菱铁矿热解动力学及其多级循环流态化磁化焙烧的数值模拟和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近10年来,中国钢铁工业所需的铁矿石连续自给率不足50%,铁矿资源短缺已成为制约中国钢铁工业发展的“瓶颈”,开发新的铁矿资源已成为当务之急。目前国内尚不能有效利用的菱铁矿、褐铁矿,鲕状赤铁矿等复杂难选铁矿石储量多达100亿吨,若采用行之有效的磁化焙烧-磁选工艺加以处理,则可望转化为现实的战略资源。不过,常规的磁化焙烧,如竖炉、回转窑等工艺存在流程复杂、成本较高等诸多缺陷,难以实现大规模的工业应用。针对这一问题,本文利用气-固流态化高效传热传质的优点,通过热重实验、悬浮态实验、计算机数值模拟和半工业试验相结合的方法,对菱铁矿的热解和磁化焙烧新工艺开展了系统深入的研究。
     选用了国内两种典型的菱铁矿,即陕西大西沟菱铁矿和云南王家滩菱铁矿,采用热重分析技术对菱铁矿在惰性气氛中的热解动力学进行了实验研究。实验应用等升温速率多重扫描法,热分析动力学的数据采用Kissinger法、FWO法和Friedman法相结合的方法处理,确定菱铁矿的热解机理并求取动力学参数。研究结果表明:大西沟菱铁矿的热解机理为收缩圆柱体模型R2,而王家滩菱铁矿的热解机理为一级化学反应F1,两者的热分解均属化学反应控制。王家滩菱铁矿的热解实验数据还表明,当粒径大于某一尺寸时,菱铁矿颗粒的热解动力学参数会受其影响。本文进一步将这种影响引入到指前因子,建立了吻合度较高的数学关联式。
     论文还采用X衍射分析法和光学显微分析法研究了菱铁矿在惰性气氛中热解的物相学,以验证焙烧矿磁性转化的效果。菱铁矿热解残留物的X衍射及磨片的光学显微分析结果表明,FeCO3热解后绝大部分转化为棕灰白的Fe3O4,偶见颗粒外表或邻近裂缝边缘的热解产物呈现白色的Fe2O3,此乃中间产物FeO被气氛中微量O2氧化所致。另外,热解残留物中裂隙发育充分,焙烧矿的可磨性非常好。
     为分析温度和气氛对菱铁矿热解过程的影响,本文首次在稀相悬浮状态下进行了菱铁矿的等温热解实验,在获取菱铁矿热解动力学模式及参数的同时,为后期的数值模拟提供有效的实验支撑。实验结果表明:王家滩菱铁矿在悬浮态下热解的机理为球体收缩模型R3,仍然属化学反应控制;尾气中CO的最高峰值比CO2的最高峰值滞后约5-10s不等,温度越高,滞后时间越长;FeO的磁化速率在温度段600℃~650℃增速较快,于700℃附近出现最大值;随着气氛中CO2的含量的增加,FeCO3热解的速度单调下降,而FeO的磁化速率单调上升,不过两者的变化幅度逐步趋缓至16%CO2时几近饱和。
     本文还采用了颗粒随机轨道模型和颗粒表面反应模型相结合的方法,对王家滩菱铁矿在多级循环流态化磁化焙烧装置中的热解进行了数值模拟。模拟结果表明,管式反应器中的烟气呈现活塞流,不利于反应器内组分的扩散和颗粒物的滞留;平齐式料管入口处存在的狭长涡旋迟滞颗粒流的下滑并可能诱发料管的堵塞,改进后的插入式料管则完全消除了上述缺陷和隐患;温度和滞留时间对菱铁矿的热解率的影响非常显著,管式反应器对菱铁矿的热解贡献率不足50%。
     为了验证数值模拟计算的结果,针对王家滩菱铁矿的流态化磁化焙烧进行了半工业试验,试验表明:在弱还原气氛(1.5%C0)、1028℃温度下菱铁矿样中碳酸铁的热解率为90.3%-94.5%,与其热解模拟计算值86.49%基本一致;接近中性的热解气氛适宜菱铁矿的热解和磁性转化,即CO气氛浓度不宜超过1.5%或O2浓度不大于1.85%。
During the past ten years, the self-sufficient rate of iron ore for steel industry in China is continuously less than 50%. Heavy shortage of domestic iron ore is limiting the development of iron and steel industry of China, and the exploiture of new iron ore reserves is an emergent task for China. More than 10 billion tons of iron ore reserves, such as siderite, limonite and oolitic hematite, cannot be utilized effectively. Magnetizing roasting followed by magnetic separation is an effective technique to convert iron ore, however, such a kind of new technology isn't well developed in China up till now for its very complexity. Traditional magnetizing roasting technology of shaft-type and rotary furnace also has the problems of high-cost and process-complication. To take the advantage of fast heat and mass transferring of fluidization of gas-solid, a kind of new technology named Multi-grade Circulating and Fluidizing Magnetizing Roasting (MCFMR) was developed to convert siderite to high magnetic oxidized iron ore. Therefore, current work is indulged to make a systematic and deep research on the kinetics of siderite decomposition and the new technology of MCFMR furnace through theoretical analysis, simulated experiments, CFD simulation and experiment in full-scale plant.
     Thermal decomposition of two kinds of siderites were investigated under pure N2 atmosphere, one is from Daxigou and the other is from Wangjiatan. The non-isothermal method with thermo-gravimeter (TG) by multi-scanning is used in the experiment research and the data processing method includes Kissinger, FWO and Friedman methods. Reactive mechanisms and kinetic parameters of thermal decomposition of siderites were obtained. The results indicates that the shrinking cylinder model is the best model fitting the experiment data of Daxigou siderite, while the first-order reaction model is the best model fitting that of Wanjiatan's. However thermal decomposition mechanisms of the two siderites are both controlled by the same reaction rate. The value of pre-exponential factors exhibited a strong dependence on the Wanjiatan siderite particles with a certain size, and a new equation of first-order reaction model with the effect of particle size was developed which matches great with the data of TG experiments.
     To verify the magnetizing effectiveness of roasting ore, the chemical phase of the siderites in inert atmosphere was researched by using X-ray diffraction method and the optical microscopy method. The X-ray diffraction patterns and the optical microscopy patterns of the solid residue show that magnetite of the siderite ore is mainly consists of brown gray Fe3O4 and small amount of white Fe2O3 sometimes can be found at the surface or at the crack edge of siderite particle, which was converted from middle product, FeO, by the trace oxygen in the atmosphere. The roasted siderite ore was well grindable for the rich cracks in the solid residue.
     To analysis the influence of temperature and atmosphere to the siderite ore, an isothermal decomposition experiment of siderite ore in the dilute phase suspension condition was executed in current work. The pyrolysis kinetic mode and parameters are obtained from the experiment, and the results are helpful to construct the simulation model which was solved next. It was found that the shrinking sphere model with surface reaction rate controlling mechanism is the best model fitting the experiment data. The experiment results showed that the peak concentration of CO in the off-gas came out 5~10 seconds later than that of CO2. The magnetization rate of FeO was speeding-up obviously between 600℃and 650℃and a maximum speed appeared at around 700℃. With the increase of concentration of CO2 in the atmosphere, the decomposition rate of siderite ore was reducing and the magnetization rate of FeO was rising first, and then both showing a tendency to a limit at the concentration of 16% CO2.
     A numerical simulation for the decomposition of Wangjiatan siderite in MCFMR furnace was done by using particle stochastic trajectory model coupled with partical surface reaction model. The results indicated that the gas flow in the tubular reactor is plug flow, and it was adverse for the diffusion of the species and the detention of the particles in the reactor. Furthermore, a long and narrow eddy flow in the feed inlet of flat nozzle would stagnate the siderite particles and it may induce a block in feed nozzle. However such a hidden trouble can be greatly improved by using a insert feed nozzle. It also shows that the flue gas temperature and the particle delay-time in the fourth grade has great influence on the decomposition rate of siderite, while the tubular reaction has a much smaller influence on the ratio of decomposition which is no more than 50%.
     To verify the numerical simulation results, a half-industry test was executed for Wangjiatan siderite. Experiment results shows that the decomposition ration of siderite is between 90.3% and 94.5% in a weak reduction atmosphere (the content of CO is less than 1.5%) with a temperature of 1028℃. This value is roughly consistent to the result of numerical simulation which is 86.49%. It can also be concluded that the neutral atmosphere is more benefit of the decomposition and magnetic convert of siderite and the content of CO should be kept no more than 1.5% or the content of O2 no more than 1.85%.
引文
[1]余永富,张汉泉.我国铁矿发展对铁矿石选矿科技发展的影响.武汉理工大学学报,2007,1:1-5
    [2]张泾生.我国铁矿资源开发利用现状及发展趋势.中国冶金,2007,1:1-16
    [3]П.E.奥斯塔平科.铁矿石选矿.北京:冶金工业出版社,1981.10
    [4]黑色金属矿石选矿试验编写组.黑色金属选矿试验.北京:冶金工业出版社,1978.12
    [5]Dalla lana I G, Amundson N R. Reduction of powdered iron oxide-A tubular reactor. Industrial and engineering chemistry,1961,53(1):22-26
    [6]Uwadiale G G O O. Magnetizing reduction of iron ores, Mineral Processing and Extractive Metallurgy Review,1992,11:1-19
    [7]Nas M I, Youssef M A. Optimization of Magnetizing Reduction and Magnetic Separation of Iron Ores by Experimental Design. ISIJ International,1996,36:631-639
    [8]Youssef M A, Morsi M B. Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnace feed. Canadian Metallurgical Quarterly,1998, 37:419-428
    [9]Beneficiation of low-grade iron ores by a reducing roast and magnetic separation, Revisit de Metallurgic,1982,18(1):45-55
    [10]朱家骥,朱俊士.中国铁矿选矿技术.北京:冶金工业出版社,1994
    [11]Priestley R J. Magnetic conversion of iron ores[J]. Ind. Eng. Chem.,1957,49(1): 62-64
    [12]Priestley R J. Upgrading iron ore by fluidizing magnetic conversion[J]. Blast Furnace and Steel Plant,1958,46(3):202-307
    [13]陈鸿复.冶金炉热工与构造.北京:冶金工业出版社,1990
    [14]Kwauk M. Fluidized roasting of oxidic Chinese iron ore[J]. International Chemical Engineering,1981,21(1):95-115
    [15]张迎春等,菱铁矿热分解产物及其变化规律的研究[J].湘潭矿业学院学报,2002(1):55-57
    [16]Zakharov V Y, Adonyi Z. Thermal decomposition kinetics of siderite [J]. Thermochimica Acta,1986(102):101-107
    [17]Dhupe A P, Gokarn A N. Studies in the thermal decomposition of natural siderites in the presence of air. Int. J. Miner. Process.,1990(20):209-220
    [18]Jagtap S B, Pande A R, Gokarn A N. Kinetics of themal decomposition of siderite: effect of particle size. Int. J. Miner. Process.,1992(36):113-124
    [19]Gotor F J, Macias M, Ortega A, et al. Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples [J]. Phys. Chem. Minerals, 2000(27):495-503
    [20]庞永莉,肖国先,酒少武.菱铁矿热分解动力学研究[J].西安建筑科技大学学报(自然科学版),2007(39):136-139
    [21]Dilek Alkac, Umit Atalay. Kinetics of thermal decomposition of Hekimhan-Deveci siderite ores samples. Int. J. Miner. Process.,2008(87):120-128
    [22]Lycklama J A, Tijani M E, Spoelstra S. Simulation of a travelling-wave thermoacoustic engine using computational fluid dynamics. J. Acoust. Soc. Am.,2006, 118:2265-2270
    [23]Pickering S J, Simmons K, Eastwick C N, et al. Combustion and aerodynamic behaviour of car tyre chips in a cement works precalciner. Journal of the Institute of Energy,2002,75(504):91-99
    [24]Giddings D, Eastwick C N, Pickering S J, et al. Computational fluid dynamics applied to a cement precalciner. Journal of Power and Energy,2000,214(3):269-280
    [25]Iliutaa I, Dam-Johansena K, Jensenb L S. Mathematical modeling of an in-line low-NOX calciner. Chemical Engineering Science,2002,57:805-820
    [26]Iliutaa I, Dam-Johansena K, Jensena A, et al. Modeling of in-line low-NOX calciners-aparametric study. Chemical Engineering Science,2002,57:789-803
    [27]Huang Lai, Lu Jidong, Hu Zhijuan, et al. Numerical simulation of NO release in precalciner and optimization. Energy&Fuels,2006,20(1):164-171
    [28]Ganz S N, Rakhmanova L E. Removal of oxygen from gas. Khim. Tekhnol (Kharkov), 1971(22):73-76
    [29]Chatterjee A R, Srivastava A K, Tiwari J S, et al. Studies on various indigenous sources of iron oxide as substitute for hydrogen production by steam-iron process. Fert Tech.1980(17):7-18
    [30]Ding J, Miao W F, Street R, et al. Fe3O4/Fe magnetic composite synthesized by mechanical alloying. Scripta Mater,1996(35):1307-1310
    [31]Gallagher P K, Warne S St J. Thermomagnetometry and thermal decomposition of siderite [J], Thermochimica Acta,1981(43):253-267
    [32]Criado J M, Gonzalez M, Macias M. Influence of grinding on both the stability and thermal decomposition mechanism of siderite[J]. Thermochimica Acta,1988(135): 219-223.
    [33]John H Levy. The effect of vapour pressure on the reaction of water vapour with siderite and its relevance to retorting of Australian Tertiary oil shales[J]. Thermochimica Acta,1991(184):59-64.
    [34]Harry J Hurst, John H Levy, John H Patterson. Siderite decomposition in retorting atmospheres[J]. Fuel,1993(72):885-890.
    [35]Znamenackova I, Lovas M, Mockovciakova A, et al. Modification of magnetic properties of siderite ore by microwave energy [J]. Separation and Purification Technology,2005(43):169-174
    [36]宋海霞,徐德龙,酒少武.悬浮态磁化焙烧菱铁矿及冷却条件对产品的影响.金属矿山,2007,1:52-54
    [37]罗立群.难选复杂铁物料流膜磁分离与闪速磁化焙烧新技术研究.武汉理工大学博士学位论文,2006
    [38]任亚峰,余永富.难选红铁矿磁化焙烧技术现状及发展方向.金属矿山,2005,35(3):20-23
    [39]张汉泉.大冶铁矿难选氧化铁矿多级循环流态化磁化焙烧工艺及机理研究.武汉理工大学博士学位论文,2007
    [40]Boysan F, Swithenbank J. A fundamental mathematical modeling approcah to cyclone design[J]. Trans Ichem E,1982,60:222-230
    [41]Hideto Yoshida. Three-dimensional simulation of air cyclone and particle separation by a revised-type cyclone[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996(109):1-12
    [42]Fraser S M, Abdel Razekam, Abdullahm Z. Computational and experimental invertigations in a cyclone dust separator [J]. Proc Instn Mech Engrs,1997(22): 247-257
    [43]Derksen J J, Sundaresan S, van den Akker H E A. Simulation of mass-loading effects in gas-solid cyclone separators [J]. Powder Technology,2006(163):59-68
    [44]Wang B, Xu D L, Chu KW, et al. Numerical study of gas-solid flow in a cyclone separator[J]. Applied Mathematical Modelling,2006(30):1326-1342
    [45]Safikhani H, Akhavan-Behabadi M A, Shams M, et al. Numerical simulation of flow field in three types of standard cyclone separators [J]. Advanced Powder Technology, In Press, Corrected Proof, Available online 17 January 2010
    [46]林玮,王乃宁.用应力模型计算旋风分离器的流场[J].华东工业大学学报,1996,18(3):8-13
    [47]林玮,王乃宁.旋风分离器内三维两相流场的数值模拟[J].动力工程,1999,19(1):72-76
    [48]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):
    [49]毛羽,雷俊勇,庞磊等.旋风分离器内气-固两相流动的颗粒随机轨道法数值模拟[J].过程工程学报,2002(2)s:437-441
    [50]谭晓军,陈丽华,李宏剑等.数值研究扩散式旋风分离器流场与颗粒分离特性[J].热能动力工程,2006(21):270-274
    [51]薛晓虎,孙国刚,时铭显.旋风分离器内颗粒浓度分布特性的数值分析[J].机械工程学报,2007,Vo1.43,No.3:26-33
    [52]宋健斐,魏耀东,时铭显.旋风分离器内颗粒浓度场的数值模拟[J].中国石油大学学报(自然科学版),2008(32):90-94
    [53]崔洁,陈雪莉,王辅臣等.新型旋风分离器内近壁面颗粒浓度的分布特性[J].中国电机工程学报,2009(29)s:118-123
    [54]Mi-Soo Shin, Hey-Suk Kim, Dong-Soon Jang, et al. A numerical and experimental study on a high efficiency cyclone dust separator for high temperature and pressurized environments[J]. Applied Thermal Engineering (2005(25):1821-1835
    [55]万古军,魏耀东,时铭显.高温条件下旋风分离器内气相流场的数值模拟[J].过程工程学报,2007(7):871-876
    [56]万古军,魏耀东,薛晓虎等.温度对旋风分离器内颗粒浓度分布影响的模拟[J].燃烧科学与技术,2008(16):562-568
    [57]万古军,孙国刚,魏耀东,等.温度和压力对旋风分离器内气相流场的综合影响[J].动力工程,2008(28):579-584
    [58]万古军,孙国刚,魏耀东,等.压力对旋风分离器内颗粒浓度分布影响的模拟[J].石油学报(石油加工),2008(24):689-696
    [59]徐俊,秦新潮,万古军,等.PV型旋风分离器的分离性能改进实验和分析_环形空间[J].炼油技术与工程,2009,39(10):33-36
    [60]徐俊,秦新潮,万古军,等.PV型旋风分离器的性能改进实验和分析_进口结构[J].炼油技术与工程,2009,39(11):34-36
    [61]徐俊,宋健斐,王珊珊,等.PV型旋风分离器的性能改进实验和分析_灰斗结构[J].炼油技术与工程,2009,39(12):28-30
    [62]#12
    [63]张民权,莫炳禄.一种新型高效的化工反应设备-旋风反应器[J].化学工业与工程,1993(10):58-62
    [64]张民权,莫炳禄.旋风分离器内压力降及分析效率的计算及测定[J].化学工程,1995,23(4):33-38
    [65]张民权.旋风反应器内传热的研究[J].化学工程,1997,25(1):14-16
    [66]陈新国,徐春明,郭印诚.用颗粒流的动力学理论模拟提升管反应器流动特征[M].化工学报,2000,51(2):264-267
    [67]WANG Shuyan, LU Huilin, GAO Jinsen, et al. Numerical Predication of Cracking Reaction of Particle Clusters in Fluid Catalytic Cracking Riser Reactors [J]. Chinese Journal of Chemical Engineering,2008,16(5):670-678
    [68]姚晓晖,罗列,俞晓晶,等.传统硅烷分解炉内分解过程的模拟[J].浙江理工大学学报,2009,26(6):901-905
    [69]赵蔚琳,等.分解炉内湍流流场的数学模型建立[J].山东建材学院学报,2001,15(1):26-29
    [70]赵蔚琳,侯立红.DD分解炉内湍流流场的数值分析[J].硅酸盐通报,2002,(2):26-28
    [71]赵蔚琳,李兆峰.FLS分解炉二维流场的数值模拟计算[J].工业炉,2002,24(2):45-47
    [72]王超群,倪晓奋,李建华.双喷腾分解炉内湍流流场的数值模拟[J].水泥石灰,1994(1):2-6
    [73]吴君棋,陆继东,黄来,等.旋喷结合分解炉的流场模拟.硅酸盐学报[J].2002,30(6):702-706
    [74]黄来,陆继东,任合斌,等.旋喷结合分解炉内流场的数值模拟[J].燃烧科学与技术,2003,9(3):274-279
    [75]王超群.一种新型的喷腾分解炉[J].水泥工程,2000,(4):10-13
    [76]黄来,陆继东,李昌军,等.双喷腾分解炉内气固两相流场的数值模拟[J].硅酸盐学报,2003,31(8):748-753
    [77]陈作炳,卢海波,彭建新,等.强化悬浮式分解炉内气固两相流场的数值模拟[J].硅酸盐学报,2006,34(1):50-54
    [78]李相国,马保国,吴贝,等.喷腾型分解炉内冷态流场的模拟与优化设计[J].哈尔滨工业大学学报,2009,41(4):226-228
    [79]叶旭初.碳酸钙分解两相流的数值模拟[J].化工学报,1992,43(1):113-116
    [80]叶旭初,胡道和.SLC分解炉内燃烧、分解的数值模拟研究[J].硅酸盐学报,1994,22(4):325-330
    [81]缪明峰,叶旭初,胡道和.RSP分解炉内燃烧、分解的数学模拟分析[J].水泥·石灰,1995,(4):16-20
    [82]考宏涛,等.分解炉循环喂料与物料停留时间分布的关系[J].南京化工大学学报,2000,22(5):43-45
    [83]黄来,陆继东,任合斌,等.双喷腾分解炉中燃烧和分解藕合数值的模拟[J].硅酸盐学报,2004,32(10):1271-1275
    [84]黄来,陆继东,狄东仁,等.分解炉中气体成分分布的数值模拟[J].化工学报,2004,55(7):1161-1167
    [85]黄来,陆继东,任合斌,等.旋喷结合分解炉的数值模拟[J].化工学报,2005,56(4):829-834
    [86]王家媚,肖国权.分解炉内煤粉燃烧和CaCO3分解流场数值模拟[J].海军工程大学学报,2005,17(2):8-11
    [87]陈锦,杨晶,尹少武.基于软件的氮化硅反应炉内热过程的数值模拟[J].北京科技大学学报,2005,27(6):710-715
    [88]叶旭初,李祥东,胡道和.喷旋管道式分解炉内燃烧、分解过程的CFD模拟[J].南京工业大学学报,2006,28(1):62-66
    [89]陈镜泓,李传儒.热分析及其原理[M].北京:科学出版社,1985
    [90]孙学信主编.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2002
    [91]Gallagher P K, West K W, Warne S St J. Use of Mossbauser effect to study the thermal decomposition of siderite [J], Thermochimica Acta,1981(50):41-47
    [92]Swalin R A. Thermodynamics of solids[M]. J. Wiley, New York,1967, p.84
    [93]胡荣祖,史启祯编.热分析动力学(第二版)[M].北京:科学出版社,2008
    [94]罗建强,郭铨,夏麟培.菱镁矿轻烧动力学研究[J].化工冶金,1985(1):7-15
    [95]Kupper D, Tiggesbaumker P. The calcination behaviour of cement raw meals[J]. ZKG International,1983(36):275-281
    [96]Khraisha Y H, Dugwell D R. Coal combustion and limestone calcination in suspension reactor[J]. Chemical Engineering Science,1992,47(5):993-1006
    [97]李安平,张薇,简淼夫,等.水泥生料在模拟分解炉内分解特性的研究[J].硅酸盐学报,1995,23(2):175-183
    [98]Hu N, Scaroni A W. Calcination of pulverized limestone particles under furnac injection conditions[J]. Fuel,1996,75(2):177-186
    [99]蔡吕清,陆继东,吕刚.分解炉内C02含量对燃煤NO释放特性的影响[J].硅酸盐 学报,2010,38(7):1209-1214
    [100]徐德龙.水泥悬浮预热预分解技术理论与实践[M].北京:科学技术文献出版社,2002
    [101]李佑楚.流态化过程工程导论[M].北京科学出版社,2008,p.113
    [102]Orszag S A. Numerical simulation of incompressible flows within simple boundaries. Galerkin (Spectral) Representation. Studies in Appl.Math.,1971,50(4):293-327
    [103]Orszag S A, Patterson G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett.1972,28:76-79
    [104]Rogallo R S. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum,1981,813-815
    [105]Rogall R S, Moin P. Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 1984,16:99-137
    [106]Cebeci T, Spalding D B. Analysis of Turbulent Boundary Layer. New York: Academic Press,1974
    [107]Launder B E, Spalding D B. The Numerical Computation in Turbulent Flows. Computer Methods in Applied Mechanics and Engineering,1974,3:269-289
    [108]Launder B E. Second-Moment Closure:Methodology and Practice, TFD/82/4, University of Manchester Institute of Science and Technology,1982
    [109]Yakhot V, Orszag S A. In non-linear dynamics of transcritical flows, Springer, Berlin, 1985
    [110]Yakhot V, Orszag S A. Development of turbulence models for shear flows by a double expansion technique, Phys. Fluid,1992, A4(7)
    [111]Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flows[J]. International Journal Engineering Science,1992,30(10):1379-1388
    [112]王少平,曾扬兵,沈孟育,等.用RNG κ-ε模型数值模拟180°弯道内的湍流分离流动[J].力学学报,1996,28(3):257-263
    [113]徐江容.气-固两相湍流模型的研究即煤粉浓淡旋流燃烧器两相流动的数值模拟[J].浙江大学博士学位论文,1999
    [114]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998,p.183-186
    [115]Baum M M, Street P J. Predicting the combustion behavior of coal particles[J]. Combust. Sci. Tech.,1971,3(5):231-243
    [116]Field M A. Rate of cumbustion of size-graded fractions of char from a low rank coal between 1200K-2000K[J]. Combust. Flame,1969,13:237-252
    [117]罗良飞,陈雯,罗明发.王家滩菱铁矿焙烧选矿试验研究[J].金属矿石,2007(367):48-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700