辣椒疫霉菌4个果胶甲基酯酶基因的克隆和pcpme6的真核表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒疫病在世界范围内广泛发生的土传病害,严重影响世界各国的农业生产,造成巨大的经济损失,病原是辣椒疫霉菌(Phytophthora capsici)。辣椒疫霉菌是一种土传卵菌,以卵孢子或厚垣孢子在土壤病残体中越冬,可以存活数月甚至更长时间,在适宜条件下引起青椒茎腐、根腐和枯萎;寄主范围广,除侵染辣椒外,还可以侵染西葫芦、黄瓜、番茄等20多种作物。
     目前,对于辣椒疫病的防治主要采用化学防治,而培育抗病品种效果不稳定,原因之一是辣椒疫霉具有较强的变异能力。因此,探索辣椒疫霉菌重要的致病因子,研究抗病性生理生化机制,结合抗病性遗传,抗病基因的QTL定位(quantitative trait loci)与基因工程,进行抗病性鉴定和抗病育种方面研究成为病害防治的前景。其中细胞壁降解酶在病害致病关键因子之一,包括角质酶(cutinase),果胶酶(pectinase),纤维素酶(cellulase),半纤维素酶(hemicellulase),蛋白酶(protease)等。而果胶酶又包括多聚半乳糖醛酸酶(PG),果胶甲基酯酶(PME),果胶裂解酶(PL)。果胶甲基酯酶(PME)是许多植物病原菌分泌的一种果胶酶,能降解植物细胞壁,许多病原真菌,卵菌,细菌在侵染过程都能分泌果胶甲基酯酶。本文以辣椒疫霉菌为研究对象,克隆辣椒疫霉果胶甲基酯酶基因及表达研究。
     以辣椒疫霉强致病和果胶甲基酯酶活性高的菌株为实验材料构建的DNA文库,借助Pool-PCR技术分离了4个果胶甲基酯酶基因。对基因结构分析发现4个pme基因具有很高的同源性,并具有不同数目的糖基化位点。所编码的蛋白具果胶甲基酯酶的保守序列和蛋白活性位点。本研究发现,辣椒疫霉pme基因与卵菌pme基因具高度保守序列,也证明了卵菌在自然界中的分类地位。并且对其中一个基因构建质粒进行体外诱导表达,制备了多克隆抗体,借助蛋白印记杂交验证了重组蛋白的免疫活性,其具体研究结果如下:
     1、Pool-PCR法筛选基因文库,分离了4个果胶甲基酯酶基因
     从GenBank中下载若干pme基因,同源比对设计多对引物( P230+ AP650,P230+ P920,P230+ P795,P445+ P920,P445+AP650, P620 + P920 ,P650+P920,P445+ P795),然后进行反复筛选,分离了3个全长和1个非全长基因。利用引物P230+AP650筛选出pcpme6,P650+P920筛选出pcpme7和pcpme8,其中P445+P920和P445+P795均能扩增出pcpme9。将所克隆的4个基因经过blast,显示全部为果胶甲基酯酶基因。经过DNAman软件处理分析了这4个基因的基本结构,最大开放阅读框长度差别不大,均在1100bp左右,编码345-348个氨基酸,预测氨基酸分子量为37-38kDa。利用http://www.expasy.org和http://www.cbs.dfu.dk/service/signalP对这四个基因的信号肽和N糖基化位点进行预测,信号肽长度16-20个氨基酸不等,N-端糖基化位点4-7个不等,4个基因的理论PI值为5-9。
     2、RACE技术扩增pcpme9的3’端
     将辣椒疫霉菌置于三角瓶进行振荡培养7天后,收集菌丝。然后液氮研磨,利用Trizol法提取总RNA,经反转录酶作用,合成cDNA,作为模板,以通用引物(USP)和基因特异引物(GSP)进行第一轮PCR;以第一轮产物做模板,用巢式特异引物(NGSP)和巢式通用引物(NUSP)进行第二轮PCR,目的片段回收,连接,转化大肠杆菌DH-5α后,送样测序。将测序片段拼接后,对其进行了初步分析,果胶甲基酯酶基因pcpme9序列全长为1041 bp,最大开放阅读框ORF为1038bp(1-1038),ORF编码一个346个氨基酸的蛋白质,预测编码产物大小约为38kDa,并有7个N糖基化位点,信号肽含16个氨基酸。
     3、pcpme6真核表达和Western blot
     根据已经克隆的pcpme6基因序列,设计特异性引物,PCR扩增其成熟肽片断。重组至酵母分泌型表达载体pPIC9K,构建重组表达载体pPIC9K/pcpme6,转化至大肠杆菌JM109中,筛选得到阳性克隆。重组质粒经stuⅠ线性化后转化毕赤酵母GS115感受态细胞,经G418筛选和PCR扩增转化子基因组筛选,得到数株基因工程酵母菌。SDS-PAGE分析发现,重组蛋白进行了特异表达,分子量大小为50KDa左右。通过将酵母分泌的PME蛋白免疫家兔,制备特异性抗体。Western blot分析结果进一步表明,转基因酵母成功表达,重组抗原有良好的免疫活性,多克隆抗体具有较高特异性和灵敏度,重组蛋白与制备的抗体特异性结合。
Pepper blight is a worldwide disease, which impacted on agriculture almost in every country, and caused enormous loss on economy. The disease was caused by phytophthora capsici , a soilborn Oomycete, which can survive for several months even longer time in the soil as oospores or chlamydospore. In the optimum condition, the pathogen can not only impact pepper, and pumpkin, cucumber, tomato, and other plant can be its host as well.
     At present, the pepper blight was controlled mainly by chemical methods and breeding resisitant cultivars. However, strong variability in pathogenicity of P. capsici caused the instability of resistant breeds. It is very important to research infection mechanism, resistance biochemistry mechanism, resistance genetics, and quantitative trait loci and gene clone, as well, for resistance identification and application in breeding for disease resistance. Cell wall degrading-enzyme plays very important roll in the relation of pathogenesis action by peper blight in peper, including cutinase, pectinase, cellulose, hemicellulase, protease and so on. And pectinase can be classified as polygalacturonase (PG), Pectinmelythesterase (PME), and pectinlyase(PL) . PME is a key roll in infection process of P. capsici. , through degrading plant cell wall , and is ubiquitously secrated in fungi, bactera and Oomycets. The research is primary on pme gene cloning and expression.
     The paper expatiated selecting pme genes through a DNA genetic library constructed basing on a strong infection strain of P. capsici, and eukaryotic expression and western blot of pcpme6 .Four pme genes were isolated by screening genomic DNA library with PCR method. Then pcpme6 recombinant protein was obtained through eukaryotic expression, and identified by western blot with multiclone antibody. The process and results are as follows:
     1 Selecting DNA libraty whith PCR, 4 pme obtained
     A serious of primers were designed according to data including nucleotide sequences of fungi,Oomycets, bacteria, and plants from Genbank ,and the resultant comprised 8 pairs, P230+ AP650,P230+ P920,P230+ P795,P445+ P920,P445+AP650, P620 + P920 ,P650+P920,P445+ P795. Repeating PCR to screen the DNA library with different primer pair respectively, we got three full length genes and one fragment. We got pcpme6 with P230+AP650,and pcpme7and pcpme8 with P650+P920, with P445+P920 and P445+P795 having the same gene pcpme9. Blast result of the 4 gene on NCBI, showed they were all pectin melythesterase genes.
     Analysis of sequences indicated that there were highly conserved sequence in the four pme genes and various N-glycosylation sites. The pme genes of P. capsici showed high homogeneity compared with pme genes of other Oomycetes and consequently defined the station of Oomycete in the nature.They had the same basic structure through analysis using DNAman soft ware, the biggest open reading frame was around 1100bp in length and encoded a deduced amino acid sequence of 345-348 residues, and the molecular weight was about 37-38kd. The signal peptide cleavage site was predicted by SignalP programe (http://www.expasy.org), showing their signal peptide was around 16-20 residues .The N-glycosylation sites were predicted by scan prosite (http://www.cbs.dfu.dk/service/signalP) , which also dipcted difference among the four gene, they had 4-7 N-glycosylation sites. And the deduced isoelectric point was between 5-9, through analyse online programe (http://us.expasy.org).
     2 Amplification of the 3′end sequence of pcpme9 by 3′race
     Collect mycelium of the phytophthora capsici strain after cultivation in liquid shake medium in conical flask for seven days. Then grind the mycelium in liquid nitrogen and extract total RNA using Trizol. Use reverse transcriptase to synthesis cDNA as model for the first-round PCR in which the primer were USP and GSP. Then process the second-round PCR whose model was product of the first-round PCR ,and primers NUSP and NGSP. The target DNA fragment recovered from agarose gel and cloned into E.coli DH-5α,and then sequenced in biology company. Recombine the full length gene, and analyze using DNAman soft ware.The result showed that its full length was 1041bp, and the biggest opening reading frame contained 1038bp, encoding 346 residues. The deduced molecular weight was about 38kd. The signal peptide 16 residues and N-glycosylation sites number was seven, according to the online programe (http://us.expasy.org).
     3 Eukaryotic expression and western blot of pcpme6
     Gene-specific primers were designed and synthesized to amplify the pcpme6 mature peptide sequence according to known sequence. The amplified fragment was inserted into pPIC9K. Recombinant expression plasmid pPIC9K/pcpme6 was constructed. The plasmid was transferred into E. coli JM109 to obtain positive clones and to ampify culture. The plasmid pPIC9K/ pcpme6 was transformed to Pichia pastoris GS115 competent cell after linearized with restriction enzyme stu I. After screening on plates with density gradient of G418, transformants’DNA was extrcted and PCR was performed for identification . The expressed protein was detected about 50KDa by SDS-PAGE .The protein secreated from recombinant strains was purified through SDS-PAGE to prepare polyclonal antibody by immunizing rabbits. Western blot showed that expressed protein could specially react with this antibody, which dipcited that the recombinant successfully expressed, accompanied with prepared antigen’s relative immunocompetence, and the sensitivity and specificity of polyclonal antibody were high, as well.
引文
1.陈偿.甲醇毕赤氏酵母表达体系.热带农业科学. 1999, (2): 36-43.
    2.常彩涛,王鸣,巩振辉,诱发辣椒疫霉菌大量产孢的最佳方法,西北农业大学学报,1995,23(1):90~92.
    3.樊增禄,权衡果胶酶BioprepTM处理对棉织物性能的影响[J]印染助剂,2002 ,19 (5) :11-13.
    4.方中达,陆家云,叶钟音,等.中国农业百科全书植物病理学卷.北京:农业出版社.1996,274—278.
    5.何诚,朱运松.甲醇营养型酵母表达系统的研究进展.生物工程进展, 1998, 18(3): 7-11.
    6.顾红燕,齐鸿雁,张洪勋.高大毛霉制取果胶酶发酵条件实验[J] .过程工程学报,2002 ,2 (3) :252 - 256.
    7.顾小勇,李强,曹竹安,等.毕赤酵母基因工程茵胞内AOX1酶的检测方法.生物工程报. 2001, 17(4) : 474-489.
    8.贾菊生.新疆辣椒疫病及防治研究.植物病理学报.1992 ,22 (3 ): 257-262.
    9.李宝笃,沈崇尧等;快速检测大豆的酶联免疫吸附技术研究[J];植物检疫;1997(3):151-158.
    10.李洪钊,李亮助,孙强明等.巴斯德毕赤酵母表达系统优化策略.微生物学报, 2003, 43 (2): 288-292.
    11.雷泞菲,苏智先,陈劲松同工酶技术在植物研究中的应用四川师范学院学报(自然科学版) 2000,( 12):322-327.
    12.李文富等,土壤中烟草疫霉的分离与量化测定,中国烟草学报,1999,5(4):29~32.
    13.李雄彪等,植物细胞壁[M].北京:北京大学出版社,1993.
    14.刘建华,杨宇红,卢鉴植,等.辣椒种质资源对疫霉的抗病性鉴定研究.湖南农业科学.1998 ,( 3):30—31.
    15.刘晓兰,李彩芹,彭凯齐,冶工果胶酶活性分光光度测定方法的研究,齐齐哈尔大学学报,1998,14(1):45~47.
    16.吕佩坷,李明远,吴矩文.中国蔬菜病虫原色图谱.北京:农业出版社.1998. 71—72.
    17.马辉刚.云南辣椒疫病菌种的鉴定.云南农业大学学报.1988:3 (2): 127-130.
    18.毛爱军,胡洽,耿二省,等辣(甜)椒疫病菌致病力及接种浓度.北京农业科学.1997(1):35-37.
    19.彭毅,杨希才,康良仪.影响甲醇酵母外源蛋白表达的因素.生物技术通报. 2000,(4):33-36.
    20.彭相儒等.乌鲁木齐地区辣椒疫霉病发病因素及防治技术.新疆农业科学. 1991,(5):213-215.
    21.彭相儒,刘文朴,等.快速诊断土壤中辣椒疫霉菌的诱饵法,新疆农业科学,1996,(12):130~132.
    22.戚仁德,丁建成,等.不同培养基对辣椒疫霉致病力的影响.安徽农业科学. 2001,29(1): 96-97.
    23.秦虎强.霜疫必克(SYBK)防治辣椒疫病药效试验.陕西农业科学. 1995, (2): 25-26.
    24.任光驰,等.甘肃辣椒疫病的发生与防治研究.植物保护. 1990, (5): 16-17.
    25.申贵,王源超,郑小波.不同寄主来源寄生疫霉菌株的遗传变异分析.生物多样性. 2003, 11(6): 486-490.
    26.沈崇尧,王有琪,田林,等.甘肃省辣椒疫病病原菌鉴定及生物学特性研究.云南农业大学学报.1990 ,5 (2 ): 72-77.
    27.王晓,李林波,马小来.酶法提取山楂叶中总黄酮的研究[J] .食品工业科技, 2002 ,23 (3) :37 - 39.
    28.王志田,史载诚,赵林安,等.哈密地区辣椒疫霉菌的鉴定及部分生物学测定.新疆农业科学.1990 (2): 69-71.
    29.汪虹,瞿传菁.酶法提取金耳多糖的研究简报[J] .食用菌,2002 ,24 (2) : 7 - 8.
    30.薛长湖,张永勤,李兆杰,李志军果胶及果胶酶研究进展,食品与生物技术学报,2005,24 (6):94-99.
    31.易图永,谢丙炎,张宝玺,等.辣椒疫病防治研究进展.中国蔬菜.2002, (5 ): 52—55.
    32.余冬生,纪卫辛.酶法提取香菇多糖.江苏食品与发酵,2001 ,(4):10 - 11.
    33.张孟民.柑桔皮提取果胶工艺正交实验研究[J].宝鸡文理学院学报(自然科学版),1994,(1):38-43.
    34.张树政.酶制剂工业[M].北京:科学出版社,1989 ,633-634.
    35.郑小波.疫霉菌及其研究技术[M].北京:中国农业出版社.1997 10-132.
    36.周启明等.辣椒疫病的调查研究.中国蔬菜.1984 (1): 40-43.
    37. Alexander idnurm et al. Pathogenicity genes of phytopathogenic fungi. Molecular plant pathology. 2001, 2(4): 241-255.
    38. AlQsous S, Carpentier E, Klein-Eude D, etal..Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening. Planta. 2004, May;219(1):32-40.
    39. Beli R. Thakur, Rakesh K. Singk ,Avtar K. Handa, Chemistry and Users of Pectin A Review[J].Critical Review s in Food Science and Nutrition 1997,37(1):47-73.
    40. Berensmeier S,SinghSA,Meens J , etal.Cloning of the pelA gene from Bacillus Licheniformis 14A and biochemical characterization of recombinant, thermostable, high-alkaline pectate lyase [J] .Environmental Biotechnology, 2004 ,64 :560 - 567.
    41. Brett M.Tyler, Sucheta Tripathy,Xuemin Zhang etal. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis , SCIENCE, 2006(313):1261-1266.
    42. Bosch M, Cheung AY, Hepler PK. Pectin methylesterase, a regulator of pollen tubegrowth.Plant Physiol.2005,138(3):1334-46.
    43. Bosch M, Hepler PK. Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta. 2005 ,(6):1-10.
    44. Brown S M. Growch M L. Chracterization of a gene family abundantly expressed in Oenothera Organensis pollen that shows sequence similarity to polygalacturonase. Plant Cell. 1990, 2: 263-274.
    45. Brian S. Hamilton, Yvonne Brede, Thomas J. Tolbert Expression and characterization of human glycosylated interleukin-1 receptor antagonist in Pichia pastoris Protein Expression and Purification 59 (2008): 64–68.
    46. Brown DG, Allen C.Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol Microbiol. 2004 Sep;53(6):1641-60.
    47. Cameron RG, Savary BJ, Hotchkiss AT, Fishman ML.Isolation, characterization, and pectin-modifying properties of a thermally tolerant pectin methylesterase from Citrus sinensis var. Valencia J Agric Food Chem. 2005 ,Mar 23;53(6):2255-60.
    48. Cao J , Zheng L , Chen S. Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of rammie[J] . Enz. Microbiol. Technol. 1992 , (14) : 1013 - 1016.
    49. CastillejoC,lgnaciodela FuenteJ,IannettaP,BotellaMA,ValpuestaV.Pectinesterase gene family in straw berryfruit:study of FaPEL,aripening-specific isoform[J].Journal of Experimental Botany,2004,55(3):909~918.
    50. Castro SM, Van Loey A, etal..Activity and process stability of purified green pepper (Capsicum annuum) pectin methylesterase. [J] Agric Food Chem. 2004 ,52(18):5724-9.
    51. Cheng Y Q, Walton J. A eukaryotic alanine race mase gene involved in cyclic peptide biosynthesis. [J ]Biol. Chem. 2000, 275: 4906-4911.
    52. Clare J J Rayment F B, Ballantine S P, et al. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multipule tandem integrations of the gene. BioTechnology. 1991,(9):455-460.
    53. Collmer AC, Keen NT. The role of pectic enzymes in plantpathogenesis.Annu Rev Phytopathol .1986,(24):383–409.
    54. Cregg J M , Cereghino J L, Jingying Shi, et al. Recombiant Protein Expression in Pichia pastoris . Molecular Biotechnology, 2000, 16: 23-52.
    55. Cregg J M , Vedvick T S and Raschke W C .Recent advances in the expression of foreign genes in Pichia pastoris. Bio Technology, 1993,11:905-910.
    56. Cregg J M,Barringer K J,Hessler A Y,et al . Pichia pastoris as a host system for transformations. Molecular cellular biology, 1985,5(12):3376-3385.
    57. Cregg J M. Functional charaecterization of the two alcohol oxidase genes from the yeast , Pichia pastoris. Mol Cell Biol, 1997 (9): 1 316-1 326.
    58. Cregg JM ,Madden KR ,Barringer KJ ,et al. Functional characterization of the two alcoholoxidase genes from the yeast Ptchia pastoris. [J] . Mol Cell Biol , 1989 , 9 :1316 -1323.
    59. Crotti L B , Terenzi H F,Polizeli ML TM. Characterization of galactose- induced extracellular and intracellular pectolytic activities from the exo-1mutant strain of Neurospora crassa.[J] Ind. Microbiol . Biotechnol ,1998 ,20:238 - 243.
    60. Di Matteo A, Giovane A, Raiola A, .Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell. 2005 Mar;17(3):849-858.
    61. Estelle Bonnin,Elizabeth Dolo, Angélique Le Goff, Jean-Franc?ois Thibault Characterisation of pectin subunits released by an optimized combination of enzymes. CarbohydrateResearch 337,(2002) :1687–1696.
    62. F.Micheli,C.Holliger,R.Goldberg,L.Richard Characterization of the pectin methylesterase-like gene AtPME3: a new mumber of a gene family comprising at least 12 genes in Arabidopsis thaliana, Gene ,220,(1998): 13-20.
    63. Fraissinet-Tachet L, Fevre M. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. CurrentMicrobiol 1996(33):49–53.
    64. Freeman and Rodriguez. Genetic onversion of a fungal plant pathogen to anonpathogenic, endophytic mutualis. Science. 1993, 260: 75-78
    65. GainvorsA,NedjaoumN,Gognies S,etal. Purification and characterization of acidic endo - polygalacturonase encoded by the PGL1-1 gene fromSaccharomyces cerevisiae.[J].FEMS Microbiology Letters ,2000 ,183 :131 -135.
    66. Giovane A, Servillo L, Balestrieri C, .Pectin methylesterase inhibitor. Biochim Biophys Acta. 2004 12;1696(2):245-52.
    67. Gao. S, Chol G H, Shain L ,et al. Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectna parasitica. Appl Environ Micronol. 1996, 62: 1984-1990.
    68. Guo W, Duan Y, Olivares-Fuster O, Wu Z, Arias CR, Burns JK, Grosser JW. Plant Cell Rep. 2005 Oct;24(8):482-6.
    69. Guo YJ , Mat sumoto , Kikuchi Y. Effects of a pectic polysaccharide from a medicinal herb , the root s of B upleurum falcatum L. on interleukin production of murine B cells and B cell lines[J] . Immunopharmacology , 2000 ,(49): 307 - 316.
    70. Guneet kaur,C, Stergiou L, Gagnon SN, Desnoyers S. DNA Repair (Amst). 2004 Feb 3;3(2):171-82.
    71. Grsic-Rausch S, Rausch T. A coupled spectrophotometric enzyme assay for the determination of pectin methylesterase activity and its inhibition by proteinaceous inhibitors. Anal Biochem. 2004 Oct 1;333(1):14-18.
    72. Hamer L et al. Gene discovery and gene function assignment in filamentous fungi. Proc. Nat. Acid. Sci. USA. 2001, 98: 5110-5115.
    73. Hasunuma T, Fukusaki E, Kobayashi A.Expression of fungal pectinmethylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype. J.Biotechnol. 2004 (3):241-251.
    74. Heslot H. Genetics and genic engineering of the industrial yeast Yarrowis lipolytica. Adv Biochem Eng Biotechnol. 1990, 43: 43-73.
    75. Heyer W D, Sipiczki M and Kholo J. Replicating plasmids in Schizosaccharomyces pombe: improvement of symmetric segregation by a new genetic element. Mol Cell Biol. 1986, 6: 80-89.
    76. Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K.Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell. 2004 Dec;16(12):3437-47.
    77. Hwang B K, de Cock A W A M, Bahnweg G,et al. Restriction fragment length polymorphisms of mitochondrial DNA among Phytophthora capsici isolates from pepper(Capsicum annuum). Syst. Appl. Microbiol. 1991, 14: 111-116.
    78. Isshiki A, Akimitsu K, Yamamoto M, et al. Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol Plant-Microbe Interact. 2001, 14: 749-761.
    79. H Yamada. Pectic polysaccharides from Chinese herbs : structure and biological activity , Carbohydr [J] . 1994 ,(25) : 269 - 276.
    80. Irifune K, Nishida T, Egawa H, Nagatani A.Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene Plant Cell Rep. 2004 Nov;23(5):333-8.
    81. Jain N, Dhawan K, Malhotra S, Singh R.Biochemistry of fruit ripening of guava (Psidium guajava L.):compositional and enzymatic changes Plant Foods Hum Nutr. 2003;58(4):309-315.
    82. Jér?me Pelloux, Christine Rusté,rucci1 and Ewa J. Mellerowicz New insights into pectin methylesterase structure and function,TRENDS in Plant Science,2006 (478):689-701.
    83. J.Gaffe,M.E.Tiznado,A.K.Handa, Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase [J],Plant Physiol. 1997 (114): 1547-1556.
    84. Ji-Ping Guo, Ying Ma High-level expression, purification and characterization of recombinant Aspergillus oryzae alkaline protease in Pichia pastoris Protein Expression and Purification 58 (2008):301–308
    85. Jing Shi, Shou-Tao Zhang, Xiao-Juan Expression, purification, and activity identification of Alfimeprase in Pichia pastoris Protein Expression and Purification 54 (2007):240–246.
    86. Jiang L, Yang SL.etal.VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell. 2005 Feb;17(2):584-596.
    87. Jong J C, Mccormack B J, Smirnoff N, et al. Glycerol generates tugor in rice blast. Nature. 1996, 389: 244-249
    88. Kamper K, Meinhardt F, Gunge N, et al. New recombinant linear DNA elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res. 1989, 17: 1781.
    89. Karakurt Y, Huber DJ.Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (Citrullus lanatus) fruit. J Plant Physiol. 2004 Apr;161(4):381-8.
    90. Kenth Johansson, Mustapha El-Ahmad, Rosmarie Friemann, Hans Jo rnvall,Oskar Markovic, Hans Eklund Crystal structure of plant pectin methylesterase,FEBS Letters 514 (2002) :243-249.
    91. Kim Y, Teng Q, Wicker L.Action pattern of Valencia orange PME de-esterification of high methoxyl pectin and characterization of modified pectins. Carbohydr Res. 2005, 12;340(17):2620-9.
    92. Kiyohara H ,Hirano M ,Wen XG,et al . Characterisation of an antiulcer pectic polysaccharide from leaves of Panax ginseng C. A. Meyer [J]. Carbohydrate Reserch , 1994 ,(263): 89 - 101.
    93. K.Srinivasa Babu, Aju Antony,T.Muthukumaran, etal.Construction ofintein-mediated hGMCSF expression vector and its purification in Pichia pastoris Protein Expression and Purification .2008,(57), :201–205.
    94. Lang C, Do?rnenburg H. Perspectives in the biological function and The technological application of polygalacturonases. Appl Microbiol Biotechnol. 2000,(53):366–375.
    95. LI Chun Bo,GAO Feng,LI Yi etal.Cloning and functional analysis of tobacco pectin methylesterase. Prog.Biochem.Biophys 2004:31 643-649
    96. Ly-Nguyen B, Van Loey AM, etal..Effect of intrinsic and extrinsic factors on the interaction of plant pectin methylesterase and its proteinaceous inhibitor from kiwi fruit. J Agric Food Chem. 2004 , (26):8144-8150.
    97. Ly-NguyenB,VanLoeyAM etal.Effect of mild-heat andhigh-pressure processing on banana pectin methylesterase: a kinetic study. J Agric Food Chem. 2003, 51(27):7974-9.
    98. Maria E. Warren, Harry Kester,etal.Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase Carbohydrate Research .2002, 337:803–812.
    99. Markovic O, Janecek S.Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res. 2004 ,339(13):2281-95.
    100.M K Bhat. Cellulases and related enzymes in biotechnology. Biotechnology Advances , 2000 (18) : 355 - 383.
    101.NesIF,HoloH.ClassⅡantimicrobial peptides from lactic acid acteria. [J] .Biopolymers , 2000 , 55(1) :50-56.
    102.Oliviera Azevedo,M. and Radford,A. Sequence of cbh-1 gene of Humicola grisea var. thermoidea Nucleic Acids Res. 1990,18 (3),668-700. Markovie, H.Jornvall, Pectinesterase ,The Primary structure of tomato enzyme[J].Eur.biochem. 1986(158):455-462.Markovie, H.Jornvall, Tomato and Aspergillus niger pectinesterases. Correlation of differences in existing report saagre specie variations. [J].Protein Seq.&Data. 1990,(3):513-515.
    103.Ooi,T., Shinmyo,A., Okada,H., Murao,S., Kawaguchi,T. and Arai,M. Complete nucleotide sequence of a gene coding for Aspergillus aculeatus cellulase (FI-CMCase) Nucleic Acids Res. 1990,18:5884.
    104.Oskar Markovi?and ?tefan Janecek Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydrate Research .2004, (339): 2281–2295.
    105.Palomaki T, Saarilahti HT. Isolation and characterization of new C-terminal substitution mutation affecting secretion of polygalacturonases in Erwinia carotovora ssp. carotovora. FEBS Lett 1997,(400):122–126.
    106.Parre E, Geitmann A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta. 2005 220,(4):582-92.
    107.Peng CC, Hsiao ES, Ding JL, Tzen JT. Functional expression in pichia pastoris of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang) J Agric Food Chem. 2005 Jul 13;53(14):5612-6.
    108.PérezS, Rodríguez-Carvajal M A , Doco T. A complex plant cell wall polysaccharide : rhamnogalacturonan II. A structure in quest of a function[J] . Biochimie , 2003 , 85 : 109 - 121.
    109.Pe′rombelon MCM, Kelman A. Ecology of soft rot Erwinias. Annu Rev Phytopathol;1980(18):361–387.
    110.Pilling J,WillmitzerL,Bucking H, FisahnInhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta. 2004 May;219(1):32-40.
    111.Polach F J, Webster P K. Identification of strains and inheritance of pathogenicity in Phytophthora capsici. Phytopathology. 1992, (62):20-26.
    112.Ramaswany, H.S. and Basak,S., Pectin and rasp berry concentrate effects on the rheology of stirred commercial yogurt[J].Food Sci.1992,(57):357-368.
    113.Ranveer Singh Jayani, Shivalika Saxena, Reena Gupta Microbial pectinolytic enzymes: A review Process Biochemistry , 40 (2005) :2931–2944.
    114.Reid I , Ricard M. Pectinase in papermaking : solving retention problems in mechanical pulps bleached with hydrogen peroxide [J] . Enzyme and Microbial Technology , 2000 ,(26) : 115 - 123.
    115.Rodriguez-Llorente ID, Perez-Hormaeche J, etal. From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J. 2004 Aug;39(4):587-98.
    116.Romain Louvet , Emilie Cavel , Laurent Gutierrez Stéphanie GuéComprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana .Planta .2006, (224): 782–791.
    117.R.w.pichersgill, F.M. and Pilnik.w. Pectic enzymes in Economic Microbiology. Microbial Enzymes and Bioconversions [J]. A.H.Rose ed.Academic Press, New York,1980(5):227-282.
    118.Saher S, Piqueras A, Hellin E, Olmos E.Pectin methyl esterases and pectins in normal and hyperhydric shoots of carnation cultured in vitro. Plant Physiol Biochem. 2005, (43):155-159.
    119.SakamotoT,Bonnin E, Thibault. A new approach for studying interaction of the polygalacturonase inhibiting proteins with pectins [J]. Biochimica et Biophysica Acta ,2003 ,(1621): 280 - 284.
    120.Scorer C A, Clare J J, McCombie W R, et al. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. BioTechnology, 1994,(12): 181-184.
    121.Serge Pérez , Karim Mazeau ,Catherine Herv du Penhoat. The threedimensional structures of the pectic polysaccharides. [J] . Plant Physiol. Biochem. 2000 , (38): 37– 99.
    122.Sherri M. Brown and Martha L.Crouch Characterization of a Gene Family Abundantly Expressed in Oenothera organensis Pollen That Shows Sequence Similarity to Polygalacturonase. The Plant Cell, 1990,( 2): 263-274.
    123.Shieh M I, Brown R L, Whitehead M P, et al. Molecular genetic evidence for the involvement of a specific polygalacturonase,Pc2, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol.. 1997, 63: 3548-3552.
    124.Singh SA, Ramakrishna M, Rao AGA. Optimization of downstream processing parameters for the recovery of pectinase from the fermented broth of Aspergillus carbonarious. Process Biochem.1999,(35):411–417.
    125.Sónia Mar?lia Castro,Ann Van Loey, Jorge Alexandre Saraiva, Inactivation of pepper (Capsicum annuum) pectin methylesterase by combined high-pressure and temperature treatments.Journal of Food Engineering .2006, (75) :50–58.
    126.SpokA,StuberauchG,SchorgendorferK,SchwabHJ. MolecularCloning and sequencing of a pectinesterase gene from Pseudomonas solanacearum [J]. GenMicrobiol,1 991, 137(1):131~140.
    127.Sreekrishina K, Tschopp.F and Fuke M. Invertase gene (SUC2) of Saccharomyces cereviciae as a dominant marker for transformation of Pichia pastoris. Gene. 1987,(59): 115-125.
    128.Sreekrishna K, Brankamp R G, Kropp K E , et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris1. Gene , 1997 , (190): 55– 621.
    129.Stephen B. Goodwin, Christine D. Smart, et al. Genetic change within populations of Phytophthora infestans in the United States and Cananda during 1994 to 1996: role of migration and recombination. Phytoapthology. 1998, 88(9): 939-947.
    130.Terefe NS, Delele MA, Van Loey A, Hendrickx M.Effects of cryostabilizers, low temperature, and freezing on the kinetics of the pectin methylesterase-catalyzed de-esterification of pectin. J Agric Food Chem. 2005,53(6):2282-8.
    131.Vander Klei I J ,Harder W, Veenhuis M. Yeast ,1991 ,7 (3) :195~200
    132.VE Shevchik , G Condemine, Characterization of pectin methylesterase B,an outer membrane liprotein of Erwinia Chrysanthemi 3937. [J].Mol Microbiol 1993,(19):455-466.
    133.Vovk I, Simonovska B, Bencina M.Separation of pectin methylesterase isoenzymes from tomato fruits using short monolithic columns J Chromatogr A. 2005 , 1065(1):121-128.
    134.Weckler D.E. Structuralcharacterization of peicin polymers during ripening and storage of apple DAI-C, 58/04, P1990-1997.
    135.William A Bender, Robert V MacAllister, Boleslaw Sieckiewicz. Pectin. [P]. Can. Patent 701668.
    136.Wolf S, Grsic-Rausch S, Rausch T, Greiner S.Identification of pollen-expressed pectin methylesterase inhibitors in Arabidopsis. FEBS Lett. 2003 Dec18; 555(3): 551-555.
    137.Wwegner EH. Biochemical conversions by yeast fermentation at high-celldendities, US.Patent.1983, (4):414-329.
    138.Yu KW ,Kiyohara H ,Mat rumoto T ,et al . Charaterization of pectic polysaccharides having intestinal immune system modulating activity from rhizomes of Atractylodes Lancea DC. [J] . Carbohydrate Polymers , 2001 , (46):125 - 134.
    139.Zhaoli Chen,Hong Chen, Xin Wang Expression, puriWcation, and characterization of secreted recombinant human insulin-like growth factor-binding protein-6 in methylotrophic yeast Pichia pastoris Protein Expression and PuriWcation 52 (2007):239–248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700