-2040.
    20 Danser AHJ, Tom B, de Vries R, Saxena PR. L-NAME-resistant bradykinin-induced relaxation in porcine coronary arteries is NO-dependent:effect of ACE inhibition[J]. Br J Pharmacol,2000,131:195-202.
    21 Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin Ⅱ receptors[J]. Hypertension,2004,43:970-976.
    22 Agata J, Ura N, Yoshida H, Shinshi Y, Sasaki H, Hyakkoku M, Taniguchi S, Shimamoto K. Olmesartan is an angiotensin Ⅱ receptor blocker with an inhibitory effect on angiotensin-converting enzyme[J]. Hypertens Res,2006,29:865-874.
    23 Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase[J]. J Biol Chem, 2002,277:14838-14843.
    24 Lu ZQ, Jing XQ. Construction of recombinant eukaryotic expression plasmid containing mice ACE2 gene and effect of ACE2 gene transfection on proliferation of vascular smooth muscle cells[J]. International Journal of Cardiology,2009,137(S1):S131-7.
    25 Wysocki J, Ye M, Rodriguez E, Gonzalez-Pacheco FR, Clara Barrios, Evora K, Schuster M, Loibner H, Brosnihan KB, Ferrario CM, Penninger JM, Batlle D.Targeting the Degradation of Angiotensin Ⅱ With Recombinant Angiotensin-Convertng Enzyme 2. Prevention of Angiotensin Ⅱ-Dependent Hypertension[J]. Hypertension,2009,54(5): 1043-9.
    26 Koka V, Huang XR, Chung ACK, Wang WS, Truong LD, Lan HY. Angiotensin Ⅱ Up-Regulates Angiotensin IConverting Enzyme (ACE), but Down-Regulates ACE2 via the AT1-ERK/p38 MAP Kinase Pathway[J]. Am J Pathol.2008,172:1174-1183.
    27 Huang L, Sexton DJ, Skogerson K, Devlin M, Smith R, Sanyal I, Parry T, Kent R, Enright J, Wu QL, Conley G, DeOliveira D, Morganelli L, Ducar M, Wescott CR, Ladner RC. Novel peptide inhibitors of angiotensin-converting enzyme 2[J]. J Biol Chem,2003, 278(18):15532-40.
    28 Dales NA, Gould AE, Brown JA, Calderwood EF, Guan B, Minor CA, Gavin JM, Hales P, Kaushik VK, Stewart M, Tummino PJ, Vickers CS, Ocain TD, Patane MA. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors [J]. J Am Chem Soc,2002,124(40):11852-3.
    29 Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme[J].FEBS Lett,2002, 532(1-2):107-110.
    30 Douglas GC, O'Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI, Lew RA. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis[J]. Endocrinology,2004,145(10):4703-11.
    31 Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. Tisue distribution of ACE2 protein, the functional receptor for SARS coronavirus.A first step in understanding SARS pathogenesis[J]. J Pathol,2004,203(2):631-637.
    32 Wiener RS, Cao YX, Hinds A, Ramirez MI, Williams MC. Angiotensin converting enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung[J]. J Cell Biochem,2007,101(5):1278-91.
    33 Ren X, Glende J, A1-Falah M, de Vries V, Schwegmann-Wessels C, Qu X, Tan L, Tschernig T, Deng H, Naim HY, Herrler G. Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus[J]. J Gen Virol,2006,87(Pt 6):1691-1695.
    34 Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review[J]. Intern Med,2009,48(9):621-30.
    35 Imai Y, Kuba K, Penninger JM. The rennin-angiotensin system in acute respiratory distress syndrome[J]. Drug Discovery Today:Disease Mechanisms,2006,3(2):255-259.
    36 Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL, Yang PC. Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome[J]. Crit Care Med,2006,34(4):1001-1006.
    37 Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure[J]. Nature, 2005,436:112-116.
    38 Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury[J]. Nat Med,2005,11: 875-879.
    39 Eric C.Mossel, Jieru Wang,Scott Jeffers. SARS-CoV replicates in primary human alveolar type Ⅱ cell cultures but not in type I-like cells[J]. Virology,2008,372:127-135.
    40 Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice[J]. Exp Physiol,2008,93(5):543-8.
    41 Glowacka I, Bertram S, Herzog P. Differential downregulation of ACE2 by the spike proteins of SARS-coronavirus and human coronavirus NL63[J]. J Virol,2009,83(22): 11996-12001.
    42 Jia HP, Look DC, Tan P, Shi L, Hickey M,Gakhar L, Chappell MC, Wohlford-Lenane C, McCray PB. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia[J]. Am J Physiol Lung Cell Mol Physiol,2009,297(1):L84-96.
    43 Pinar Yildiz. Molecular mechanisms of pulmonary hypertension[J]. Clinica Chimica Acta,2009,403:9-16.
    44 Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, Yuan LH, Bradford CN, Shenoy V, Oh SP, Katovich MJ, Raizada MK. Prevention of Pulmonary Hypertension by Angiotensin-Converting Enzyme 2 Gene Transfer[J]. Hypertension, 2009,54:365-371.
    45 Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of HIF-1α in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol,2009,297(4):L631-40.
    46 Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension[J]. Am J Respir Crit Care Med.2009,179(11):1048-54.
    47 Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis[J]. Am J Pathol,2009,175(1):3-16.
    48 Olson AL, Swigris JJ, Lezotte DC, Norris JM, Wilson CG, Brown KK. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003[J]. Am J Respir Crit Care Med,2007,176:277-284.
    49 Li X, Zhuang J, Rayford H, Zhang H, Shu R, Uhal BD. Attenuation of bleomycin-induced pulmonary fibrosis by intratracheal administration of antisense oligonucleotides against angiotensinogen mRNA[J]. Curr Pharm Design,2007,13: 1257-1268.
    50 Li XP, Molina-Molina M, Abdul-Hafe A, Uhal V,Xaubet A, Uhal BD. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis[J]. Am J Physiol Lung Cell Mol Physiol,2008,295:L178-L185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700