微波辅助下羟乙基壳聚糖/聚乳酸接枝共聚物的合成与生物相容性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用微波辅助合成法,以羟乙基壳聚糖为大分子引发剂引发丙交酯开环聚合,成功合成了一系列不同组成的羟乙基壳聚糖/聚乳酸接枝共聚物(HECS-g-PLA)。
     为了降低壳聚糖的结晶性能以及其分子间或分子内较强的氢键作用,提高壳聚糖的反应活性,获得接枝率高的共聚物,本研究分别以羟乙基壳聚糖和壳聚糖为大分子引发剂引发丙交酯开环聚合,系统研究和比较了两者引发丙交酯开环聚合的反应活性,结果显示羟乙基化改性可明显提高壳聚糖的反应活性,壳聚糖/聚乳酸接枝共聚物的接枝率为225%,而相应的羟乙基壳聚糖/聚乳酸共聚物提高到307%。进一步以羟乙基壳聚糖为大分子引发剂,分别采用传统封管热聚合法和微波辅助法实施该共聚合反应,考察了聚合方法对该接枝共聚合反应的影响,结果表明,微波辅助聚合15min获得的共聚物和封管热聚合24h获得的共聚物具有相近的接枝率,这表明微波辅助可有效提高聚合反应速率,大大缩短聚合反应时间。
     在上述研究基础上,以羟乙基壳聚糖为大分子引发剂,通过正交试验确定最佳的聚合条件:催化剂按照nD,L-LA:n辛酸亚锡为1000:1投入,微波辐射功率10W,120℃下反应时间为15min。在最佳的聚合条件下,采用不同的原料投料比(nD,L-LA:nHECS糖单元:20:1,30:1,40:1),通过微波辅助聚合方法制备了一系列不同组成的HECS-g-PLA,通过FTIR、1H-NMR、X-RD、元素分析、DSC、TG等测试方法,系统研究了nD,L-LA:nHECS糖单元投料比对共聚物的组成与结构、产率、接枝率和性能的影响。结果表明共聚物的接枝率可控,接枝率随着投料比的增加而增加,其中投料比为40:1,可得接枝率最大为307%的共聚物,该共聚物的单位糖环平均乳酰单元数为24.1。产物颜色随着投料比的增加,由深黄色向淡黄色变化,可溶于DMSO,锡残留量为0.658mg/g; X-RD分析结果表明随着投料比的增大,产率增大,共聚物的接枝率增大,结晶性能下降。DSC、TG分析结果表明随着投料比的增大,玻璃化转变温度升高,裂解温度下降。表面接触角和吸水率测试显示,HECS的含量对PDLLA的亲水性有改善作用,HECS的含量越高,HECS的亲水性越好。
     从体外降解、细胞毒性、溶血试验、动态凝血、QCM等手段考察了材料的生物学性能。降解结果表明所得共聚物的降解速率和产物的接枝率密切相关,接枝率越高降解速率越快,失重曲线显示HECS可以减缓PDLLA的降解速率。FTIR谱图显示共聚物前8w的降解主要发生在聚乳酸链段上,pH值变化曲线显示HECS对PDLLA降解带来的酸性有缓冲作用;溶血试验结果显示,该材料的溶血率为1.04,无溶血作用;动态凝血和QCM蛋
     白吸附结果显示该材料有利于白蛋白吸附,BCI曲线坡度较PDLLA平缓,这些表明了HECS-g-PLA的抗凝血性能比PDLLA好。体外细胞培养结果显示,HECS-g-PLA的细胞毒性较PDLLA小,细胞毒性级别为1,浸提体液中的细胞生长情况较好。
Using a new method—microwave-irradiation to get the Hydroxyethylated chitosan-graft-poly(D,L-lactide) (HECS-g-PLA)copolymer, the graft copolymerization was carried out by ring opening polymerisation(ROP) using stannous octoate (Sn(oct)2) as catalyst without any organic solvent.
     It is showed that hydroxyethylated chitosan(HECS) have higher reaction activity than CS as initiator for ROP of D,L-lactide at same condition.The grafting percentage of HECS-g-PLA is 307%, while CS-g-PLA is 225%. Because hydroxyethylation can decrease the crystallinity and hydrogen bond interaction of CS, increase the reaction activity. The grafting percentage of HECS-g-PLA synthesized by microwave-assisted ROP(MAROP) for 24h approximately equal to closed-tube polymerization(CTROP) for 15min.The result show MAROP would significantly increase polymerization rate and decrease polymerization time using same initiator compare with using CTROP.Base on those result, orthogonal experiment was used to conform the best synthesis condition, which the copolymer was synthesized at 120℃under 15min microwave radian,with the dosage of Sn(oct)2 1000:1.Using this reaction condition and changing the nD,L-LA/nHECS feed ratio(D,L-lactide/aminoglucoside units molar ratio) from 20:1 to 40:1, get a serial of HECS-g-PLA copolymer.The structure of the copolymer was characterized by FTIR, 1HNMR and EA, its crystal property was studied by WXRD, its thermostability was studied by DSC and TG, the effect of feed ratio on productivity and grafting percentage was also studied. The copolymers'grafting percentage can be controlled. the HECS-g-PLA40 copolymer's grafting percentage was 307%, the average degree of polymerization of polylactide branch chains on the graft copolymer is 24.1. The result of X-RD show the higher feed ratios led to copolymer with lower crystallinity, while the result of DSC and TG show the higher feed ratios led to copolymer with higer Tg but lower temperature of degradation.The colour of copolymer change from deep orange to light orange.The copolymer can resolve in DMSO.The Residue of Sn in the copolymer is 0.658mg/g. The conten of HECS in copolymer can improve the hydrophilic nature,the high content of HECS,the high hydrophilic nature copolymer obtained.
     The results of vitro degradation test by physiologicalsaline indicated that we can adjust the degradation velocity of the products and PH value by change of the feed ratio, which can reduce acidity of the degradation product of the pure PDLLA and decrease the degradation rate of PDLLA. FTIR spectra of degradation at 8w show that degradation react in
     polylactide branch chains.Cell culture of vitro was assessed using the MTT assay, the results show that in vitro the copolymers' biocompatibility is more better than PDLLA, and the HECS-g-PLA system's cell viabilitys was much better than the PDLLA systerm. The results of hemolysis test and dynamic blood-clotting test indicated that the copolymers consistent with the standard of test's requirement, and the HECS-g-PLA system was much better than the PDLLA.The QCM-D analytic results of HECS-g-PLA show that the content of HECS can increase the adsorption of BSA,which can improve the anti-coagulant ability.
引文
[1]周长忍.生物材料学[M].中国医药科技出版社,2004,第1版,288
    [2]黄明华,陈庆华,刘美红,李自良.组织工程支架材料研究进展及发展趋势[J].材料导报,2006,(S2):365
    [3]Yang S, Leong K-F, Du Z, Chua C-K, The design of scaffolds for use in tissue engineering. Tissue Engineering,2007,25(6):679-689
    [4]颜文龙,孙恩杰,郭海英.组织工程支架材料[J].上海生物医学工程,2004,25(1):51
    [5]Jui-Che L, Yui-Fang C, Chuh-Yung C. Surface character-ization and platelet adhesion studies of plasma polymerized phosphate and its copolymers with dimethylsulfate [J]. Biomaterials,1999,20(15):1439
    [6]郇春艳,胡平.组织工程用生物材料的表面修饰技术[J].化工进展,2003,22(1):13
    [7]任杰,张乃文.具有细胞识别信号的组织工程支架材料的研究[J].材料导报,2004,18(1):61
    [8]Kewal. K. Jain. Regenerative Medicine and Tissue Engineering. The Handbook of Nanomedicine,2008,303-309
    [9]James Velema. Biopolymer-Based Biomaterials as Scaffolds for Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, Volume 102,2006,187-238
    [10]周其凤胡汉杰.跨世纪的高分子科学—高分子化学.化学工业出版社,2001,第1版,91
    [11]王园园,宋华,柳艳修.微波促进有机合成化学的应用进展[J].天津化工,2008,(5).
    [12]薛叙明.精细有机合成技术[M].化学工业出版社,2005,1:39.
    [13]徐宗美,谢毓元.化学通报[J],1993,6:8-11.
    [14]李军等.合成化学[J],2000,8(4):321~325.
    [15]Michael D, MingosP, J. Chem Commun[J].1996:900.
    [16]倪春梅,盛凤军.微波合成技术及在有机合成中的应用[J].广州化工,2004,32(2):13.
    [17]龙明策等.高吸水性树脂的微波辐射合成工艺及性能研究[J].高分子材料科学与工程,2002,18(16):205.
    [18]Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura SI. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials[J],2005; 26:611-619
    [19]Chen J S, Li Q H, Xu J T, Huang Y X, Ding Y, Deng H W, Zhao S B, Chen R. Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea. Artif Organs [J],2005,29:104-113
    [20]Mao J S, Zhao L G, Yao K D, Shang Q X, Yang G H, Cao Y L. Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res[J],2003,64A:301-308
    [21]Ma Lie, Gao Changyou, Mao Zhengwei, Zhou Jie, Shen Jiacong, Hu Xueqing, Han Chunmao. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials[J],2003,24:4833-4841
    [22]Constantia E, Wolf ram Frick, Udo Losert, et al. Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering. Inter J pHarm[J],2003,256:183~189
    [23]丁珊,李立华,周长忍.新型组织工程支架材料.生物医学工程学杂志[J],2002:19:122~126
    [24]李立华,李红,罗丙红,周长忍.壳聚糖及其衍生物在组织工程中的应用.功能高分子学报[J],2005,18:347-351
    [25]M. Fujioka, H. Okada, Y. Kusaka, S. Nishiyama, H. Noguchi, S. Ishii and Y. Yoshida, Enzymatic synthesis of chitin-and chitosan-graft-aliphatic polyesters, Macromol. Rapid Commun[J].2004,25:1776-1780.
    [26]Hua YANG, Shao Bing ZHOU, Xi an Mo DENG. Chinese Chemical Letters [J],16(1):123-126,2005
    [27]施云峰,谢德明,周长忍.材料科学与工程学报[J].26(1):115-119
    [28]Albertsson, A. C.,& Varma, I. K. Biomacromolecules[J],2003,4:1466.
    [29]Xu, J., Guo, B. H., Zhou, J. J., Lin, L., Jing, W.,& Kowalczuk, M. (2005):Observation of banded spherulites in pure poly(L-lactide) and itsmiscible blends with amorphous polymers. Polymer[J],46:9176
    [30]Dilip Depan. Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomaterialia[J],2009,5(1),:93-100
    [31]Geng Li a, Yonglong Zhuang b, Qing Mu a, Mozhen Wang a, Yue'e Fang. Carbohydrate Polymers[J],2005
    [32]Y. Liu, F. Tian and K. A. Hu. Carbohydrate Research[J],2004,339:845-851
    [33]Yan Wu, Yongli Zheng, Wuli Yang, Changchun Wang, Jianhua Hu, Shoukuan Fu. Carbohydrate Polymers[J],2005,59,165-171
    [34]Gisha Elizabeth Luckachan, C.K. S. Pillai. Carbohydrate Polymers[J],2006,64,254-266
    [35]Yao, F. L., Chen, W., Liu, C.,& Yao, K. D.Journal of Applied Polymer[J] Science,89, 3850.
    [36]丁盈红,黄小文,张红.微波辐射制备壳聚糖.化学试剂[J],2003,25(1):41-42.
    [37]居红芳.微波新技术制备壳聚糖的研究.常熟高专学报[J],2004,18(4):56~59
    [38]张立彦,曾庆孝,李作为等.密闭条件下微波场中甲壳素脱乙酰反应的条件研究.化工进展[J].2005,24(3):295~298
    [39]郭国瑞,钟海山,王科军等.微波作用下甲壳素的脱乙酰化和壳聚糖的羧甲基化.赣南师范学院学报[J],1997,3:57~59
    [40]徐云龙,冯屏,钱秀珍等.微波合成羧甲基壳聚糖.华东理工大学学报[J],2003,29(4):380-383
    [41]关丽,王燕妹,李国明等.微波辐射制备羧甲基壳聚糖研究初探.广东药学院学报[J],2003,19(4):307-309
    [42]罗登科,葛华才.微波辐射水溶液体系壳聚糖羧甲基化反应的研究.广州化学[J],2004,29(3):14-17
    [43]郝红英,徐文国,邵自强.微波法制备羧甲基壳聚糖及其在水处理中的应用.高分子材料科学与工程[J],2006,22(2):223~226
    [44]来水利,王青玲,胡益平.微波作用下磺化羟乙基壳聚糖制备的初步研究.陕西科技大学学报[J],2005,23(5):62~64
    [45]马宁,汪琴,孙胜玲等.甲壳素和壳聚糖化学改性研究进展.化学进展[J],2004,16(4):643~653
    [46]Xing R G, Liu S, Yu H H, et al. Preparation of low-molecular-weight and high-sulfate-content antioxidant activity in vitro. Carbohydrate Research[J],2004,339:2515~2519
    [47]李鹏程,刘松.磺化壳聚糖的金属混合物及其制备方法.发明专利公开说明书,2006
    [48]董奇志,郭振楚,谭凤娇.微波作用下壳聚糖的O-苯甲基化反应.南京化工大学学报[J],2001,23(1):72~74
    [49]董奇志,郭振楚,谭凤娇.微波作用下壳聚糖的O-苄基化反应.合成化学[J],2001,9(6):560-562,
    [50]董奇志,郭振楚.微波作用下壳聚糖的O-烷基化反应.湘潭大学自然科学学报[J],2001,23(2):57~60
    [51]Vandana S,Devendra N T, Ashutosh T, et al. Microwave promoted synthesis of chitosan-graft-poly(acrylonitrile). Appl. Polym. Sci. [J],2005,95(4):820-825
    [52]Vandana S, Ashutosh T, Devendra N T, et al. Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer[J],2006,47(1):254~260
    [53]Liu L, Li Y, Fang Y, et al. Microwave-assisted graft copolymerization of ε-caprolactone onto chitosan via the pHthaloyl protection method. Carbohydrate Polymers [J],2005,60(3):351~356
    [54]Aime S, Gianolio E; Uggeri F, et al. New paramagnetic supramolecular adducts for MRI applications based on non-covalent interactions between Gd(Ⅲ)-complexes and-cyclodextrin units anchored to chitosan. Journal of inorganic biochemistry [J],2006,100(56):931~938
    [55]Sandor K, Ildiko B, Gyorgy D, et al. Fast microwave-mediated bulk polymerization of D, L-lactic acid. Macromolecular Rapid Commun[J],2001,22(13):1063~1605
    [56]杨秀英,张德庆.微波法合成低分子量聚L-乳酸研究.齐齐哈尔大学学报[J],2005,24(4):17-20
    [57]Liu L J, Zhang C. Microwave-assisted polymerization of D, L-lactide with stannous octanoate as catalyst. Chin. Chem. Lett. [J],2001,12(8):663~664
    [58]刘立建,廖立琼,宋英等.己内酯和丙交酯的微波辅助开环聚合反应.高分子通报[J],2003,5:1-6
    [59]Zhang C, Liao L Q, Liu L J. Rapid ring-opening polymerization of D, L-lactide by microwaves. Macromolecular Rapid Communications[J],2004,25(15):1402~1405
    [60]张科,王鹏,李文科等.聚乳酸的微波辐射合成方法研究.高分子材料科学与工程[J],2004,20(3):46~48
    [61]舒静,王鹏,张科等.聚D,L-丙交酯的常压微波辐射合成.高校化学工程学报[J],2005,19(4):498-502
    [62]Shu J, Wang P, Zheng T, et al. Microwave-irradiated ring-opening polymerization of D, L-lactide under atmospHere. Appl. Polym. Sci. [J],2006,100(3):2244~2247
    [63]王鹏,舒静.微波下PLLA的熔融缩聚反应.发明专利公开说明书,2005
    [64]曾庆慧,罗丙红,杨媛,赵剑豪,周长忍,低温常压下高分子量左旋聚乳酸的微波合成及表征[J].功能材料,2007,(6).
    [65]Pandey A, Aswath P B. Microwave synthesis of Poly L-Lactic Acid and Polyglycolic Acid blends for medical application.60th Southwest Regional Meeting of the American Chemical Society, University of Texas at Arlington, USA,2004
    [66]Imbronito A V, Scarano A, Orsini G, Ultrastructure of bone healing in defects grafted with a copolymer of polylactic/polyglycolic acids. Journal of biomedical materials research[J], 2005,74(2):215-221
    [67]Ritsuko N, Daisuke S, Hidematsu S, Kazuhiko T. Macromol. Rapid Commun[J].2007,28:437
    [68]Zhang C, Liao L Q, Gong S Q (Sarah). Macromol. Rapid Commun[J].2007,28:422
    [69]聂莉,吴晓芳,伊萍,曲宁,李敏,徐伟.壳聚糖中脱乙酰度测定方法的探讨[J].中国卫生检验杂志[J],2005,(3).
    [70]贺岚,白海红,艾有年.粘度法测定壳聚糖分子量的一些体会[J].中国卫生检验杂志[J],2001,(5).
    [71]陈鲁生,周武,姜云生.壳聚糖粘均分子量的测定[J].化学通报,1996,(4).
    [721邵健,景晓辉,杨宇民.分光光度法测定壳聚糖抗菌纤维中的壳聚糖含量[J].针织工业,2007,(12).
    [73]陈伶俐,宗莉,庞瑞.分光光度法测定壳聚糖含量[J].药物分析杂志,2005,(5).
    [74]许晶,周雪琴,姚康德,迟玮,刘东志.水溶性O-羟乙基壳聚糖的合成[J].化学研究与应用,2004,(2).
    [75]杨菊林,周长忍,田冶,谢琼玉,.磷酸化壳聚糖/海藻酸复合膜蛋白吸附的QCM研究[J].暨南大学学报(自然科学版),2007,(5).
    [76]王世亮,储成顶,俞敏,祝牡丹.石墨炉原子吸收光谱法测定药用辅料聚乳酸中残留锡[J].理化检验(化学分册),2008,(6).
    [77]张奕,曾戎,周长忍,何柱国,梁志红.基于QCM-D的天然多糖材料的蛋白吸附研究[J].功能材料,2009,(2).
    [78]田金环,焦延鹏,丁珊,罗丙红,田冶,周长忍.聚乳酸表面的氨等离子处理及成骨细胞相容性研究[J].中国生物医学工程学报,2008,(2).
    [79]陈良龙,王万春,阮建明,卢畅,黄添隆,.骨粉/聚乳酸内固定材料的细胞毒性试验[J].医学临床研究,2007,(3).
    [80]刘晓军,汪海滨,.聚乳酸和聚乙醇酸及其共聚物细胞毒性的评价[J].中国临床康复,2005,(46).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700