电位调控流动注射化学发光分析方法的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由综述和研究报告两部分组成。综述部分主要介绍了无机氧化剂在化学发光分析中的应用进展。研究报告部分对次溴酸根-联氨-荧光素、鲁米诺-铁氰化钾、鲁米诺-高碘酸钾-高锰酸钾化学发光反应体系中氧化剂次溴酸根、铁氰化钾、高碘酸钾和高锰酸钾进行了比较广泛的研究,发现了电位调控化学发光现象,同时优化了反应条件,建立了测定联氨、硫离子、维生素C的化学发光分析新方法,从而从理论和实践上构建了一个提高氧化剂在化学发光体系中的氧化效率的新思路。
     化学发光分析方法具有灵敏度高、分析速度快、线形范围宽、仪器设备简单便宜、易于实现自动化等优点,已被成功地应用于生命科学、材料科学、临床医学及环境检测等领域。一般就化学发光分析的基本原理而言,化学发光信号的产生是以氧化还原反应为基础,并基于反应中的某些物质分子(如反应物、反应产物、反应中间体等)吸收化学反应所释放的能量,使相关分子产生电子激发态,激发态不稳定返回基态将能量以光的形式释放而产生发光的现象。因此,化学发光反应的分析特性与氧化还原反应的性质和特征等有着极为重要的关系。据此,许多有意义的研究思路如电致初生态试剂技术、新型氧化剂的合成与应用以及氧化还原反应介质或溶剂的调控等都曾致力于化学发光分析中氧化剂的氧化能力的调控,极大的提高了以氧化-还原反应为基础的化学发光分析的分析特性。但是,以调节某一氧化剂的氧化电位为研究基础,研究其化学发光行为,并据此而提高化学发光分析灵敏度的研究思路至今在国内外还很少报道。
     作者从化学发光反应的本质出发,提出运用电位调控技术来优化化学发光反应过程中的氧化剂的性能,对其氧化能力进行了有效的控制,以期有利于化学发光分析方法分析特性的提高。以次溴酸根-联氨-荧光素、鲁米诺-铁氰化钾化学发光体系为代表,作者对基于电位调控技术来提高化学发光反应过程中氧化剂的性能进行了研究,探索了这一研究思路的可行性。研究内容包括:
     一、在碱性条件下,BrO~-/Br~-电对中BrO~-氧化联氨的弱化学发光信号可以基于能量转移化学发光原理被荧光素所增敏。据此发现,并和流动注射技术相结合,建立了测定联氨的化学发光新方法。在最佳实验条件下,该方法对联氨的测定线性范围为3.0×10~(-5)-4.0×10~(-8)g.mL~(-1),检出限(3σ)为1×10~(-8)g.mL~(-1);对8.0×10~(-7)g.mL~(-1)联氧进行11次平行测定,其相对标准偏差为1.3%。将本法用于水样中联氨的回收试验分析并与标准方法进行了对照,结果满意。
     二、基于碱性条件下,硫离子对鲁米诺-铁氰化钾化学发光体系的增敏作用,建立了快速、简便、灵敏度高的流动注射化学发光分析法测定硫离子的新方法。研究发现,体系中氧化剂铁氰化钾的氧化性可基于在溶液中引入亚铁氰化钾而在一定范围内调控,进而能够有效地氧化硫离子而产生更强的化学发光且获得良好的分析特性。据此发现,不但建立了测定硫离子的化学发光分析新方法,而且还为提高化学发光分析方法的分析特性提出了新思路。在优化的实验条件下,测定硫离子的线性范围3.6×10~(-6)-1.2×10~(-8)mol.L~(-1);检出限6×10~(-9)mol.L~(-1),RSD小于3%(n=11)。本法成功的测定了湖水中硫离子的含量,采用标准加入法进行回收试验,结果满意。
     三、碱性条件下,维生素C对鲁米诺-高碘酸钾化学发光体系有很强的增敏作用。研究发现,向体系中加入强氧化剂高锰酸钾后,维生素C的对体系的增敏信号进一步增强且获得良好的分析特性。据此发现,建立了测定维生素C的鲁米诺-高碘酸钾-高锰酸钾化学发光分析新方法。在优化的实验条件下,测定维生素C的线性范围2.0×10~(-8)-1.8×10~(-10)g.mL~(-1);检出限5×10~(-11)g.mL~(-1),RSD=2.9%(n=11)。本法成功地用于测定了药剂中维生素C的含量,结果满意。
Two sections are included in this thesis.One was the review,and theother was the research work.In the first part,the applications of some inorganic oxidantsin Chemiluminescence(CL) analysis are reviewed.The focus of the part is to summarizethe analytical application.In the second part, it was found that, by adjusting oxidationability of oxidants such as hypobromite,ferricyanide and periodate,the oxidation abilityof the oxidants can be easily controlled and presented the better analytical performancesin CL analysis.Moreover, the experimental conditions of the CL reactions wereoptimized and the feasibility of applicatipn of the present reactions to the determinationof hydrazine,sulfide and ascorbic acid was evaluated.For the first time, sensitive CLmethods for the detection hydrazine,sulfide and ascorbic acid based on potentialadjustment technique and flow-injection chemiluminescence has been developed.Potential adjustment technique is a promising alternative approach for the improvementof the sensitivity of CL analysis.
     CL analysis method has its advantages of high sensitivity, rapid analytical speed,wide linear range, simplicity and low cost of instrumentation, suitable for automationand has been successfully applied in life science, material science,clinical medicine andenvironmental monitoring, etc.As we know, chemiluminescence is probably bestdescribed as the emission of light by molecules that are electronically excited by virtueof their precursor' participation in a highly exergonic chemical reaction, almostinvariably an oxidation-reduction reaction, generally, the nature of chemiluminescentreactions is oxidation-redution reactions.So, the analytical performances of CL systemsare closely related to the characteristics of oxidation-reduction reactions. Generallyspeaking, great efforts have been made to improve the sensitivity of CL analysis byadjusting the oxidation ability of oxidants, mainly from three aspects. Firstly. manyideas of on-line electrogenerating nascent state CL reagent were devoted to improve thesensitivity of the CL analysis. Secondly, exploiting and using some new oxidants as CLoxidants can also obtain better analytical performances. Thirdly, adjusting the medium(solvent and PH) of oxidation-reduction reactions could improve the oxidation ability of oxidants in the open literature, and the CL signal could be enhanced greatly, whichfinally resulted in the increased sensitivity.However, up to now, none of the reportsconcems the use of the potential adjustment technique to improve the analyticalperformance of CL analysis.
     Consideration of the nature of chemiluminescent reactions,we successfully usepotential adjustment technique to improve the analytical performance of the oxidants inCL analysis. Represented by the CL systems such as hydrazine- hypobromite-fluorescein.and luminol-ferricyanide CL system, sensitive CL methods based onpotential adjustment technique and flow-injection chemiluminescence has beendeveloped. Our actual research work includes the following aspects:
     Firstly, a rapid and sensitive flow-injection chemiluminescence method for thedetermination of hydrazine is described. The method is based on the strongchemiluminescence signal generated from the oxidation of hydrazine by hypobromite inalkaline medium and in the presence of both bromide and fluorescein. In the optimumexperimental conditions, the proposed CL method for hydrazine offered the linear rangeof determination is 3.0×10~(-5)-4.0×10~(-8)g.mL~(-1) with the relative standard deviation of 1.3%(C=8.0×10~(-7)g.mL~(-1), n=11) and the detection limit is 1×10~(-8)g.mL~(-1)(3σ). Therecommended method has been successfully used for analysis of lake water sampleswith satisfactory results.
     Secondly, ferricyanide can react with luminol to produce weak CL in alkalinesolution,and the CL reaction can be catalyzed by sulfide. It was found that, by adjustingthe ratio of c(ferrocyanide) to c(ferricyanide), the oxidation ability of ferricyanide canbe easily controlled and presented the better analytical performances in theluminol-ferricyanide CL system. The experiment shows that the sensitivity of the CLmethod was improved greatly and low detection limit was obtained. Based on thesefindings, a sensitive flow-injection CL method for sulfide was developed. In theoptimum analytical conditions, the proposed CL method for sulfide offered the linearrange of determination is 3.6×10~(-6)-1.2×10~(-8) mol.L~(-1) with the relative standard deviationof 2.7% for 1.0×10~(-7) mol.L~(-1) sulfide (n=11).and the detection limit is 6×10~(-9) mol.L~(-1).The recommended method has been successfully used for analysis of lake watersamples with satisfactory results.
     Thirdly, ascorbic acid can be determined by its enhancement on the light emissionproduced by the oxidation of luminol by potassium periodate in the basic medium. Increase in the sensitivity of the determination was achieved by introducing potassiumpermanganate into the reaction mixture. The proposed procedure described in this paperwas based on its greatly enhancing effect on the luminol-complex oxidants, consistingof periodate and permanganate system.The proposed procedure allows quantitation ofascorbic acid in the range 2.0×10~(-8) tol.8×10~(-10)g.mL~(-1)with a correlation coefficient of0.9993 (n=5) and relative standard deviation (R.S.D.) of 2.9% (n=11) at 1.0×10~(-9)g.mL~(-1).The detection limit (3×blank) was 5×10~(-11)g.mL~(-1) The method is successfully used todetermine in Vitamin C tablets.
引文
[1] Alpeeva I. S..Luminol-hydrogen peroxide chemiluminescence produced by sweet potato peroxidase[J]. Luminescence, 2007,22(2), 92-96.
    [2] Ping Yang, Po Wang, Lun Wang.A sensitive inhibition chemiluminescence method for the determination of trace tannic acid using the reaction of luminol-hydrogen peroxide catalysed by tetrasulphonated manganese phthalocyanine[J]. Luminescence, 2007, 22(1), 46-52.
    [3] Ramos M. C, Torijas M. C.,Diaz A. N..Enhanced chemiluminescence biosensor for the determination of phenolic compounds and hydrogen peroxide[J].Sensors and Actuators B:Chemical, 2001, 73(1), 71-75.
    [4] Fan S. H., Hart B. T., McKelvie D..Determination of hydrogen peroxide in natural waters by stopped-flow injection analysis with chemiluminescence detection [J]. Laboratory Robotics and Automation,2000,12(3), 149-156.
    [5] David P., Paul J. W., Fauzi R.,Mantoura C..Determination of hydrogen peroxide in sea water by flow-injection analysis with chemiluminescence detection[J].Analytica Chimica Acta, 1994,298(1), 121 -128.
    [6] Olsson B..Determination of hydrogen peroxide in a flow system with microperoxidase as catalyst for the luminol chemiluminescence reaction[J].Analytica Chimica Acta, 1982, 136, 113-119.
    [7] Lun Wang,Changqin Zhu.A flow-injection chemiluminescence method for the determination of some estrogens by enhancement of luminol-hydrogen peroxide-tetrasulfonated manganese phthalocyanine reaction[J].Talanta, 2006, 70(1),219-224.
    [8] Jian Wang, Huazhen Ye, Zhou Jiang, Naisheng Chen and Jinling Huang.Determination of diethylstilbestrol by enhancement of luminol-hydrogen peroxide-tetrasulfonated cobalt phthalocyanine chemiluminescence[J].Analytica Chimica Acta, 2004,508(2), 171-176.
    [9] Anastasios E., Paraskevas D. T., Maria N. and Demetrius G. T..Determination of methimazole and carbimazole by flow-injection with chemiluminescence detection based on the inhibition of the Cu(Il)-catalysed luminol-hydrogen peroxide reaction[J]. Analytica Chimica Acta, 2004, 505(1), 129-133.
    [10]Zamzow H.,.Johnson K.S, Sakamoto C.M., Coale K.H.. Determination of copper complexation in sea water using flow injection analysis with chemiluminescence detection[J]. Analytica Chimica Acta, 1998,377 (1-2), 133-144.
    [11] Hanaoka S., Jin-Ming Lin and Yamada. M..Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(Ⅱ)-amino acid complexes and its application to the determination of tryptophan and phenylalanine[J].Analytica Chimica Acta, 2000, 409(1-2),65-73.
    [12] 黎朝,王尊本.金霉素的化学发光分析法研究[J].分析化学,1998,26(5),556-560.
    [13] 黎朝,王尊本.土霉素、甲烯土霉素和强力霉素的化学发光分析法[J].厦门大学学报(自然科学版),1998,37(4),547-552.
    [14] Shizuko H.,Aihara M..Determination of iron(Ⅱ) and total iron in environmental water samples by flow injection analysis with column preconcentration of chelating resin functionalized with N-hydroxyethylethylenediamine ligands and chemiluminescence detection[J].Talanta, 1999, 49(5), 1059-1067.
    [15] Kawatani T., Yamada M., Jinming Lin. Chemiluminescence of indole compounds based on oxidation with singlet oxygen generated chemically by the sodium molybdate-hydrogen peroxide system[J].Analyst,2000,125 (11),2075 ~2078.
    [16] Escobar R., Guiraum A.. A flow injection chemiluminescence method using Cr(Ⅲ) as a catalyst for determining hydrogen peroxide. Application to H_2O_2 determination in cultures of microal gae [J]. Luminescence,2000,15 (3), 131-135.
    [17] Abdulrahman A. A., Akel A. A..Determination of promethazine by its inhibition of the chemiluminescence of the luminol-hydrogen peroxide-chromium(Ⅲ) system[J]. Analytica Chimica Acta, 1993,282(1),169-174.
    [18] Denis B, Paolo P, Gabriella F and Carlo M..Effect of eluent composition and pH and chemiluminescent reagent pH on ion chromatographic selectivity and luminol-based chemiluminescence detection of Co~(2+), Mn~(2+) and Fe~(2+) at trace levels[J].Talanta, 2007,72(1), 249-255.
    [19] Sorouraddin M.H., Manzoori J.L.. Determination of copper(Ⅱ) based on its catalytic effect on thiosemicarbazide-H_2O_2-CTMAB chemiluminescence reaction[J]. Talanta, 2005, 66(5), 1117-1121.
    [20] Masato A.,Mallika G. V..On-line column preconcentration for the determination of cobalt in sea water by flow-injection chemiluminescence detection Shizuko[J]. Fresenius' Journal of Analytical Chemistry. 1996,355 (5-6), 676-679.
    [21] Akel A..Flow-injection determination of kanamycin by inhibition of the lucigenin-H_2O_2-Co~(2+) system[J].Analytica Chimica Acta, 1994, 292(1-2), 201-208.
    [22]Lau C, Jianzhong Lu and Kai M..Chemiluminescence determination of tetracycline based on radical production in a basic acetonitrile-hydrogen peroxide reaction[J].Analytica Chimica Acta, 2004, 503(2), 235-239.
    
    [23]Sichun Zhang and Huangxian Ju.β-Cyclodextrin sensitized chemiluminescence of hemoglobin-hydrogen peroxide-carbonate and its analytical application[J].Analytica Chimica Acta, 2003,475(1-2), 163-170.
    [24]Perez J.A., Durand J.S., Hernando P. F.Chemiluminescent determination of vanadium(IV) using a cinchomeronic hydrazide-H_2O_2 system and flow injection analysis[J].Analytica Chimica Acta, 2005,536(1-2),115-119.
    [25]Andrew R. B., Anton S., Eric P. A. and Paul J. W..Determination of cobalt and iron in estuarine and coastal waters using flow-injection with chemiluminescence detection[J]. Analyst, 2000,125(1),51 -57.
    [26]Kamil M., Antonije O., Pavel Mi and Zbynek V..Flow-injection chemiluminescence determination of formaldehyde in water[J].Talanta, 2007, 71(2), 900-905.
    [27]Cundall R. B.. Determination of absolute chemiluminescence quantum yields for reactions of bis-(pentachlorophenyl) oxalate, hydrogen peroxide and fluorescent compounds[J].Journal of Bioluminescence and Chemiluminescence, 1989, 3(3), 147-154.
    [28]Alan T..Chemiluminescence determination of bufrenorphine hydrochloride by flow injection analysis[J]. Analytica Chimica Acta, 1986,185,329-333.
    [29]Neil W. B..Analytical applications of acidic potassium permanganate as a chemiluminescence reagent [J] .Analytica Chimica Acta, 2001, 445(1), 1-19.
    [30]Benjamin J. H. and Simon W. L..Determination of 5-hydroxytryptamine (serotonin) and related indoles by flow injection analysis with acidic potassium permanganate chemiluminescence detection[J].Analytica Chimica Acta, 1998, 362(2-3), 131-139.
    [31]Fatma A., Nawal A. and Abdulrahman A..Permanganate-based chemiluminescence analysis of cefadroxil monohydrate in pharmaceutical samples and biological fluids using flow injection[J].Talanta, 1998,47(2), 471-478.
    [32]Salah M. S.. Abdullah M. S. A.and Aladdin M. A..Chemiluminescence method for the assay of perphenazine in drug formulation using permanganate in sulphuric acid with flow injection technique and a chemometrical optimization approach[J].Talanta, 1999,49(5), 1051-1057.
    [33]Salah M. S.,Abdalla M. A..Chemiluminescence assay of promethazine hydrochloride using acidic permanganate employing flow injection mode operated with syringe and peristaltic pumps[J].Talanta,2003,59(6), 1073-1080.
    [34]Jason W. C, Neil W. B., Simon W. L. and Duncan J. M.Monitoring the total phenolic/antioxidant levels in wine using flow injection analysis with acidic potassium permanganate chemiluminescence detection[J].Analytica Chimica Acta, 2003,499(1-2), 47-56.
    [35]Alan T., Napaporn Y.,Saisunee L..Flow-injection determination of cinnarizine using surfactant-enhanced permanganate chemiluminesence[J].Analytica Chimica Acta, 2003, 499(1-2), 223-233.
    [36]Anatol K., Jacek M.and Elzbieta W..Chemiluminescence determination of thioridazine hydrochloride by flow-injection analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2000, 22(1), 85-91.
    [37]Hana P. and Miroslav P..Determination of procaine benzocaine and tetracaine by sequential injection analysis with permanganate-induced chemiluminescence detection[J].Talanta, 2000, 52(1), 67-75.
    [38]ShunLi Fan, JinMing Lin. Post-column detection of benzenediols and 1,2,4-benzenetriol based on acidic potassium permanganate chemiluminescence[J]. Talanta, 2006, 68(3), 646-652.
    [39]Nicole A., Neil W. B., Benjamin J. H., Claire E. L..Comparison of soluble manganese(IV) and acidic potassium permanganate chemiluminescence detection using flow injection and sequential injection analysis for the determination of ascorbic acid in Vitamin C tablets[J].Talanta, 2004, 64(1), 130-134.
    [40]Jose A. M. P., Luisa F. G. and Pablo F..Sensitive determination of captopril by time-resolved chemiluminescence using the stopped-flow analysis based on potassium permanganate oxidation[J].Analytica Chimica Acta, 2005,546(1),60-67.
    [41]Montalvo S. I. and Ingle J. D..Chemiluminescence during the oxidation of alcohols by permanganate: Application to the determination of ethanol in gin[J].Talanta, 1993,40(2),167-172.
    [42]Wei Cao,Xuemin Mu,Yongcun Zheng. Flow injection-chemiluminescence determination of phenol using potassium permanganate and formaldehyde system[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(1),58-62.
    [43]Chalermporn T., Boonsom L.. Flow injection chemiluminescence determination of cefadroxil using potassium permanganate and formaldehyde system [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006,42(2), 277-282.
    [44]Sulan Liao, Xiaoping Wu and Zenghong Xie. Determination of some estrogens by flow injection analysis with acidic potassium permanganate-formaldehyde chemiluminescence deteetion[J].Analytica ChimicaActa, 2005, 537(1-2), 189-195.
    [45]Yuanyuan Sun, Yuhai Tang, Xiaohui Zheng.Potassium permanganate-glyoxal chemiluminescence system for flow injection analysis of cephalosporin antibiotics: cefalexin and cefazolin sodium in pharmaceutical preparations[J].Talanta, 2004, 64(1),156-159.
    [46]Guohui Wan, Hua Cui, Haisong Zheng, Jian Zhou,Xiaofeng Yu.Determination of tetracyclines residues in honey using high-performance liquid chromatography with potassium permanganate-sodium sulfite-β-cyclodextrin chemiluminescence detection[J] Journal of Chromatography B, 2005,824(1-2), 57-64.
    [47]Lin Yi, Huichun Zhao, Shilv Chen,Dongdong Zheng.Flow-injection analysis of two fluoquinolones by the sensitizing effect of terbium(III) on chemiluminescence of the potassium permanganate-sodium sulfite system[J].Talanta,2003,61(3), 403-409.
    [48]Nawal A.,Sawsan A..Flow-injection chemiluminescent determination of cefprozil using Tris (2,2'-bipyridyl) ruthenium (II)-permanganate system [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(4), 1423-1427.
    [49]Alan W..Flow injection chemiluminescence determination of cephalosporins in pharmaceutical preparations using tris(2,2'-bipyridyl)ruthenium(II) potassium permanganate system[J].Analytica Chimica Acta,2005, 553(1 -2),123-133.
    [50]Nicole A., Neil W. B., Simon W. L., Nicholas G..Determination of psilocin and psilocybin using flow injection analysis with acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection respectively [J]. Talanta, 2005,67(2), 354-359.
    [51]Bree A. G., Neil W. B. and Richard B..Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris (2,2'-bipyridyl)ruthenium(II) chemiluminescence[J].Analytica Chimica Acta, 2005, 541(1-2), 117-122.
    [52]Nawal. A. A..Flow-injection chemiluminescent determination of metoclopramide hydrochloride in pharmaceutical formulations and biological fluids using the [Ru(dipy)_3~(2+)]-permanganate system[J].Talanta, 2004,62(2), 255-263.
    [53]Fatma A. Nawal A. and Abdulrahman A..Permanganate-based chemiluminescence analysis of cefadroxil monohydrate in pharmaceutical samples and biological fluids using flow injection[J].Talanta, 1998,47(2), 471-478.
    [54]Jin Pan, Yuming Huang, Weiqun Shu and Jia Cao.Effect of pH on the characteristics of potassium permanganate-luminol CL reaction in the presence of trace aluminum(III) and its analytical application[J].Talanta,2007,71(5), 1861-1866.
    [55]Yinhuan Li, Weifen Niu and Jiuru Lu.Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol-KMnO_4 system[J].Talanta, 2007,71(3), 1124-1129.
    [56]Huertas F., Campana A.M..Chemiluminescence determination of carbofuran at trace levels in lettuce and waters by flow-injection analysis[J].Talanta, 2005,65(4), 980-985.
    [57]Easwaramoorthy D., Yu Y.-C. and Huang H.-J..Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction[J].Analytica Chimica Acta, 2001,439(1), 95-100.
    [58]Neil W. B., Benjamin J. H., Trevor A. S..Chemically induced phosphorescence from manganese(II) during the oxidation of various compounds by manganese(III), (IV) and (VII) in acidic aqueous solutions[J].Analytica Chimica Acta, 2002, 451(2), 181-188.
    [59]Neil W.B.. Soluble manganese(IV):a new chemiluminescence reagent[J]. Analyst,2001,126(10),1636-1639.
    [60]Claire E. L., Paul S. F.. Soluble manganese(IV) as a chemiluminescence reagent for the determination of opiate alkaloids indoles and analytes of forensic interest[J].Talanta, 2007, 71(5), 1951-1957.
    [61]Fatma A., Nawal A. A.and Abdulrahman A..Flow-injection chemiluminometric analysis of some benzamides by their sensitizing effect on the cerium-sulphite reaction[J].Talanta, 2001, 54(4),715-725.
    [62]Sichun Zhang,Hua Li. Flow injection chemiluminescence determination of N-tetrahydrobenzothiazolyl imines[J].Analyst,2000,125(4),753-757.
    [63]Antony C. Continuous-flow chemiluminescence determination of sulphite and sulphur dioxide[J].Analyst, 1988,113, 603-608.
    [64]Ioanna I. K., Antony C. C Effect of Sensitisers on the Chemiluminescent Reduction of Cerium (IV) by Sulphite[J]. Analytical Letters, 1990,23(7), 1167-1179.
    [65]Lin Yi, Huichun Zhao, Chunyan Sun, Shilv Chen and Linpei Jin.Flow-injection chemiluminescence study of Ce(IV)-Na_2SO_3-Tb(III)-fluoquinolone antibiotic system with DNA[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(11),2541-2546.
    [66]Sichun Zhang. Flow-injection chemiluminescence determination of Papaverine using Cerium(IV)-sulfite system[J].Analytical Letters,2004,73(1),143-155.
    [67]Hua Cui, Lijuan Liu. Determination of quinolones residues in prawn using high-performance liquid chromatography with Ce(IV)-Ru(bpy)_3~(2+)-HNO_3 chemiluminescence detection[J]. Journal of Chromatography B, 2006,843(1), 1-9.
    [68]Juan Xi, Xinghu Ji, Shaohong Zhang, Xinping Ai and Zhike He. Investigation of RuBPS-Ce(IV) chemiluminescence reaction and its application in determination of two diuretics[J].Analytica Chimica Acta, 2005, 541(1-2),191-196.
    [69]Salma A..Chemiluminescence determination of some fluoroquinolone derivatives in pharmaceutical formulations and biological fluids using [Ru(bipy)_3~(2+)]-Ce(IV) system[J].Talanta, 2001, 53(4), 885-893.
    [70] Juan Xi, Xinping Ai and Zhike He. Chemiluminescence determination of barbituric acid using Ru(phen)_3~(2+)-Ce(IV) system[J].Talanta, 2003, 59(5),1045-1051.
    [71]Juan Xi, Bo'an Shi, Xinping Ai and Zhike He.Chemiluminescence detection of isoniazid using Ru(phen)_3~(2+)-isoniazid-Ce(IV) system[J].Journal of Pharmaceutical and Biomedical Analysis, 2004,36(1),237-241.
    [72]Xiaoyan Li, Liansheng Ling, Zhike He, Gongwu Song, Shaofang Lu, Liangjie Yuan and Yun'E Zeng.Development of a chemiluminescence method for the simultaneous determination of pyruvic and tartaric acids in human serum based upon their reaction with cerium(IV) in the presence of rutheniumtrispyridine[J].Microchemical Journal, 2000,64(1),9-13.
    [73]Shujuan Wang, Huimin Ma, Jun Li, Xinqi Chen, Zhijuan Bao and Shuna Sun.Direct determination of reduced glutathione in biological fluids by Ce(IV)-quinine chemiluminescence[J].Talanta, 2006, 70(3),518-521.
    [74]Lihua Nie, Shuchuan Liang. Direct chemiluminescence determination of cysteine in human serum using quinine-Ce(IV) system[J].Talanta, 2003, 59(5), 959-964.
    [75]Acosta A.. Chemiluminescence determination of sodium 2-mercaptoethane sulfonate by flow injection analysis using cerium(IV) sensitized by quinine[J].Talanta, 2000, 51(6), 1155-1161.
    [76]Yongjun Ma, Min Zhou, Xiaoyong Jin, Ziyu Zhang, Xiulan Teng and Hui Chen. Flow-injection chemiluminescence assay for ultra-trace determination of DNA using rhodamine B-Ce(IV)-DNA ternary system in sulfuric acid media[J].Analytica Chimica Acta, 2004, 501(1),25-30.
    [77]Hua Cui,Lijuan Liu. Sensitive determination of phenolic compounds using high-performance liquid chromatography with cerium(IV)-rhodamine 6G-phenolic compound chemiluminescence detection[J]. Journal of Chromatography A, 2005, 1095(1-2), 94-101.
    [78]Yongjun Ma, Xiaoyong Jin, Min Zhou, Ziyu Zhang, Xiulan Teng and Hui Chen. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium[J].Analytica Chimica Acta, 2003, 489(2),173-181.
    [79]Hua Cui, Qunlin Zhang, Lijuan Liu.Chemiluminescence of cerium(IV)-rhodamine 6G-phenolic compound system[J].Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181(2-3), 238-245.
    [80]Weibing Liu and Yuming Huang. Cerium(IV)-based chemiluminescence of phentolamine sensitized by rhodamine 6G[J].Analytica Chimica Acta, 2004, 506(2), 183-187.
    [81]Yuming Huang. Chemiluminescence of chlorpromazine hydrochloride based on cerium(IV) oxidation sensitized by rhodamine 6G[J].Talanta,2002, 57(5),953-959.
    [82]Xinrong Zhang, Guoan Luo and Willy R. G.Chemiluminescence flow-injection determination of furosemide based on a rhodamine 6G sensitized cerium(IV) method[J].Analytica Chimica Acta, 1999, 396(2-3), 273-277.
    [83]Ouyang J., Calokerinos A. C.Cerium (IV)-based chemiluminescence analysis of hydrochlorothiazide[J].Talanta, 1998,46(5), 961-968.
    [84]Yongjun Ma,Naiyun Guo.Flow-injection chemiluminescence determination of ascorbic acid by use of the cerium(IV)-Rhodamine B system[J].Analytica Chimica Acta, 2002, 464(2), 289-293.
    [85]Lewis S.W.,Lim K.F..Hypohalites and related oxidants as chemiluminescence reagents: A review[J].Luminescence, 2004,19 (2), 94-115.
    [86]Eric P. B..Co-oxidation of luminol by hypochlorite and hydrogen peroxide implications for neutrophil chemiluminescence[J].Biochemical and Biophysical Research Communications, 1985,126(1), 482-488.
    [87]Norimichi T, Shigenao I, Masaru K, Makoto M..Chemiluminescence method for the determination of gaseous chlorine species in ambient air[J].Analytica Chimica Acta, 1992,266(2), 353-358.
    [88]Kazuhiko T., Kazuaki F., Riichiro N., Kenichi Y. and Hideaki M..Characterization of chemiluminescence from singlet oxygen under laminar flow conditions in a micro-channel and its quenching with beverages[J].Talanta, 2007, 72(2), 607-611.
    [89]Kazuhiko T., Kazuaki R, Keiichi N., Riichiro N..Chemiluminescence from singlet oxygen under laminar flow condition in a micro-channel[J].Analytica Chimica Acta, 2006, 570(2), 202-206.
    [90]Paul S. R, Neil W. B., Simon W. L.. Chemiluminescence from the oxidation of urea and ammonia with hypobromite and N-bromosuccinimide[J].Talanta, 2004, 64(2), 283-289.
    [91]Triantis T.M., Nikokavoura A..Chemiluminescent studies on the antioxidant activity of amino acids[J].Analytica Chimica Acta, 2007,591(1), 106-111.
    [92]Cherrine K., Elias A.G. Z..Chemiluminometric determination of carvedilol in a multi-pumping flow system[J].Talanta, 2005, 68(2), 239-244.
    [93]Jianzhong Li.Chemiluminescence detection with a liquid core waveguide: Determination of ammonium with electrogenerated hypochlorite based on the luminol-hypochlorite reaction[J].Analytica Chimica Acta, 1999, 398(1),33-39.
    [94]Chengxiao Zhang, Zhujun Zhang and Masuo A. Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite[J].Analytica Chimica Acta, 1998,374(1), 105-110.
    [95]Nikokavouras J..Luminol chemiluminescence in micellar media[J].Journal of Photochemistry and Photobiology A: Chemistry, 1992,67(2),237-243.
    [96]Fabio R.P. R., Eva R.T..A portable and low cost equipment for flow injection chemiluminescence measurements[J].Talanta, 2005, 67(4), 673-677.
    [97]Yantu Zhang, Zhujun Zhang and Yonghua Sun. Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO~- -luminol chemiluminescence detection[J].Journal of Chromatography A, 2006, 1129(1), 34-40.
    [98]Weiping Yang, Zhujun Zhang and Wei Deng. A capillary electrophoresis detection scheme for underivatized amino acids based on luminol-BrO~- chemiluminescence system[J].Talanta, 2003, 59(5),951-958.
    [99]Shulin Zhao, Hongyan Yuan, Chao Xie and Dan Xiao. Determination of folic acid by capillary electrophoresis with chemiluminescence detection[J].Journal of Chromatography A, 2006,1107(1-2),290-293.
    [100]Jiuru Lu. An investigation of the chemiluminescence reaction in the sodium hypochlorite-folic acid-emicarbazide hydrochloride system[J].Microchemical Journal, 2000,65(3), 319-323.
    [101]Paul S. F., Jacqui L. A.. Near-ultraviolet chemiluminescence from the reaction of ammonia with hypobromite in aqueous solution[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(3-4),708-710.
    [102]Teckentrup J. and Klockow D.. Investigation and analytical application of the sulphide-hypobromite chemiluminescence reaction[J].Talanta,1981,28(9), 653-663.
    [103]Takenaka N., Kitano M.. Determination of trace amounts of urea by using flow injection with chemiluminescence detection[J].Analyst, 1994,119,1829- 1833.
    [104]Kitano M, Ogasawara Y. Continuous Determination of Trace Amounts of Humic Acid in Natural Water by Chemiluminescence Method[J].Microchemical Journal, 1994,49(2-3), 265-274.
    [105]Robert F.. Oxidations and Dehydrogenations with N-Bromosuccinimide and Related N-Haloimides[J].Chemical reviews,1963,63(1),21-43.
    [106]Mathur NX, Narang C.K.. "The Determination of Organic Compounds with N-Bromosuccinimide and Allied Reagents"[M], Academic Press, London,197.
    [107]Halvatzis S.A.,Efstathiou C.E., Kinetic study of N-bromosuccinimide reactions and kinetic determination of pyridoxine using a bromide-selective electrode[J].Talanta, 1993,40(8), 1213-1220.
    [108]Calokerinos A.C.. Continous-flow chemiluminescence determination of isoniazid by oxidation with N-bromosuccinimide[J].Analyst, 1990,115 ,1229-1234.
    [109]Zhouping Wang, Zhujun Zhang, Zhifeng Fu, Wanfen Luo and Xiao Zhang Flow-injection chemiluminescence determination of aminomethylbenzoic acid and aminophylline based on N-bromosuccinimide-luminol reaction[J].Talanta, 2004, 62(3),611-617.
    [110] Afsaneh S.,Mohammad A.. Flow injection determination of isoniazid using N-bromosuccinimide- and N-chlorosuccinimide-luminol chemiluminescence systems[J].Journal of Pharmaceutical and Biomedical Analysis,2003,30(5), 1499-1506.
    [111] Mohammad A. K.. Flow injection chemiluminescence determination of sulfide by oxidation with N-bromosuccinimide and N-chlorosuccinimide[J].Talanta, 2002, 57(3), 491-500.
    [112] Haiyan Liu, Ling Zhang,Yuzhi Fang. Flow-injection chemiluminescence determination of meloxicam by oxidation with N-bromosuccinimide[J].Analytica Chimica Acta, 2005, 541 (1-2), 185-190.
    [113] Michaowski J., Haaburda P.,Kojo A.. Determination of humic acid in natural waters by flow injection analysis with chemiluminescence detection[J].Analytica Chimica Acta, 2001, 438(1-2), 143-148.
    [114] Safavi A. and Baezzat M. R.. Flow injection chemiluminescence determination of pyrogallol[J].Analytica Chimica Acta, 1998, 368(1-2), 113-116.
    [115] JinMing Lin. Chemiluminescence from fluorescent organic compounds induced by cobalt(Ⅱ) catalyzed decomposition of peroxomonosulfate[J].Analytica Chimica Acta, 1998, 371(2-3),163-170.
    [116] Min Wang, Lixia Zhao, Meilin Liu and Jinming Lin. Determination of riboflavin by enhancing the chemiluminescence intensity of peroxomonosulfate-cobalt(Ⅱ) system[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(4-5), 1222-1227.
    [117] Coichev N.o Effect of cobalt(Ⅱ) and manganese(Ⅱ) on the chemiluminescent reaction of peroxymonosulfate with humic acid and some organic compounds. Analytical applications[J].Analytical Letters,2007, 40(3),585-600.
    [118] Jinming Lin. Chemiluminescent reaction of fluorescent organic compounds with KHSO_5 using cobalt(Ⅱ) as catalyst and its first application to molecular imprinting[J].Analytical Chemistry,2000,72 (6), 1148-1155.
    [119] Magdaleno G.B.. Chemiluminescent determination of humic substances based on the oxidation by peroxymonosulfate[J]. Analytica Chimica Acta,2005,552(1-2), 141-146.
    [120] 王学锋,史选,皮运清.流动注射化学发光法测定水样中的痕量亚硝酸根[J].分析化学,2005,33(6),865-868.
    [121] Joaquim C., Jose R. M.. Factorial analysis of a chemiluminescence system for bromate detection in water[J].Analytica Chimica Acta, 2001, 450(1-2), 175-184.
    [122] Evangelos G. S..Flow-injection chemiluminometric analysis of some steroids by their sensitizing effect on the bromate-sulphite reaction[J].Analytica Chimica Acta, 1990, 239, 195-202.
    [123] Sebastien V., Manuel S.and Dolores P.B.. Stopped-flow chemiluminescence spectrometry to improve the determination of pencillins based on the luminol-iodine reaction[J].Analytica Chimica Acta, 1992, 266(2), 301-307.
    [124] David M. H..Analytical studies using iodine-lumino chemiluminescence[J].Talanta, 1977, 24(5),297-302.
    [125] 刘希东,郭惠,兰觉明.碘-鲁米诺-流动注射化学发光体系测定自来水中的ClO_2[J].四川师范大学学报(自然科学版),2007,30(1),90-93.
    [126] Jingshun Sun, Stephen G. S.,John H. E.Chemiluminescence of β-lactam antibiotics following oxidation by potassium Superoxide[J].Analytica Chimica Acta, 1997, 338(1-2), 1-2.
    [127] 吴风武,何治柯,孟辉,罗庆尧,曾云鹗.三邻菲咯啉合亚钌-亚硫酸根-过二硫酸钾化学发光法测定空气中的二氧化硫[J].分析化学,2000,28(6),709-711.
    [128] Xingwang Zheng, Zhujun Zhang. Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant[J].Analytica Chimica Acta, 2001,440(2), 143-149.
    [129] Eduardo P. B., Andre F. L.. Determination of bromide ions in seawater using flow system with chemiluminescence detection[J].Analytica Chimica Acta, 2005, 528(1),115-119.
    [130] Abdulrahrnan A. A. and Alan T.. Determination of tetracycline by flow injection with chemiluminescence detection[J].Analytica Chimica Acta, 1988, 205,261-265.
    [131] Warren A. J. and Donald R. B.. Chemiluminescent detection of amino acids using in situ generated Ru(bpy) ~(3+)3 [J].Analytica Chimica Acta, 1994, 285(3),309-320.
    [132] Baoxin Li,Jiagen Lv,Zhujun Zhang. Homogeneous chemiluminescence system in neutral and near neutral aqueous solution with ClO2 as oxidant and its analytical application[J].Analytica Chimica Acta,2006,560(1-2), 128-133.
    [133] Baoxin Li, Zhujun Zhang, Chunli Xu. Chemiluminescence flow-through sensor for ofloxacin using solid-phase PbO_2 as an oxidant[J].Talanta, 2002, 57(4), 765-771.
    [134] Lixia Zhao, Baoxin Li, Zhujun Zhang and Jinming Lin. Chemiluminescent flow-through sensor for automated dissolution testing of analgin tablets using manganese dioxide as oxidate[J]. Sensors and Actuators B:Chemical, 2004, 97(2-3), 266-271.
    [135] Baoxin Li, Zhujun Zhang, Lixia Zhao and Chunli Xu. Chemiluminescence flow-through sensor for pipemidic acid using solid sodium bismuthate as an oxidant[J].Analytica Chimica Acta, 2002, 459(1), 19-24.
    [136] Baoxin Li, Zhujun Zhang. Flow-injection chemiluminescence determination of quinine using on-line electrogenerated cobalt(Ⅲ) as oxidant[J].Talanta, 2000, 51(3), 515-521.
    [137] Baoxin Li, Zhujun Zhang, Xingwang Zheng and Chunli Xu. Flow Injection Chemiluminescence Determination of Isoniazid Using On-Line Electrogenerated Manganese(Ⅲ) as Oxidant[J].Microchemical Journal, 1999, 63(3),374-380.
    [138] Baoxin Li, Zhujun Zhang and Manli Wu. Flow-injection chemiluminescence determination of captopril using on-line electrogenerated silver(Ⅱ) as the oxidant[J].Microchemical Journal, 2001, 70(2), 85-91.
    [139] Baoxin Li, Zhujun Zhang and Wei Liu. Flow-injection chemiluminescence determination of chlortetracycline using on-line electrogenerated [Cu(HIO_6)_2]~(5-) as the oxidant[J].Talanta, 2001, 55(6), 1097-1102.
    [140] 林金明编著.化学发光基础理论研究与应用[M].北京:化学工业出版社,2004,248。
    [141] Safavi A. and Baezzat M. R.. Flow injection chemiluminescence determination of hydrazine[J].Analytica Chimica Acta. 1998, 358(2), 121-125.
    [142] Safavi. A.. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates[J].Talanta,2002, 58(4),785-792.
    [143] Jinming Lin and Yamada M.. Microheterogeneous systems of micelles and microemulsions as reaction media in chemiluminescent analysis[J].TrAC Trends in Analytical Chemistry, 2003, 22(2),99-107.
    [144] Chao Lu, Guanqun Song and Jinming Lin. Reactive oxygen species and their chemiluminescence-detection methods[J].TrAC Trends in Analytical Chemistry, 2006, 25(10),985-995.
    [145] 郑一君,刘杰等.GB/T 15507-1995,中华人民共和国国家标准[M].北京:中国标准出版社,1995.637-639.
    [146]Zhang Cenghui,Gu Zenan,Wang Weiyi.American Public Health Association, Standard Determination Method of Water and Pollution Water [M].Beijing:Chinese Architecture Industry Press,1978,391.
    [147]Zenon P. and Agnieszka S. P.. Modification of iodometric determination of total and reactive sulfide in environmental samples[J].Talanta, 1999,48( 2), 347-353.
    [148]Laura F., Graciela de A., Manuel M., Jose M. E. and Victor C A multisyringe flow injection method for the automated determination of sulfide in waters using a miniaturised optical fiber spectrophotometer[J].Talanta, 2004, 64(5), 1119-1126.
    [149]Cristiane X.. Application of sequential injection-monosegmented flow analysis (SI-MSFA) to spectrophotometric determination of sulfide in simulated waters samples[J].Talanta, 2003, 60(1), 45-52.
    [150] Ghasemi J. and Mohammadi D. E.. Kinetic spectrophotometric determination of sulfide using whole kinetic curve and a fixed time method[J].Microchemical Journal, 2002, 71(1), 1-8.
    [151]Debora G., Richard G. C. Electrochemical determination of sulphide at nickel electrodes in alkaline media: a new electrochemical sensor[J].Sensors and Actuators B: Chemical, 2003,88 (3), 320-328.
    [152]Mamas I. P.. Preparation of a 2-(4-fluorophenyl)indole-modified xerogel and its use for the fabrication of screen-printed electrodes for the electrocatalytic determination of sulfide[J].Analytica Chimica Acta, 2004, 523( 2), 201-207.'
    [153]Yi He, Yan Zheng and David C.L.. Differential pulse cathodic stripping voltammetric determination of nanomolar levels of dissolved sulfide applicable to field analysis of groundwater [J]. Analytica Chimica Acta, 2002,459(2), 209-217.
    [154]Caterina G., Silvano C, Alfredo G., Denis B. and Paolo P.. Ion chromatographic determination of sulfide and cyanide in real matrices by using pulsed amperometric detection on a silver electrode[J].Journal of Chromatography A. 2004,1023(1), 105-112.
    [155]Toshihiko U., Tadashi A., Rie K. and Katsuya M.. Determination of hydrogen sulfide and acid-labile sulfur in animal tissues by gas chromatography and ion chromatography [J]. Journal of Chromatography B:Biomedical Sciences and Applications, 2001,757(1), 31-37.
    [156]Philip B. S..Mechanism of the ferricyanide-catalyzed chemiluminescence of luminol[J]. Journal of Organic Chemistry, 1970,35(7),2178-2182.
    [157]吕九如,张新荣,张静.利用Fe~(2+)-鲁米诺-O_2化学发光体系测定痕量S~(2-)的研究 [J]. 分析化学,1989, 17(4), 542-544.
    [158]AOAC(1990). Official methods of analysis of the Association of Official Analytical Chemists, 15th ed., Arlington VA:Association of Official Analytical Chemists, 1058-1059.
    [159]Anantha I. G., Kalayil M. M. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode[J].Talanta, 2007, 71(4), 1774-1781.
    [160]Bello A., Giannetto M, Zanardi C. Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes[J]. Sensors and Actuators B: Chemical, 2007,121(2), 430-435.
    [161]Thangamuthu R., Pillai K. C. Direct amperometric determination of 1-ascorbic acid at octacyanomolybdate-doped-poly-(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals[J].Sensors and Actuators B: Chemical, 2007, 120(2), 745-753.
    [162]Ting Wu, Yueqing Guan and Jiannong Ye. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection[J].Food Chemistry,2007,100(4), 1573-1579.
    [163]Safavi A., Maleki N..Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode[J].Analytical Biochemistry, 2006, 359( 2),224-229.
    [164]Shengfu Wang and Dan Du. Differential pulse voltammetry determination of ascorbic acid with ferrocene-L-cysteine self-assembled supramolecular film modified electrode[J].Sensors and Actuators B: Chemical, 2004, 97(2-3 ),373-378.
    [165]Ensafi A.,Movahedinia H..Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(12),2589-2594.
    [166]Kubilay G, Kevser S., Esma T.. Mustafa O.. Spectrophotometric determination of ascorbic acid using copper(II)-neocuproine reagent in beverages and pharmaceuticals[J].Talanta, 2005, 65(5),1226-1232.
    [167]Tomasz K. and Ewa K.. Flow injection spectrophotometric determination of L-ascorbic acid in biological matters[J].Journal of Pharmaceutical and Biomedical Analysis, 2002, 29(4), 755-759.
    [168]Fabiano O. S.. Total ascorbic acid determination in fresh squeezed orange juice by gas chromatography[J].Food Control, 2005,16(1), 55-58.
    [169]Hiroshi I.. Routine high-performance liquid chromatographic determination of ascorbic acid in foods using L-methionine for the pre-analysis sample stabilization[J].Talanta, 2003, 60(5), 1011-1021.
    [170]Cespon R. M.. Automatic determination of ascorbic acid by flame atomic absorption spectrometry[J].Analytica ChimicaActa,2001,448(1-2),157-164.
    [171]Zhi-Qi Zhang and Jian Zhang. Flow-injection on-line concentrating and flame atomic absorption spectrometry for indirect determination of ascorbic acid based on the reduction of iron(III)[J].Analytica Chimica Acta, 2001,435(2), 351-355.
    [172]Irena B. A. and Roger A. J..Direct chemiluminescence determination of ascorbic acid using flow injection analysis[J].Analytica Chimica Acta, 1997,356(2-3), 289-294.
    [173]Yanxiu Zhou, Feng Li. Evaluation of luminol-H_2O_2-KIO_4 chemiluminescence system and its application to hydrogen peroxide, glucose and ascorbic acid assays[J]. Talanta, 1999,48(2), 461-467.
    [174]Cherrine K. P., Andre F. L.. A multi-pumping flow system for chemiluminometric determination of ascorbic acid in powdered materials for preparation of fruit juices[J].Microchemical Journal, 2006, 83(2), 70-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700