掺杂效应对NaTaO_3光催化剂能带及电子结构影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NaTaO3作为一种新型的光催化剂,由于其良好的化学稳定性,耐光腐蚀性,无毒等特性近年来得到了国内外学者的广泛研究。但是由于NaTaO3禁带宽度大,催化活性低,限制了其进一步地应用。经过广泛深入的研究发现,掺杂是提高其催化活性和可见光响应性的有效方法之一。本文基于密度泛函理论,采用第一性原理模拟方法,研究了非金属元素B, C, N, F, S,金属元素Ca, Sr, Ba, Nb, Cr, La,Ir掺杂NaTaO3,分析了掺杂对NaTaO3几何结构,电子结构,和光学吸收谱以及催化剂催化活性的影响。
     1、本文首先简要介绍了在材料科学领域的计算机模拟技术,对其应用、发展进行了叙述。重点描述了第一性原理方法(First-principles Method)的基本原理、基本方法、取得的成果等。对其中的密度泛函理论(Density Functional Theory DFT)、局域密度近似(Local Density Approximation, LDA)、广义梯度近似(Generalized Gradient Approximation, GGA)等几个重要概念进行了简单说明。
     2、介绍了在理论模拟中用到的Castep软件包。利用软件包中的建模工具构建了NaTaO3超晶胞模型。基于密度泛函理论,采用广义梯度近似方法描述电子的交换-相关作用并对NaTaO3(?)勺晶胞进行结构优化,得到了最稳定的结构。随后,计算并得到NaTaO3晶胞的几何结构,电子结构和光学吸收谱。
     3、在优化后得到稳定结构的基础上,对超晶胞进行掺杂。采用广义梯度近似方法描述电子的交换-相关作用并对掺杂后NaTaO3的晶胞进行结构优化,计算并得到掺杂NaTaO3晶胞的几何结构,电子结构,和光学吸收谱。计算发现,非金属元素B, C, N, F, S,过渡金属元素Nb, Cr, Ir掺杂对NaTaO3的几何结构,电子结构和光学吸收谱均有显著地影响。
     4、结合实验上获得催化反应相关数据,分析了杂质能级位置与形态对NaTaO3光吸收以及光催化效果的影响,认为:(1)当杂质能级位于价带顶与02p轨道杂化或位于导带底与Ta5d轨道杂化时,能有效减小NaTaO3的禁带宽度,从而使NaTaO3的吸收带边向长波长方向移动,形成对可见光的吸收。同时在禁带中间,由于没有杂质能级的存在,因此不会造成淬灭中心,可以有效提高光催化性能。(2)当杂质能级与02s轨道能量相近,对称性匹配时,会在价带以下与02s轨道发生杂化,使得杂质原子与周围的O原子共价键增强,晶胞内应力增大,进而会使得NaTaO3晶体颗粒尺寸减小,并在表面形成台阶状结构。这种催化剂结构上的改变,使得催化剂活性显著增加。
As a novel photocatalyst, NaTaO3 have received much research attention due to its excellent chemical stability, light resistance and non-toxic properties. However, the photocatalytic activity of NaTaO3 is limited due to large band gap that incapable to absorb visible light. Basing on previous literatures, it has been found that doping of foreign ions into NaTaO3 host lattice may provide an effective way for enhancement of photocatalytic activity and visible light response. In this work, the doping effects of non-metallic elements (B, C, N, F and S) as well as metal elements (Ca, Sr, Ba, La, Nb, Cr and Ir) on NaTaO3 geometry structure, electronic structure, optical absorption spectra and catalytic activity were systematically investigated by utilizing first principles simulations.
     1. Firstly, this work provides an image of computer simulation technologies, their applications, and the development in materials science. We focus on the basic principles, the basic approach, the achievements and so on. Density functional theory (Density Functional Theory DFT), local density approximation (Local Density Approximation, LDA), generalized gradient approximation (Generalized Gradient Approximation, GGA), and several other important concepts are simply instructed.
     2. The software package-Castep was used in theoretical simulation. The modeling tools in the package were adopted to build NaTaO3 supercell model. Based on density functional theory, the structure of NaTaO3 was optimized in the supercell to obtain the most stable structure. Subsequently, we calculated and got geometry structure, electronic structure, and optical absorption spectra of NaTaO3 cell in the four different crystalline forms.
     3. On the basis of the optimized stable structure, certain non-metal or metal elements were introduced in the supercell. Generalized gradient approximation method was used to describe the exchange correlation effect of electron. We implemented structural optimization to the doped NaTaO3 and obtained geometry structure, electronic structure, and optical absorption spectra of doped NaTaO3 cell. It is found that non-metallic elements (B, C, N, F and S) and transition metals (Nb, Cr and Ir) showed significant impact on the geometry structure, electronic structure, and optical absorption spectra of NaTaO3.
     4. Combined with photocatalytic data on water, we obtained the impurity level position and shape on the optical absorption and photocatalytic activity of NaTaO3:
     (1) When the impurity energy level is located in the valence band top and O2p orbital hybridizes Ta5d orbital in the conduction band, it can effectively reduce the band gap of NaTaO3, and the absorption edge of NaTaO3 shifts to longer wavelength. Meanwhile If no impurity level was observed in the middle forbidden band, the photocatalytic performance would improve effectively.
     2. When the impurity energy level is similar with the O2s orbital energy, the orbital hybridization between impurity energy level and 02s would occur, which makes the covalent bond between the impurity atoms and O atoms more strengthen. This will enhance the stress in the cell and make the crystal grain size of NaTaO3 decrease and form step-like structure at the surface. These changes in the structure of the catalyst will allow the photocatalytic activity increase significantly.
引文
[1]Hideki Kato,Akihiko Kudo Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts [J].Catalysis Letters 58 (1999):153-155
    [2]Hongbo Fu,Shicheng Zhang, Liwu Zhang, etc Visible.light.driVen NaTaO3-xNx catalyst prepared by a hydrothermal process [J]. Materials Research Bulletin 43 (2008):864-872
    [3]Akihide Iwase,Hideki Kato,Akihiko Kudo The Effect of Alkaline Earth Metal Ion Dopants on Photocatalytic Water Splitting by NaTaO3 Powder [J]. ChemSusChem 2009,2:873-877
    [4]Akihiko Kudo.Hideki Kato Effect of lanthanide.doping into NaTaO3 photocatalysts for effcient water splitting [J]. Chemical Physics Letters 331 (2000):373.377
    [5]Nayara G. Teixeira, Anderson Dias, R.L. Moreira Journal of the European Ceramic Society 27 (2007):3683-3686
    [6]Brendan J Kennedy,A K Prodjosantoso.Christopher J Howard Powder neutron diffraction study of the high temperature phase transitions in NaTaO3 [J]. J. Phys. Condens. Matter 11 (1999):6319-6327
    [7]Ahtee,M.,Darlington,C.N.W.ActaCrystallographicaB(24,1968.38,1982) (1980),36:1007.1014
    [8]Ismailzade, I.G. Kristallografiya (1962),7:718.723
    [9]Xiaobo Chen,Shaohua Shen,Liejin Guo,Samuel S. Mao Chem. ReV.2010,110: 6503-6570
    [10]Michael G. Walter, Emily L. Warren, James R. McKone Chem. ReV.2010, 110:6446-6473
    [11]Fujishima A Honda Nature,1972,238(5358):37
    [12]刘恩科,朱秉升,罗晋生.半导体物理学,国防工业出版社,1994:253—285
    [13]Che.Chia Hu,Hsisheng Teng Applied Catalysis A:General 331 (2007):44-50
    [14]Akihiko Kudo,Hideki Kato Effect of lanthanide.doping into NaTaO3 photocatalysts for effcient water splitting [J].Chemical Physics Letters 331 (2000):373.377
    [15]Akihide Iwase. Kenji Saito. Akihiko Kudo Bull. Chem. Soc. Jpn. Vol.82. No.4, 514-518:(2009)
    [16]Ming Yang, Xianli Huang, Shicheng Yan, Zhaosheng Li, Tao Yu, Zhigang Zou Materials Chemistry and Physics 121 (2010):506-510
    [17]Z. G. Yi,J. H. Ye JOURNAL OF APPLIED PHYSICS (2009) 106:074910
    [18]Hideki Kato, Kiyotaka Asakura, Akihiko Kudo J. Am. Chem. Soc.,2003,125 (10):3082.3089
    [19]L.M.Torres.Martinez R.Gomez, O.Vazquez.Cuchillo, I. Juarez.Ramirez,A. Cruz.Lopez, F.J. Alejandre.SandoVal Catalysis Communications 12 (2010):268-272
    [20]Zhonghua Li, Yanxin Wang, Jiawen Liu. Gang Chen, Yingxuan Li, Chao Zhou international Journal of hydrogen energy 34 (2009):147-152
    [21]Xia Li,Jinling Zang J. Phys. Chem. C 2009,113:19411-19418
    [22]Xin Zhou, Jingying Shi, Can Li J. Phys. Chem. C,2011,115 (16):8305-8311
    [23]Klaus Capelle Brazilian Journal of Physics, Vol.36, no.4A, December,2006
    [24]计算材料学基础 张跃,谷景华,尚家香,马岳北京航空航天大学出版社
    [25]固体能带理论谢希德复旦大学出版社
    [26]TiO2掺杂的计算机模拟计算徐凌
    [25]固体能带理论 谢希德 复旦大学出版社
    [26]固体理论 第二版 李正中 高等教育出版社
    [27]量子化学 陈光巨 黄元河 华东理工大学出版社
    [28]量子化学计算方法与应用林梦海科学出版社
    [29]Y.X. Wang, W.L.Zhong, C.L. Wang, P.L. Zhang Solid State Commmunications 120 (2001):137.140
    [30]崔春玲王渊旭山东师范大学学报(自然科学版)2003年3月18卷1期
    [31]Z.H. Li, G. Chen, J.W. Liu Solid State Communications 143 (2007):295-299
    [32]E. Ece Eyi, Suleyman Cabuk Philosophical Magazine,90,21:2965-2976
    [33]Minseok Choi,Fumiyasu Oba, Isao Tanaka PHYSICAL REVIEW B (2008) 78: 014115
    [34]Hohenberg, P.; Kohn, W. Phys. ReV. B 1964,864,136
    [35]M. Wiegel, M.H.J. Emond, E.R. Stobbe, G. Blasse, J. Phys.Chem. Solids 55 (1994):773
    [36]Hideki Kato. Akihiko Kudo Catalysis Today 78 (2003):561-569
    [37]Journal of Hazardous Materials 卷:182 期:1.3 页:50.54 出版年:2010
    [38]T Yamaki, T Umebayashi, T Sumita, S Yamamoto, M Maekawa, A Kawasuso, H Itoh,2003(206):254.258
    [39]Matsumoto Y. J.Solid State Chem.,1996,122:227-234
    [40]D. R. Shannon, Acta Crystallogr. A 1976,32:751-767
    [41]James G. Speight, Ph.D. LANGE'SHANDBOOK OF CHEMISTRY
    [42]Zongyan, Zhao Ruipu, Li Zhaosheng, Li Zhigang Zou, Journal of Physics D: Applied Physics 44 (2011):165401 (5pp)
    [43]Density Functional Theory A Practical Introduction DAVID S. SHOLL JANICE A. STECKEL
    [44]固体与表面R·霍夫曼
    [45]Benjamin J. Morgan, Graeme W. Watson Surface Science 601 (2007):5034-5041
    [46]陈建华,张辉鹏,王建国,曾小钦广西大学学报:自然科学版Vol.34 No.2 Apr.2009
    [47]XU Tian.hua, SONG Chen.lu, LIU Yong. HAN Gao.rong J Zhejiang UniV SCIENCE B 2006 7(4):299.303
    [48]Cristiana Di Valentin, Gianfranco Pacchioni, Hiroshi Onishi, etc. Chemical Physics Letters 469 (2009):166-171
    [49]C. Di Valentin, E. Finazzi, G. Pacchioni Chem. Mater.2008.20,3706-3714
    [50]Yanqin Gai, Jingbo Li, Shu.Shen Li, etc. PHYSICAL REVIEW LETTERS (2009):102,036402
    [51]Hideyuki Kamisaka, Takahiro Suenaga, Hisao Nakamura, etc.J. Phys. Chem. C 2010,114:12777-12783
    [52]Run Long, Niall J. English J. Phys. Chem. C 2010,114:11984-11990
    [53]Haowei Peng Physics Letters A 372 (2008):1527-1530
    [54]Kesong Yang, Ying Dai, Baibiao Huang Chemical Physics Letters 456 (2008):71-75
    [55]Hui Pan, Baohua Gu, Zhenyu Zhang J. Chem. Theory Comput.2009,5: 3074-3078
    [56]Junwang Tang, Jinhua Ye Chemical Physics Letters 410 (2005):104-107
    [57]Ju.Young Park. Changhoon Lee. Kwang.Woo Jung,etc. Bull. Korean Chem. Soc. 2009, Vol.30, No.2
    [58]Kesong Yang, Ying Dai. Baibiao Huang J. Phys. Chem. C 2007,111:12086.12090
    [59]T. Umebayashi, T. Yamaki, S. Yamamoto, etc. Journal of Applied Physics Vol.93, No.9
    [60]Run Long, Niall J. English Chem. Mater.2010,22:1616-1623
    [61]Yunfei Ma, Jinlong Zhanga, Baozhu Tiana, etc. Journal of Hazardous Materials 182 (2010):386-393
    [62]赵宗彦,柳清菊,朱忠其,等物理学报Vol.57, No.6, June,2008
    [63]Jian Wei Zheng, Atreyee Bhattcahrayya, Ping Wu, etc. J. Phys. Chem. C 2010, 114:7063-7069
    [64]Akira Yamakata,Taka.aki Ishibashi,Hiroshi Onishi Chemical Physics 339 (2007):133-137
    [65]J. Nowotny, T. Bak, M. K. Nowotny, L. R. Sheppard J. Phys. Chem. B 2006,110: 18492.18495
    [66]徐凌 唐超群 黄宗斌Acta Phys..Chim. Sin.,2010,26(5):1401.1407
    [67]宋桥台,杨苹,王锦标,等材料科学与工程学报Vol.26, No.13
    [68]Akihiko Kudo, Ryo Niishiro, Akihide Iwase, etc. Chemical Physics 339 (2007): 104-110
    [69]Minseok Choi, Fumiyasu Oba, Isao Tanaka Physical Re View B (2008) 78:014115
    [70]Husni Husin, Hung.Ming Chen, Wei.Nien Su, etc. Applied Catalysis B: En Vironmental 102 (2011):343-351
    [71]J.W. Liu, G. Chen, Z.H. Li, etc. International Journal of Hydrogen Energy 32 (2007):2269-2272
    [72]Wan.Hsien Lin, Ching Cheng, Che.Chia Hu, etc. APPLIED PHYSICS LETTERS (2006)89:211904
    [73]Yu He, Yongfa Zhua, Nianzu Wu Journal of Solid State Chemistry 177 (2004):3868-3872
    [75]Motoji Maruyama, Akihide Iwase, Hideki Kato, etc. J. Phys. Chem. C 2009,113: 13918-13923
    [76]Toshitatsu Ikeda, Satoru Fujiyoshi, Hideki Kato, etc. J. Phys. Chem. B 2006, 110:7883.7886
    [77]Akihiko Kudo, Hideki Kato, Seira Nakagawa J. Phys. Chem. B 2000,104:571.575
    [78]张富春,张志勇,张威虎,等化学学报Vol.66,2008 No.16:1863.1868
    [79]Dunfang Li, Jing Zheng, Zhigang Zou Journal of Physics and Chemistry of Solids 67 (2006):801-806
    [80]Dong Won Hwang, Jae Sung Lee, Wei Li, etc. J. Phys. Chem. B 2003,107: 4963.4970
    [81]Hongjie Zhang, Gang Chen, Xin Li, etc. international journal of hydrogen energy 34 (2009):3631-3638
    [82]Yun Jiang.Ni, Zhang Zhi.Yong, Yan Jun.Feng, etc. Chin. Phys. B Vol.19, No.1 (2010):017101
    [83]张丽敏,范广涵,丁少锋Acta Phys..Chim. Sin.,2007,23(10):1498.1502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700