构建无羧酸环境液相氧化合成环氧大豆油研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无溶剂无硫酸条件下合成了环氧大豆油,对环氧化合成体系中的羧酸类型、用量及双氧水浓度等影响环氧值的若干因素进行了研究。通过正交验确定了最佳合成工艺条件为:大豆油、甲酸、30%双氧水质量比为1 : 0.15 : 1.0,反应温度60°C,反应时间5 h - 6 h。产品环氧值≥6.20%,残留碘值< 6.0%。环氧化工艺应用于8 m3反应釜生产环氧大豆油,产品质量指标达到和超过行业标准。
     利用自制的过氧杂多酸季铵盐催化剂Q_3{PO_4[WO(O_2)_2]_4},在无硫酸、羧酸和溶剂条件下相转移催化合成了环氧大豆油,产物借助红外光谱、核磁共振波谱、X射线衍射、热重分析等分析手段进行了表征。结果表明,大豆油经相转移催化发生了环氧化反应,C=C双键反应后转化为环氧键,产物为环氧大豆油。
     对过氧磷钨酸盐相转移催化机理作了初步探讨,并比较了五种自制催化剂在催化大豆油环氧化方面的差异性,指出影响过氧磷钨酸盐催化效果的主要因素是分子结构中阳离子的离子硬度和亲油性。通过比较考查了季铵盐阳离子、反应温度、反应时间、双氧水滴加速度等因素对环氧化反应的影响。通过分析得出:适当升高温度、延长反应时间、降低双氧水滴加速度或使用低浓度的双氧水,可以提高双键转化率和环氧化选择性,得到较高品质的环氧大豆油。实验得到最佳环氧值分别为6.28%和6.26%。
     与传统哈孔法相比,过氧磷钨酸盐相转移催化法具有以下优点:不使用硫酸等质子酸催化剂也不使用羧酸,不但提高操作的安全性,更为重要的是减少了酸性废水的排放;利用过氧磷钨酸盐作催化剂,反应条件温和,反应速率快,催化效率高,双氧水利用率也高;未反应的双氧水分解产物为水,因此本环氧化方法没有废水污染;不使用羧酸,减少了开环副反应,环氧化反应选择性较高;不使用有毒溶剂,生产过程对环境无污染。
Epoxidized soybean oil (ESO) was prepared without solvent or sulfuric acid. Some factors affecting the epoxy value of product were investigated, including the type of carboxylic acid, amount and concentration of hydrogen peroxide, etc. . The synthesis process was optimized by orthogonal experiment, that is, soybean oil : formic acid : hydrogen peroxide of 30% concentration (mass) = 1 : 0.15 : 1.0, with reaction temperature of 60°C and reaction time of 5h - 6 h. The epoxy value is above 6.20% and residual iodine value is below 6.0%. The craftwork of epoxidation was applied to produce ESO in a reation kettle with a volume of 8 m3 to get production quality up to or exceed the industry standard.
     ESO was also prepared with homemade phase transfer catalyst oxodiperoxotungsto phosphate Q3{PO4[WO(O2)2]4} in the absence of sulfuric acid, carboxylic acid and solvent. The product was characterized by FT-IR, nuclear magnetic resonance spectroscopy, X-ray diffraction, thermogravimetry. As a result, the ethylenic linkage in soybean oil changed into epoxy group after phase transfer reaction. And ESO was obtained.
     Phase transfer mechanism with Q3{PO4[WO(O2)2]4} as catalyst is preliminary investigated. The principal factor effects catalytic reaction of Q3{PO4[WO(O2)2]4} is the rigidity and lipophilicity of cation, comparing differences amongst five kinds of homemade catalyst during epoxidation. Some factors influence epoxidation were investigated by comparing. They are: quaternary ammonium cation, reaction temperature and time, drop speed of hydrogen peroxide aqueous solution. The ethylenic linkage conversion and selectivity for oxide can be increased to get high quality of ESO by prolonging the reaction, slowing down drop speed of H2O2 or using light concentration H2O2, as was analysed. The best epoxy value during experiment is 6.28% and 6.26% respectively.
     Compared with Halcon traditional method, phase transfer catalysis method with Q3{PO4[WO(O2)2]4} has some advantages as follows. It is not only safe for operation but also the cause of reduction of the discharge of acid waste water, because carboxylic acid and protonic acid, for example sulfuric acid has not been used. Epoxidation catalysed by Q3{PO4[WO(O2)2]4} is a mild, quick and efficiency reaction, and H2O2 also has a high utilization ratio. There is no liquid pollution according to the method because a little bit remained H2O2 breaks down into water. Selectivity for oxide is quite high because of the absence of carboxylic acid which may lead to ring open reaction. In addition to these, solvent-free system is friendly to environment.
引文
[1]石万聪,石志博,蒋平平.增塑剂生产方法及应用[M].北京:化学工业出版社, 2002. 229
    [2] A. Adhvaryu , S. Z. Erhan. Epoxidized soybean oil as a potential source of high- temperature lubricants [J]. Industrial Crops and Products, 2002, 15: 247 - 254
    [3] Bo Song, Weinong Chen, Zengshe Liu, Sevim Erhan. Compressive properties of epoxidized soybean oil/clay nanocomposites [J]. International Journal of Plasticity, 2006, 22: 1549 - 1568
    [4] Soo-Jin Park, Fan-Long Jin, Jae-Rock Lee. Synthesis and Thermal Properties of Epoxidized Vegetable Oil [J]. Macromolecular Rapid Communications, 2004, 25: 724 - 727
    [5]蒋平平.无毒增塑剂环氧大豆油生产技术问题及其对策(A).2005塑料助剂生产与应用技术信息交流会论文集[C].南京: 2005.131-135
    [6] L. T.纳斯著.聚氯乙烯大全[M]:第一卷,王伯英等译.北京:化学工业出版社,1983.460 - 571
    [7] Gyu Seek Rhee, So Hee Kim, Soon Sun Kim, Kyung Hee Sohn, Seung Jun Kwack, Byung Ho Kim, Kui Lea Park. Comparison of embryotoxicity of ESBO and phthalate esters using an in vitro battery system [J]. Toxicology in Vitro, 2002, 16: 443 - 448
    [8]姜跃琴,姚蓝,郎洁先.医用聚氯乙烯塑料及其制品[P].中国专利,03142093.1. 2003-8-6
    [9]支胡钰,高端阳,吴朝育等.功能性保鲜包装膜(袋)[P].中国专利,02131257.5.2004-3-31
    [10]陈东浩,张刚强,陈伟信等.一种环保型电力电缆塑料保护管[P].200510028278.0. 2006-5-3
    [11] Zengshe Liu, Sevim Z. Erhan, Jingyuan Xu. Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites [J]. Polymer, 2005, 46: 10119 - 10127
    [12] Soo-Jin Park, Fan-Long Jin, Jae-Rock Lee. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil [J]. Materials Science and Engineering A, 2004, 374: 109 - 114
    [13]山西化工研究所.塑料橡胶加工助剂[M].北京:化学工业出版社,1983.24 - 47
    [14]冯光炷,张玉军.油脂化工产品工艺学[M].北京:化学工业出版社,2005.166– 173
    [15] Zoran S. Petrovic′, Alisa Zlatanic′, Charlene C. Lavaa. Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids– kinetics and side reactions [J]. European Journal of Lipid Science and Technology, 2002, 104: 293 - 299
    [16] Vaibhav V. Goud, Anand V. Patwardhan, Narayan C. Pradhan. Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide [J]. Bioresource Technology, 2006, 97: 1365 - 1371
    [17]韩振武,梁学军.环氧大豆油无溶剂法合成研究[J].山东化工,2006,35:7 - 12
    [18]曹玮,马新启,曲波等.环氧大豆油新工艺的研究[J].化工时刊,2002,2:49 - 51
    [19]郭学洋.环氧大豆油生产新技术[J].辽宁化工,1995,3:41 - 45
    [20]罗继权,冯立文,叶碧.环氧大豆油生产工艺的研究[J].安徽科技,1999,9: 59 - 60
    [21]张步钿.环氧大豆油增塑剂的合成[J].化工进展,1996,1:24-26
    [22]周曙光,欧阳静.用阳离子树脂作催化剂制备环氧大豆油[J].聚氯乙烯,2006,1:56 - 57
    [23]于兵川,吴洪特,向罗京.改进型无溶剂法工艺合成环氧大豆油的研究[J].中国油脂, 2005,4(30):42-44
    [24]曹卫东.由硫酸铝催化合成环氧大豆油[J].辽宁化工,1994,5:36-37
    [25] Ishii Y, et al. Oxidation of organic substrate by molecular oxygen/ aldehyde/ heteropolyoxometalate System [J]. Journal of Organic Chemistry, 1993, 58: 6421 - 6425
    [26] Mizuno N, et al. High turnover numbers for the catalytic selective epoxidation of alkenes with 1 atm of molecular oxygen [J]. Angewandte Chemie International Edition, 2001, 40: 3639 - 3641
    [27] Yu Sun, Zuwei Xi, Guoying Cao. Epoxidation of olefins catalyzed by [π-C5H5NC16H33]3- [PW4O16] with molecular oxygen and a recyclable reductant 2-ethylanthrahydroquinone [J]. Journal of Molecular Catalysis. 2001, 166: 219 - 224
    [28] Yanyong Liu, Kazuhisa Murata, Megumu Inaba. et al. Direct epoxidation of propylene by molecular oxygen over Pd(OAc)2–[(C6H13)4N]3{PO4[W(O)(O2)2]4}–CH3OH catalytic system [J]. Applied Catalysis B: Environmental. 2005, 58: 51 - 59
    [29] Yanyong Liu, Kazuhisa Murata, Toshiaki Hanaoka. et al. Syntheses of new peroxo- polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol[J]. Journal of Catalysis, 2007, 248: 277 - 287
    [30] Tabushi I, Koga N. P-450 type oxygen activation by porphyrin-manganese complex [J]. American Oil Chemists' Society, 1979, 101: 6456 - 6458
    [31] Grove J T, et al. Aerobic Epoxidation of olefins with ruthenium porphyrin catalysts [J]. American Oil Chemists' Society, 1985, 107: 5790 - 5792
    [32] Meunier B. Metalloporphyrins as versatile catalysts for oxidation reaction and oxidative DNA cleaveage [J]. Chemical Reviews, 1992, 92: 1411 - 1456
    [33] Herrmann W A, Fisher R W, Marz D W. Methyltrioxorhenium as catalyst for olefin oxidation [J]. Angewandte Chemie International Edition, 1991, 30: 1638 - 1641
    [34] Herrmann W A, Fisher R W, Scherer W. Methyltrioxorhenium(Ⅶ) as catalyst for olefin epoxidation: strcture of the active species and mechanism of catalysis[J]. Angewandte Chemie International Edition, 1993, 32: 1157 - 1160
    [35] Annelise E. Gerbase, JoséR. Gregório, Márcia Martinelli, et al. Epoxidation of Soybean Oil by the Methyltrioxorhenium-CH2Cl2/H2O2 Catalytic Biphasic System [J]. American Oil Chemists' Society, 2002, 79(2): 179 - 181
    [36] Abdillahi Omar Bouh, James H. Espenson. Epoxidation reactions with urea-hydrogen peroxide catalyzed by methyltrioxorhenium (VII) on niobia [J]. Journal of Molecular Catalysis A: Chemical, 2003, 200: 43 - 47
    [37] Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxide [P]. USP, 4410501, 1983-10-08
    [38] L.A. Rios, P. Weckes, H. Schuster, W.F. Hoelderich. Mesoporous and amorphous Ti–silicas on the epoxidation of vegetable oils [J]. Journal of Catalysis 2005,232: 19 - 26
    [39]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.14, 22
    [40] Kamata K, Yonehara K, Sumida K, Hikichi S, Mizuno N. Efficient epoxidation of olefins with≥99% slectivity and use of hydrogen peroxide [J]. Science, 2003, 300: 964 - 966
    [41]程时标.丁烯-1在[(n-C4H9)4N][γ-SiW10O36]催化剂上的环氧化[J].石油学报,2004, 3(20),80-84
    [42] Carlo Venturello, Rino D'Aloisio, Jan C. J. Bart, et al. A New peroxotungsten heteropoly anion with special oxidizing properties: synthesis and structure of tetrahexylammonium tetra (diperoxotungsto) phosphate(3-) [J]. Journal of Molecular Catalysis, 1985, 32(1): 107 - 110
    [43] Carlo Venturello, Alneri Enzo, Ricci Marco. A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions [J]. Journal of Organic Chemistry, 1983, 48: 3831 - 3833
    [44] Carlo Venturello, Mario Gambaro. A convenient catalytic method for the dihydroxylation of alkenes by hydrogen peroxide [J]. Synthesis, 1989, 4: 295 - 297
    [45] Ning Zhou, Zuwei Xi, Guoying Cao, Shuang Gao, et al. Epoxidation of propylene by using [π-C5H5NC16H33]3[PW4O16] as catalyst and with hydrogen peroxide generated by 2-ethylanthrahydroquinone and molecular oxygen [J]. Applied Catalysis A, 2003,250: 239 - 245
    [46]李健,奚祖威,高爽.磷钨杂多酸盐催化的氯丙烯水油两相条件下的环氧化[J].分子催化,2006,5(20):395 - 398
    [47] Jinbo Gaoa, Yangying Chena, Bo Han, et al. A spectroscopic study on the reaction- controlled phase transfer catalyst in the epoxidation of cyclohexene [J]. Journal of Molecular Catalysis A, 2004: 197 - 204
    [48] Hui Chen, Wei-Lin Dai, Xin-Li Yang, et al. Studies on the structural change of a reaction-controlled phase-transfer [π-C5H5NC16H33]3{PO4[WO3]4} catalyst during the selective oxidation of cyclopentene to glutaric acid with aqueous H2O2 [J]. Applied Catalysis, 2006: 62 - 69
    [49] Y. Ishii, M. Ogawa. Hydrogen Peroxide Catalyzed by Heteropoly Acids Combined with Cetylpyridinium Chloride [J]. Reviews on Heteroatom Chemistry; MYU: Tokyo, 1990, 3: 121 - 145
    [50] L. J. Csányi, K. Jáky. Peroxo-oxometallate formation under phase transfer conditions [J]. Journal of Molecular Catalysis, 1990, 1(61): 75 - 84
    [51] C. Aubry, G. Chottard, N. Platzer, et al. Reinvestigation of epoxidation using tungsten-based precursors and hydrogen peroxide in a biphase medium [J]. Inorg. Chem, 1991, 30(23): 4409 - 4415
    [52] Francesco P. Ballistreri, Adriana Bazzo, Gaetano A. Tomaselli Reactivity of peroxopolyoxo complexes:Oxidation of thioethers, alkenes, and sulfoxides by tetrahexylammonium tetrakis (diperoxomolybdo)phosphate [J]. Journal of Organic Chemistry, 1992, 57: 5074 - 5077
    [53] Duncan D C, Chambers R C, Hecht E, et al. Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2: Formation, reactivity, and stability of {PO4[WO(O2)2]4}3- [J]. Journal of the American Chemical Society, 1995, 117: 681 - 691
    [54] I.V. Kozhevnikov, G.P. Mulder, M. C. Steverink-de Zoete, et al. Epoxidation of oleic acid catalyzed by peroxo phosphotungstate in a two-phase system [J]. Journal of Molecular Catalysis A: Chemical, 1998, 134: 223 - 228
    [55] Noyori R, Aoki M, Sato K. Green oxidation with aqueous hydrogen peroxide [J]. Chemical Communications, 2003, 16: 1977 - 1986
    [56]哈丽丹·买买提,努尔·买买提,吾满江·艾力.过氧化氢一步法制备环氧亚麻油工艺[J].化工进展,2006,5(25):581-584
    [57]张志刚,蒋慧灵,黄平.双氧水爆炸事故机理分析及预防措施研究[J].安全与环境学报, 2007,4(7):108-110
    [58]伊万·科热夫尼科夫著,唐培堃等译.精细化学品的催化合成:多酸化学化合物及其催化[M].北京:化学工业出版社,2005.64
    [59] Finke R G, Droege M W, Domaille P J. Trivant heteropolytungstate derivations. 3.'rational synthesis, characterization, two-dimensional 183WNMR, and properties of P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M =Co, Cu, Zn) [J]. Inorganic Chemistry, 1987, 26(23): 3 886 - 3 896.
    [60] Yuko Miyake, Kazuhisa Yokomizo, Narihide Matsuzaki. Rapid Determination of Iodine Value by 1H Nuclear Magnetic Resonance Spectroscopy[J]. Journal of the American Oil Chemists' Society, 1988, 1(75): 15 - 19
    [61] Piyush S. Lathi, Bo Mattiasson. Green approach for the preparation of biodegradable lubricant base stock from epoxidized vegetable oil [J]. Applied Catalysis, 2007, 69: 207 - 212
    [62] Frank D. Gunstone. The Study of Natural Epoxy Oils and Epoxidized Vegetable Oils by 13C Nuclear Magnetic Resonance Spectroscopy [J]. Journal of the American Oil Chemists' Society, 1993, 11(70): 1193-1144
    [63] Ryoji Noyori, Masao Aoki, Kazuhiko Sato. Green oxidation with aqueous hydrogen peroxide[J]. Chemical Communications, 2003: 1977-1986
    [64]赵地顺主编.相转移催化原理及应用[M].北京:化学工业出版社,2007.73,85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700