炼厂混合C4烃催化裂解制低碳烯烃催化剂及工艺条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼厂混合C4烃类催化裂解是增产丙烯的有效方法之一,本论文以炼厂混合C4烃为原料,对催化剂改性、反应工艺条件优化及反应机理的进行了系统研究。
     首先综合丁烯二聚-裂解、异丁烷和丁烯的烷基化及2-丁烯与乙烯的歧化机理提出混合C4烃催化裂解过程的主要反应途径,并提出混合C4烃催化裂解过程中主反应和主要的副反应,对主副反应进行热力学分析,为催化剂的筛选和工艺条件的优化提供理论指导。
     本实验研究HZSM-5分子筛硅铝比对混合C4烃裂解性能的影响,筛选出最佳的分子筛硅铝比为200。以硅铝比为200的HZSM-5分子筛为载体,负载不同改性物质制备了一系列催化剂,从中筛选出具有优良催化活性的La-HZSM-5和Ce-HZSM-5分子筛催化剂,并研究了改性物质含量对裂解性能的影响,La-HZSM-5和Ce-HZSM-5分子筛最佳的改性活性成分含量为0.099g/g-cat和0.051g/g-cat。
     以La-HZSM-5和Ce-HZSM-5分子筛作为工艺条件优化的催化剂,考察了进料流率、反应温度和水烃比(m)对混合C4烃裂解性能的影响。得到最优的工艺条件为:进料流率40ml/min、反应温度480℃和水烃比0.3。在该最佳工艺条件下,Ce-HZSM-5分子筛的裂解性能略优于La-HZSM-5分子筛,其转化率和丙烯的选择性可达67.15%和72.44%,P/E=7.1。
     催化剂具有较长的使用寿命,其失活主要是表面积碳覆盖活性中心所致。催化剂的再生采用空气二段烧碳法,催化剂再生温度分别为400℃和550℃。再生后的催化剂基本保持了新鲜催化剂的催化活性。
Refinery catalytic cracking of mixed C4 hydrocarbons was one of the effective ways to increase propylene yield. This thesis with the refinery mixed C4 hydrocarbon as raw material, studied systematically the modified catalysts, the optimization of reaction conditions and the reaction mechanism.
     Based on the mechanism of butene dimerization-cracking, isobutane and butene alkylation and 2-butene and ethylene disproportionation, we proposed the main reaction paths of mixed C4 hydrocarbon catalytic cracking process, as well as the main reactions and the major side reations, and thermodynamic analysis of theirs. Thus providing theoretical guidance to screen catalyst and optimize the process conditions.
     In this experiment, we studied the influence of HZSM-5 sieve Si-Al ratio on mixed C4 hydrocarbon cracking properties, and selected the best Si-Al ratio was 200. With Si-Al ratio 200 of HZSM-5 as the carrier, a series of different modified catalysts were prepared, selected excellent catalytic activity of La-HZSM-5 and Ce-HZSM-5 zeolite catalyst, and studied the influence of modified materials on the performance of the modified catalyst, La-HZSM-5 and Ce-HZSM-5 molecular modification of the best material content were 0.099g/g·cat and 0.051g/g·cat.
     With La-HZSM-5 and Ce-HZSM-5 molecular sieve as a catalyst optimized process conditions, we studied the influence of feed flow rate investigated, reaction temperature and water-hydrocarbon ratio(m) on mixed C4 hydrocarbon cracking performance. The optimal conditions were:feed flow rate 40ml/min, reaction temperature 480℃and water-hydrocarbon ratio 0.3. Under the optimum conditions, Ce-HZSM-5 molecular sieve cracking performance is superior to La-HZSM-5, conversion and propylene selectivity of 67.15% and 72.44%, P/E =7.1.
     Catalyst had a longer service life, its inactivation was mainly due to carbon covering the active site. The catalyst regeneration temperatures were 400℃and 550℃. Regenerated catalyst still remained fresh catalyst activity.
引文
[1]胥月兵,岳辉,陆江阴,等.碳四烃综合利用研究及评述.新疆大学学报[J].2007,24(4):430-435
    [2]王红艳,王淑君,金晓晨.12kt/a正丁烷分离工程的工艺设计.华锦化工设计院[J].2001,11(2):9-11
    [3]季东,汪毅,刘涛,等.高硅分子筛ZSM-23催化裂解C4烷烃制乙烯丙烯的研究[J].分子催化,2007,21(3):193~199
    [4]Corma A, Melo F V, Sauvanaud L, et al. Light cracted naphtha processing:Controlling chemistry for maximum propylene production [J]. Catal Today,2005,107-08:699-706
    [5]Plotkin J S. Tbe changing dynamics of olefin supply/demang [J]. Catal Today,2005,106; 10-14
    [6]Pramote C. Commercialization of the World's First Oleflex Unit [J]. J Roy Inst,2002,27(3):664-672
    [7]Mol J C. Industrial applications of olefin metathesis [J]. J Mol Catal A:Chem,2004,213(1):39-45
    [8]Ferrari M, Pollesel P, Mantegazza M A. Getting value from steam cracter C4/C5 olefin streams [J]. Oil Gas Eur Mag,2005,31(1):22-26
    [9]朱向学,刘盛林,牛雄雷,等.ZSM-5分子筛上C4烯烃催化裂解制丙烯和乙烯[J].石油化工,2004,33(4),320-324
    [10]刘俊涛,谢在库,徐春明,等.C4烯烃催化裂解增产丙烯技术进展[J].化工进展.2005,24(12):1347-1351
    [11]金文清,赵国良,滕加伟,等.氢氧化钠改性ZSM-5分子筛的碳四烯烃催化裂解性能[J].化学反应工程与工艺.2007,23(3):193-199
    [12]许国梁,朱向学,于海卫,等.分子筛催化剂上1-丁烯催化裂解制低碳烯烃[J].天然气化工.2007,32(3):5-10
    [13]Coupard V, Hugues F, Commereuc D, et al, US Patent[P]:6281402,2001
    [14]王滨,高强,索继栓.C4C5烯烃制乙烯丙烯催化技术进展[J].分子催化.2006,20(2):188-192
    [15]张听,王建伟,钟进等.C4烯烃催化转化增产丙烯研究进展[J].石油化工.2004,33(8):781-787
    [16]Curtis R M, Ray O, Michael. Economic Routes to Propylene[J]. Hydrocarbon Asia,2004,14(4):36-45
    [17]中国石油吉林化学工业公司引进美国技术建200kt/a丙烯装置[J].石油化工,2007,36(5):527
    [18]赵国良,滕加伟,宋庆英,等.AlSi-ZSM-48沸石分子筛的合成及其催化性能[J].催化学报.2003,24(2):119-122
    [19]梁文杰,刘晨光,杨秋水,等.石油化学[M].山东:中国石油大学出版社,2009:452-463
    [20]谷涛,王永虎,田松柏.异丁烷与烯烃烷基化工艺研究进展.石化技术与应用.2005,23(2);133-137
    [21]Marina Yu.Smirnova, Gleb A. Urguntsev, Artem B, et al. Isobntane/bntene alkylation on sulfated alumina:Influence of sulfation conditon on textural, structural and catalytic properties[J]. Applied Catalysis A:General,2008,344,107-113
    [22]瞿勇,唐华荣,白尔铮.C4烯烃歧化制丙烯技术[J].石油化工.2002,31(12):1017-1021
    [23]白尔铮.烯烃歧化催化工艺进展.精细石油化工进展,2001,2(2):24~28
    [24]Chodorge J, Commereuc D, Cosyns J. Process and Installation for Concersion of the Olefin C4-Cut into Polyispbutene and Propylene[P]. EP 742234 B1.2001
    [25]Frederic H, Mege P, Commereuc D. Process for Liquid-Phase Conversion with Moving-Bed Catalysts Using a Stripper-Lift[P]. US6284939.2001
    [26]Oliver H, Commereuc D, Forestiere A. Process and Unit for Carrying out a Reaction on an Organic Feed, such as Dimerization or Metathesis in the Presence og a Polar Phase Containing a Catalysts[P]. US6284937.2001
    [27]刘会娟,黄声骏,张玲,等.丝光沸石-氧化铝双组元负载钼催化剂上1-丁烯歧化反应[J].催化学报.2008,29(6):513-518
    [28]UOP LLC. Process for Producing Light Olefins[P]. US Pat APPl, US5990369.1999
    [29]高永地,山红红,杨朝合,等.两段提升管催化裂解多产乙烯丙烯新工艺的实验室研究[J].石油炼制与化工.2008,39(4):46-50
    [30]段秀华,山红红,李春义,等.催化裂化C4烃组合回炼催化裂解增产丙烯研究[J].石油炼制与化工.2008,39(9):5-8
    [31]董孝利,孟祥海,徐春明,等.重油催化裂解C4烃的二次裂解性能研究[J].炼油技术与工程,2005,35(3):7-10
    [32]王玫,刘飞,黄剑锋,等.C4烃的综合利用[J].甘肃科技.2007,23(4):117-118
    [33]张刘军,高金森,徐春明,等.催化裂化C4烃类的研究现状与应用[J].天然气与石油.2005,23(3):48-51
    [34]王素艳.C4烃类催化裂解行为及动力学研究[D].北京:石油大学(北京),2001
    [35]徐占武,李春义,隋红,等.混合C4转化制丙烯的反应[J].化工进展.2008,27(1):104-107
    [36]李吉春,申建华,林泰明.炼化一体化低成本低碳烯烃生产技术与进展[J].石化技术与应用.2005,23(5):333-337
    [37]孙世林,薛英芝,赵清艳,等.C4烃催化裂解制丙烯和乙烯的研究[J].石化技术与应用.2007,25(3):210-212
    [38]陈然,巩雁军,李强,等.具有多级孔结构的NH4-β的直接合成及其性能[J].物理化学学报.2009,25(3):539-544
    [39]张刘军,高金森,徐春明.C4烃类催化转化反应条件的研究[J].石油炼制与化工.2005,36(9):4-7
    [40]庞文琴,徐如人.分子筛与多孔材料化学[M].北京:科学出版社,2004:250-251
    [41]于海明.混合碳4裂解制乙烯丙烯的研究[J].中国石油大学学报.2006,30(3):106-108.
    [42]Klepel O, Loubentsov. Oligomerization as an important step and side reaction for skeletal isomerization of linear butenes on HZSM-5[J]. Applied Catalysis A:General,2003,255:349-354
    [43]D Rutenbeck, H Papp, D Freude, et al. Investigations on the reaction mechanism of the skeletal isomerization of n-butenes to iso-butenes (Part I):Reaction mechanism on HZSM-5 Zeolites[J]. Applied Catalysis A:general,2001,206:57-66
    [44]D Rutenbeck, H Papp, H Ernst, et al. Investigations on the reaction mechanism of the skeletal isomerization of n-butenes to iso-butenes (Part II):Reaction mechanism on HZSM-5 ferrierites[J]. Applied Catalysis A:general,2001,208:153-161
    [45]Li Li, Gao jinsen, Xu Chunming, et al. Rection behaviors and mechanisms of catalytic pyrolysis of C4 hydrocarbons[J]. Chenical Engineering Journal,2006,116:155-161
    [46]Olaf Klepel, Andrei Loubentsov, Winfried Bohlmana, et al. Oligmerization as an important step and side reaction for skeletal isomerization of linear butene on H-ZSM-5[J]. Applied Catalysis A:general, 2003,255:349-354
    [47]J. Houzvicka, J. G. Nienhuis, S. Hansildaar, et al.ZSM-5 An active, selective and stable catalyst for skeletal isomerisation of n-butene[J]. Applied Catalysis A:general,1997,165:443-449
    [48]段秀华,山红红,李春义,等.催化裂化C4烃组合回炼催化裂解增产丙烯研究[J].石油炼制与化工,2008,39(9):5-8
    [49]J Houzvicka, R Klik, L Kubelkova, et al. The role of acid strength of the catalysts in the skeletal isomerisation of n-butene[J]. Appl. Catal. A:general,1997,150:101-102
    [50]王松汉.石油化工设计手册(M).北京:化学工业出版社,2002:358-420
    [51]文彬,张平,伍小驹,等.ZSM-5分子筛硅铝比对C4烃类催化裂解制丙烯的影响[J].石油化工,2005,34:100-101
    [52]Butter S A, Kaeding W W. Phosphorus-containing zeolite catalyst[J]. US,3972832.1976
    [53]龙立华,伏再辉,朱华元,等.磷改性ZSM-5沸石的催化裂解性能[J].工业催化.2004,12(5):11-15
    [54]Lercher J A, Rumplanayr G. Controlled decrease of acid strength by orthophosphoric acid on ZSM-5[J].Appl Catal,1986,25; 215
    [55]范闵光,李斌,宋少青,等.MoO3对HZSM-5分子筛酸性的影响[J].广西大学学报.2007,32(2):143,146
    [56]朱文祥,刘鲁美.中级无机化学[M].北京:北京师范大学出版社.1993.390-391.
    [57]王晓宁,周新宇,姜桂元,等.稀土改性HZSM-5分子筛催化裂解混合C4烃制低碳烯烃性能的研究[J].稀土.2008,29(5):30-35
    [58]沙颖逊,崔中强,王明党,等.重质油裂解制烯烃的HCC工艺[J].石油化工.1999,28(9):618-621
    [59]张刘军,徐春明,高金森.催化裂化C4烃催化转化增产丙烯[J].石油化工.2005,34(8):714-718
    [60]李本金,商永臣.1-丁烯催化裂解制丙烯和乙烯反应性能的研究[J].化学工程师.2007,245(10):11-13
    [61]徐占武,李春义,隋红,等.混合C4转化制丙烯的反应[J].化工进展.2008,27(1):104-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700