小麦慢白粉、慢条锈抗性QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦白粉病和条锈病是影响小麦生产的重要病害,培育抗病品种是防治白粉病和条锈病的重要举措。研究小麦慢白粉和慢条锈抗性遗传,发掘其抗病QTL及紧密连锁的分子标记,有助于加快慢病品种的选育、提高抗病育种的效率。
     本研究利用432个SSR、RFLP和STS等标记分析来自日本小麦品种Fukuho-Komugi和以色列小麦品种Oligoculm杂交的107个DH株系。2003-04和2004-05年分别在北京中国农科院和河南安阳中国农科院棉花所试验地进行白粉病抗性鉴定,安阳试验点秋播,北京点春播,试验采用随机区组设计,设置三次重复。北京点用强毒性小种E20进行人工接种,安阳点自然发病。北京点接种后4周开始调查倒二叶的病情严重度(白粉菌孢子堆面积占整个倒二叶面积的百分数),每隔一周调查一次,一共调查四次;安阳点只在五月中旬发病高峰调查一次。结果表明,白粉病最大严重度(maximum disease severity,MDS)在两年两点的遗传力在0.82到0.93之间,AUDPC(area under the disease progress curve)的广义遗传力在0.84到0.91之间;用MDS和AUDPC两个参数,采用复合区间作图法发现4个白粉病的成株抗性QTL,分别位于1AS、2BL、4BL和7DS上,可解释表型变异的5.7%到26.6%。其中位于1AS上的QTL最稳定,且具有最大的遗传效应,在两种环境条件下分别解释表型变异的19.5%-26.6%。在北京点MDS和AUDPC的相关系数达到0.90。
     百农64/京双16的DH群体104个系,于2005-06年秋季播种于北京中国农科院和河南安阳中国农科院棉花所试验地,试验采用随机区组设计,三次重复。北京点用强毒性小种E20人工接种,安阳点自然发病。北京点接种后4周开始调查倒二叶的病情严重度,每隔一周调查一次,一共调查四次;安阳点只在五月中旬发病高峰期调查一次。北京点的MDS的广义遗传力为0.9,安阳点的MDS广义遗传力为0.69。北京点的AUDPC与北京点的MDS相关系数为0.79,与安阳点的MDS之间的相关系数为0.68,北京点MDS与安阳点的MDS相关系数为0.54。根据先前该群体F_(2∶3)家系的初步研究结果,选取2B、7A等染色体上的23个SSR标记对DH群体进行分析。T测验结果表明,gwm282(7A)、gwm332.1(7A)、gwm570(6A/6B)和J116的两种基因型的相应表型值差异极显著,说明该群体的慢白粉抗性基因可能与上述标记连锁。
     Strampelli/辉县红的F_(2∶3)家系,于2004-05和2005-06年度在甘肃天水进行田间抗条锈病鉴定。试验采用随机区组设计,设置三次重复。天水试验点自然发病良好,每年从5月25开始调查,每隔一周调查一次,一共调查三次。结果表明,Strampelli/辉县红F_(2∶3)家系05年MDS的广义遗传力为0.89,06年MDS广义遗传力为0.87;05年与06年两年平均AUDPC与MDS之间的相关系数是0.95。
     平原50/铭贤169的F_(2∶3)家系和DH群体,2005-06年在甘肃天水进行田间抗条锈病鉴定,试验采用随机区组设计,三次重复。天水点自然发病良好,自5月底开始第一次调查,每隔一周调查一次,一共调查三次。结果表明,F_(2∶3)家系MDS的广义遗传力为0.71,DH群体MDS的广义遗传力为0.87;F_(2∶3)家系AUDPC与MDS之间的相关系数为0.87;DH群体的AUDPC与MDS之间的相关系数为0.89。
Powdery mildew and stripe rust, caused by Blumeria graminis f. sp. tritici and Puccinia striiformis f. sp. tirtici, respectively, are the most damaging diseases in common wheat (Triticum aestivum L). Utilization of resistant cultivars is an effective way to control the disease. Identification of powdery mildew and stripe rust resistance genes is essential for breeding resistant wheat cultivars.This study included quantitative trait loci mapping for adult-plant resistance to powdery mildew and analysis of slow stripe rust resistance in common wheat.
     In the present study, a total of 432 molecular markers were used to map QTL for adult-plant resistance (APR) to powdery mildew in a doubled haploid (DH) population with 107 lines derived from the cross Fukuho-komugi/Oligoculm. Field trials were conducted in Beijing and Anyang during 2003-04 and 2004-05 cropping seasons, respectively. The DH lines were planted in a randomized complete block design with three replicates. Artificial inoculationwas carried out in Beijing with highly virulent isolate E20 of Blumeria graminis f. sp. tritici and the powdery mildew severity on penultimate leaf was evaluated for four times. The maximum disease severity (MDS) on penultimate leaf was investigated in Anyang under natural inoculation around May 18, 2004 and 2005. With the method of composite interval mapping (CIM), four quantitative trait loci (QTL) for APR to powdery mildew were detected on chromosomes 1AS, 2BL, 4BL, and 7DS, explaining 5.1%-26.6% of phenotypic variance. The QTL on chromosome 1AS showed high geneti fect on powdery mildew resistance, accounting for 19.5%-26.6% of phenotypic variance across two environments. The heritability of resistance to powdery mildew for maximum disease severity (MDS) in two years and two locations ranged from 0.82 to 0.93, while the heritability for AUDPC was between 0.84 and 0.91.
     The double haploid (DH) population with 104 lines derived from the cross Bainong64/Jingshuang16 was planted during 2005-06 cropping season in Beijing and Anyang, respectively. The experiment design was in a randomized complete block with three replictes. Artificial inoculation was carried out in Beijing with highly virulent isolate E20 of Blumeria graminis f. sp. tritici and the powdery mildew severity on penultimate leaf was evaluated for the first time 4 weeks after inoculation and then at a weekly interval, with a total of four scorings. The maximum disease severity (MDS) on penultimate leaf was investigated in Anyang under natural inoculation around May 18, 2006. The broad sense heritability of resistance to powdery mildew for maximum disease severity (MDS) in Beijing was 0.9, while that in Anyang was 0.69. The correlation coefficient was 0.79 between the AUDPC and MDS in Beijing, 0.68 between AUDPC in Beijing and MDS in Anyang, and 0.54 between MDS in Beijing and Anyang. Based on the previous mappi esults with the F_(2:3) lines from the same cross, we selected 23 markers on chromosome 2B、7A and so on to genotype the DH population. The results of T-test indicated that the markers gwm282 (7A), gwm332.1 (7A) , gwm570 (6A/6B) and J116 were related to the phynotpic variance significantly, indicating the QTL for slow powdery mildew was likely to be linked with these markers.
     F_(2:3) lines from the cross Strampelli/Huixianhong were planted in Tianshui, Gansu Province during the 2004-05 and 2005-06 cropping seasons in a randomized complete block with three replicates. Every year the stripe rust severity of the population was evaluated under natural disease pressure on May 25 for the first time, and scored for three times in total at a weekly interval. The results indicated that the broad sense heritability of the MDS in 2005 was 0.89, while that in 2006 was 0.87; the correlation coefficient between the average AUDPC and MDS of two years was 0.95.
     The F_(2:3) and DH lines from the cross Pingyuan50/Mingxian169 were planted in the Tianshui, Gansu Province during 2005-06 cropping season. The field trial was conducted in a randomized complete block with three replicites. The stripe rust severity was evaluated under natural disease pressure from late May on, and scored for three times totally at a weekly interval. The results showed that the broad sense heritability of the MDS of the F_(2:3) lines was 0.71, while that of the DH population was 0.87; the correlation coefficient was 0.87 between AUDPC and MDS in the F_(2:3) lines, and 0.89 between AUDPC and MDS in the DH population.
引文
1.代君丽,我国小麦农家品种抗条锈基因分析,2002,西北农林科技大学硕士学位论文。
    2.方宣钧,吴为人,唐纪良。作物DNA标记辅助育种。科学出版社,2002
    3.何家泌。1994,小麦抗病遗传学 北京 中国农业出版社
    4.胡延吉,李晴祺,伊承佾。1992,普通小麦抗白粉病配合力及其与过氧化物酶的关系.华北农学报,7(2):46-50。
    5.金善宝。中国小麦学,中国农业出版社,北京:1996
    6.李师默,小麦条锈病基因YrC591分子标记的建立及应用,2001,硕士毕业论文。
    7.李振岐,商鸿生,小麦条锈病及其防治 上海科技出版社,1989。
    8.刘红彦,小麦抗条锈病基因分子标记的建立,1999,博士学位论文。
    9.刘金元,陶文静,刘大钧等。2000,小麦抗白粉病基因Pm2紧密连锁的RAPD标记的筛选研究。遗传学报,27(12):1072-1079
    10.庞家智,孙荣锦,杨之刚等。1994,丰抗2号冬小麦抗锈性基因的染色体定位研究,植物病理学报,24(3):279-283。
    11.齐丽丽,陈佩度,刘大钧等。1995,小麦白粉病新抗源Pm21作物学报,21:257—262。
    12.邵映田,牛永春,朱立煌等。小麦抗条锈病基因Yr10得AFLP标记,科学通报,2001,46(8):669-672
    13.盛宝钦。小麦慢发性抗白粉病品种坚定,北京农业科学,1990,8(3):43—45。
    14.舒文华,沈克全,杨作民。1990,小麦抗病性遗传Ⅳ:抗条锈小麦品系绿7蚰和抗叶锈小麦品系Yantar的抗病基因定位研究,作物学报16(4):289—298。
    15.王兰芬,小麦白粉病、条锈病抗性基因得遗传分析及分子标记。中国农业科学院硕士学位论文,1999年6月
    16.王心宇等,小麦白粉病基因Pm6的RAPD标记。遗传学报,2000,27(12):1072-1079
    17.王新望,王军丽,段霞瑜等,普通小麦中来自的抗白粉病Pm20基因的抗谱分析和AFLP定位。科学通报,2001,46,8:666-669
    18.王竹林,王德森,何中虎等,小麦品种百农64慢白粉病抗性QTL的定位。中国农业科学,2006,39(10):1956-1961。
    19.谢超杰,倪中福,孙其信等,利用小麦微卫星标记定位一个来自野生二粒小麦的抗白粉病基因[J]。遗传学报,2001,28(11):1034-103911
    20.徐世昌,张敬原,赵文生等,小麦京核891-1抗条锈病主效微效基因的遗传分析。中国农业科学2001,34(3):272-276。
    21.杨作民,唐伯让,沈克全等,夏先春。小麦育种的战略问题—锈病和白粉病第二抗源的建立和利用,作物学报,1994,20(4):385-394
    22.曾士迈,张树榛,植物抗病育种的流行学研究。科学出版社,1998
    23.钟鸣,2000,沈阳农业大学博士学位论文
    24.朱军,遗传模型分析方法。中国农业出版社,1997
    25. Bennett, F. G. A. 1984. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol. 33: 279-300.
    26. Borner, A., Roder, M. S., Unger, O. and Meinel, A. 2000. The detection and molecular mapping of a major gene for non specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor. Appl. Genet. 100: 1095-1099.
    27. Boukhatem, N., Baret, P. V., Mingeot, D. and Jacquemin, J. M. 2002. Quantitative trait loci for resistance against yellow rust in two wheat-derived inbred wheat line populations. Theor. Appl. Genet. 104: 111-118.
    28. Calonnec, A. and Johnson, R. 1998. Chromosomal location of genes for resistance to Puccinia striiformis in the wheat line TP1295 selected from the cross of Soissonais-Desprez with Lemhi. Euro. J. Plant. Pathol. 104: 835-847.
    29. Cenci, A. D., Ovidio, R., and Tanzarella, O. A. 1999. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor. Appl. Genet. 98: 448-454.
    30. Ceolni, C. 1992. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas 116: 239-245.
    31. Chague, V., Fahima, T., Dahan, A., Sun, G. L., Korol, A. B., Ronin, Y. I., Grama, A., Roder, M. S. and Nevo, E. 1999. Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42: 1050-1056.
    32. Chantret, N., Mingeot, D., Sourdillle, P., Bernard, M., Jacquemin, J. M., and Dousdinault, G. 2001. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor. Appl. Genet. 103: 962-91.
    33. Chao, S., and Sharp, P. J.1989. RFLP based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78: 495-504.
    34. Chen, X. M., and Line, R. F. 1993. Inheritance of stripe rust resistance in wheat cultivars postulated to have resistance gene at Yr3 and Yr4 loci. Phytopathology 83: 382-388.
    35. Chen, X. M., Luo, Y. H., Xia, X. C., Xia, L. Q., Chen, X., Ren, Z. L., He, Z. H., and Jia, J. Z. 2005. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant breed. 124: 225-228.
    36. Chen, X. M., Jones, S. S. and Line, R. F. 1995. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology 85: 375-381.
    37. Chen, X. M., Jones, S. S. and Line, R. F. 1996. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology 86: 1228-1233.
    38. Chen, X. M., Line, R. F. and Jones, S. S. 1994. Chromosomal location of genes for resistance to Puccinia sriiformis in wheat cultivars Druchamp, Stephens, and Yarnhill. Phytopathology 84: 1116.
    39. Chicaiza, O., Jakson, L. and Dubcovsky, J. 2005. Registration of 'Clear White' wheat. Crop Sci. 45: 6.
    40. Das, M. K., and Griffey, C. A. 1994. Heritability and Number of Genes Governing Adult-Plant Resistance to Powdery Mildew in Houser and Redcoat Winter Wheats. Phytopathology 84: 406-409.
    41. De Vallavieille-Pope, C., Picard-Formery, H., Radulovic, S. and Johnson, R. 1990. Specific resistance factors to yellow rust in seedlings of some French varieties and races of Puccinia striiformis Westend in France. Agronomic 2: 103-113.
    42. Dyck, P. L., Kerber, E. R. and Aung, T. 1994. An interchromosomal reciprocal translocation in wheat involving leaf rust resistance gene Lr34. Genome 37: 556-559.
    43. Fahima, T., Sun, G. L., Chaque, V., Korol, A., Grama, A., Ronin, Y. and Nevo, E. 1997. Use of the near isogenic lines approach to identify molecular markers linked to the Yr15 stripe rust resistance gene of wheat. Israel J. Plant. Sci. 45: 262
    44. Flor, H. H. 1955. Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology 45: 680-685.
    45. Friebe, B., Jiang, J., Raupp, W. J., Mclntosh, R. A. and Gill, B. S. 1996 Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59-87.
    46. Griffey, C. A., and Das, M. K. 1996. Inheritance of Adult Plant Resistant to Powdery Mildew in Knox62 and Massey Winter Wheats. Plant Dis. 83: 424-428.
    47. Griffey, C. A., Das, M. K. and Stromberg, E. L. 1993. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis. 77: 619-622.
    48. Griffey, C. A., and Das. M. K. 1994. Inheritance of adult-plant resistance to powdery mildew in Knox62 and Massey winter wheats. Crop Sci. 34: 641-646.
    49. Hartl, L., Mohler, V., and Zeller, F. J. 1999. Identification of AFLP markers closely linkage to the powdery mildew resistance gene Pm1c and Pm4a in common wheat. Genome 42: 322-329.
    50. Hartl, L., Weiss, H., and Stephan, U. 1995. Molecular identification of powdery mildew resistance genes in wheat (Triticum aestivum L.). Theor. Appl. Genet. 90: 601-606.
    51. Hartl, L., Weiss, H., and Zeller, F. J. 1993. Molecular identification of the Pm3 Locus conferring powdery mildew resistance genes in wheat (Triticum aestivum L.). Theor. Appl. Genet. 86: 959-963.
    52. Heum, M., Freibe, B., and Bushuk, W. 1990. Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology. 80: 1129-1133.
    53. Hsam, S. L. K, Lapochkina, I. E and Zeller, F. J. 2003. Chromosomal location of genes for powdery mildew resistance in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133: 367-370.
    54. Hasm, S. L. K., Moohler, V., and Hartl, L. 2000. Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL. 1RS using molecular and biochemical markers. Plant Breed. 119: 87-89.
    55. Hasm, S. L. K. and Zeller, F. J. 1997. Evidence of allellism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar 'Amigo'. Plant Breed. 116: 119-122.
    56. Hu, X. Y., Ohm, H. W., and Deikat. 1997. Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor. Appl. Genet. 94: 832-840.
    57. Huang, X. Q. and Roder, M. S. 2004. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica 137: 03-223.
    58. Huang, X. Q., Hsam, S. L. K., and Zller, E J. 2000. Molecular mapping of the wheat powdery mildew resistance genes Pm24 and marker validation for molecular breeding. Theor. Appl. Genet. 101: 407-414.
    59. Jarve, K., Peusha, H. O., and Tsymbalova, J. 2000. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43: 377-381.
    60. Jia, J., Devos, K. M., and Chao, S. 1999. RFLP-based maps of the homoeologous group- 6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred form Aegilops speltoides to wheat. Theor. Appl. Genet. 98: 941-946.
    61. Keightley, P. D., and Bulfield, G. 1993. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet. Res. Camb. 62: 195-203.
    62. Keller, M., Keller, B., Schachermayr, G., Winzeler, M., Schmid, J. E., Stamp, P., and Messmer, M. M. 1999. Quantitative trait loci for resistance against powdery mildew in a segregating wheatxspelt population. Theor. Appl. Genet. 98: 903-912.
    63. Lagudah, E. S., Mcfadden, H., Singh, R. P., Huerta-Espino, J, Bariana, H. S., and Spielmeyer, W. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 114: 21-30.
    64. Lander, E. S., and Botstein, S. 1989. Mapping Mendelian factor underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.
    65. Li, Huihui, Ye, Guoyou, and Wang, Jiankang. 2007. A modified Algorithm for the Improvement of Composite Interval Mapping. Genetics 175: 361-374.
    66. Line, R. F, 2002. Stripe rust of wheat and barley in North America: A retrospective historical review. Annu. Rev. Phytopathol. 40: 75-118.
    67. Liu, J. Q. and Kolmer, J. A. 1997. Genetics of leaf rust resistance in Canadian spring wheats AC Domain and AC Taber. Plant dis. 81: 757-760.
    68. Liu, S. X., Griffey, C. A., and Maroof, M. A. S. 2001. Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci. 41: 1268-1275.
    69. Liu, Z. Y., Sun, Q. X., and Ni, Z. F. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in originating from wild emmer. Euphytica 123: 21-29.
    70. Liu,Z.Y.,Sun,Q.X.,and Ni,Z.F.1999. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat.Plant Breed.118:215-219.
    71. Ma,J.X.,Zhou,R.G,Dong,Y.S.,Wang,L.R,Wang,X.M.and Jia,J.Z.2001. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticun turgidum L.Using microsatellite markers.Euphytica 120:219-226.
    72. Ma,Z.Q.,Sorrells,M.E.and Tanksleym,S.D.1994. RFLP marker linked to powdery resistance genes Pml,Pm2,Pm3 and Pm4 in wheat.Genome 37:871-875.
    73. Marais,G.E,Pretorius,Z.A.,Wellings,C.R.,McCallum,B.,and Marais,A.F.2005. Leaf and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides.Euphytica143:115-123.
    74. McDonald,D.,McIntosh,R.A.,Wellings,C.R.,Singh,R.P.and Nelson,J.C.2003. Cytogenetical Studies in Wheat XIX.Location and linkage studies on gene Yr27 for resistance to stripe(yellow)rust.Euphytica 136:239-248.
    75. McIntosh,R.A.,and Art,C.J.,1996b.Genetic linkage of the Yr1 and Pm4 genes for stripe rust and powder mildew resistances in wheat.Euphytica 89:401-403.
    76. McIntosh,R.A.,Hart,G.E.,and Devos K.M.1998. Catalogue of gene symbols for wheat,vol(3) :139-143,Proceeding of the 9th international Wheat Genetics.Sym.,Canada.
    77. Mclntosh,R.A.,and Lagudah E.S.,2000. Cytogenetic studies in wheat XⅧ.Gene Yr24 for resistance to stripe rust.Plant breed.119:81-83.
    78. Mingeot,D.,Chantret,N.,Baret,P.V.,Dekeyser,A.,Boukhatem,N.,Sourdille,P.,Doussinault,G.,and Jacquemin,J.M.2002. Mapping QTL involed in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds.Plant Breed.121:133-140.
    79. Peng,J.H.1999. Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat Triticum dicoccoides,and suggestive negative crossover interference in chromosome 1B.Theor.Appl.Genet.98:862-872.
    80. Sorrells,Q.M.E.,and Thanksley,S.D.1994. RFLP marker linked to powdery mildew resistance genes in wheat.(Triticum aestivum L.).Genome 37:871-875.
    81. Qi,L.L.,Cao,M.S.,and Chen,P.D.1996. Identification,mapping and application of polymorphic DNA associated with resistance gene Pm21 of wheat.Genome 39:191-197.
    82. Reader,S.M.and Miller,T.E.1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat.Euphytica 53:57-60.
    83. Robert,O.,Abelard,C,and Dedryver,F.1999. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat.Molecular Breed.5:167-175.
    84. Rong,J.K.,Millet,E.,and Manisterski,J.2000. A new powdery mildew resistance gene:introgression from wild emmer into common wheat and RFLP-based mapping.Euphytica 115:121-126.
    85. Sharp,E.L.,Sally,B.K.,and Taylor,G.A.1970. Incorporation of additive genes for stripe rust resistance in winter wheat.Pathopathology 66:794~797.
    86. Shi, A. N., Leath, S., and Murphy, J. P. 1998. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88: 144-147.
    87. Singh, H. and Johnson, R. 1988. Genetics of resistance to yellow rust in Heines Ⅶ, Soissonais and Kalyansona. Proceedings of the 7th International Wheat Genetics Symposium IPSR, Cambridge, UK (Miller TE & Koebner RMD eds.): 885-890.
    88. Singh, H., Johnson, R. and Seth, D. 1990. Genes for race-specific resistance to yellow rust (Puccinia striiformis) in Indian wheat cultivars. Plant Pathol. 39: 424-433.
    89. Singh, R. P., Nelson, J. C. and Sorrells, M. E. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science 40: 1148-1155.
    90. Singh, R. P. and Rajaram, S. 1994. Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica 72: 1-7.
    91. Singh, R. P., William, H. M., Huerta-Espino, J., and Crosby, M. 2003. Indentification and mapping of genes Yr31 for resistance to stripe rust in Triticum aestivum cultivar pastor. Proceeding of the 10th international wheat genetics. Italia, symposium, Vilume1: 411-413.
    92. Singh, R. P., and Gupta, A. K. 1992. Expression of wheat leaf rust resistance gene Lr34 in seedling and adult plants. Plant Dis. 76: 489-491.
    93. Sun, G. L., Fhima, T., and Korol, A. B. 1997. Identification of molecular markers linked to the Yrl5 stripe rust resistance gene of wheat originated in wild emmer wheat, triticum dicoccoides. Theor. Appl. Genet. 95: 622-628.
    94. Suenaga, K., Singh, R. P., Huerta-Espino, J., and William, H. M. 2003. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93: 881-890.
    95. Tosa, Y. 1993. The genetics of resistance of hexaploid wheat to wheatgrass powdery mildew fungus. Genome 33: 225-230.
    96. Vallavieille-Pope C De. 1990. Specific resistance factors to yellow rust Ⅰ seedlings of some Franc varieties and races of P. striiformis weatern in France. Agronomic 2: 103-113.
    97. Wan, A. M., Zhao, Z., Chen, X., He, Z., Jin, S., Jia, Q., Yao, G., Yang, J., Wang, B., Li, G., Bi, Y., and Yuan, Z., 2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 88: 896-904
    98. Wang, L. F., Ma, J. X., Zhou, R. H., Wang, X. M., and Jia, J. Z. 2002. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.Ⅰ. 178383 (Triticum aestivum L.). Euphytica 124: 71-73.
    99. William, M., Singh, R. P., Herta-Espino, J., Ortiz. Islas, S., and Hoisington, D., 2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93: 153-159.
    100. Xie, C., Sun, Q., Ni, Z., Yang, T., Nevo, E., and Fahima, T. 2003. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor. Appl. Genet. 106: 341-345.
    101. Yang, J., and Zhu, J. 2005. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor. Appl. Genet. 110: 1268-1274.
    102. Yildirim, A., Jones, S. S., Murray, T. D. and Line, R. F. 2000. Evaluation of Daspyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis. 84: 40-44.
    103. Yildirim, A. Karadag, Y. Sakin, M. A, and Gokmen, S. 2004. Transfer of stripe rust resistance gene Yr26 to Turkish wheats using Microsatellite markers. Cereal research communication.
    104. Zahravi, M., Bariana, H. S., Shariflou, M. R., Balakrishna, P. V., Banks, P. M., and Ghannadha, M. R., 2003. Bulk segregant analysis of stripe rust resistance in wheat (Triticum aestivum L.) using microsatellite markers. Proceeding of the 10th international wheat genetics. Italia, sym., Vol(2): 861-863.
    105. Zeller, F. J., Kong, L., Hartl, L., Mohler, V., and Hsam, S. L. H. 2002. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 7. gene Pm29 in line Pova. Euphytica 123: 187-194.
    106. Zeng, Z. B. 1993. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc natl Acad Sci USA. 90: 10972-10976.
    107. Zeng, Z. B. 1994. Precision mapping quantitative trait loci. Genetics 136: 1457-1468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700