CFB复合燃烧技术中二次进料位置对炉内流动特性影响及布置优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床燃烧技术在煤质变化很大时,要稳定燃烧存在一定的困难。为了较好的克服普通的循环流化床锅炉在燃用低劣质煤时存在的种种技术缺陷,可以采用循环流化床复合燃烧技术解决这个问题。但是,目前由于对循环流化床复合燃烧技术中二次进料位置对CFB内流动及稳定高效燃烧的研究和认识还很不够,从而较大地阻碍了该技术的进一步优化和应用。
     文中针对NG-35/3.82-M型链条炉,对其进行了CFB复合燃烧技术改造主要参数的初步确定。在此基础上,采用双流体模型建立了描述CFB复合燃烧技术床内气固两相流动特性模型,通过有限区域法将微分方程组离散为差分方程,利用SIMPLE算法进行求解。论文重点研究分析了CFB复合燃烧技术中不同二次进料射流位置对炉内气固两相流的流动特性,并得出了CFB复合燃烧技术中优化的二次进料射流布置位置。
     通过改变二次进料口的布置位置和二次风速以及颗粒粒径研究了床内的流化特性,分析了不同布置方式下的气固流动特性。研究发现虽然二次进料口的布置位置不同,依然能够形成核心-环形流动结构;双侧布置二次进料口的方式优于单侧布置进料口,但是在双侧布置的方式中,以在炉膛2300mm处布置方式为水平面上二次进料口形成错位,这样在炉内的水平面上可以形成环形流,加强了气固混合,从而增加了颗粒在炉内的停留时间。另外粒径越大越容易返混至密相区,在密相区聚集。颗粒速度研究结果也表明,双二次风的布置方式,使得颗粒的加速时间比较长,使得湍动能增加,但这同时也增强了炉内的扰动,增强了气固间的相互作用。
     研究结果还表明,采用复合燃烧技术的循环流化床,对于燃烧器双侧布置位置为2300mm水平面上二次进料位置偏离中心线700mm水平位置为2300mm处、二次风速为35m/s时,可以使气相速度场形成涡流,加强气固间的混合,延长颗粒在炉内的停留时间,而且双二次风布置时也使得颗粒的湍动能增强,更有利于混合。另外,也能够在密相区上方形成二次高浓度颗粒流。因此此种方式为最佳。文中的研究结果为进一步研究CFB复合燃烧技术打下基础,有重要的参考价值。
When the coal quality varied great, the CFB will not combust steadily. In order to solve the limitation of the common CFB which combusted the bad coal, the combined combustion will be added to it. For these years, the combined fluid dynamics of the gas-solid flow in the fluidized beds has been the subject of a great deal of academic research throughout the world. For more reliable and improved design and operation, it is necessary to study the hydrodynamics of two-phase flow in the beds.
     This paper uses the NG-35/3.82-M chain grate stroke as the subject, which adopted the technology of CFB combined combustion to retrofit and the basic parameters are confirmed. On this condition, the gas-solid flow model is constructed by using the two-phase flow model in the CFB adopted combined combustion to retrofit. The differential equations are converted into algebraic finite volume equations with the aid of discrete assumptions. Then, the simulation about influence of the secondary feeder to the flow characteristics in the CFB is carried out. And at last the optimal position of the secondary feeder is obtained.
     According to change the disposed positions, velocities of the secondary air and particles diameters, the flow characteristics are studied. Although the disposed positions are different, the core-annular structure still can be formed. The results shows that double disposed positions exceed unilaterally disposed positions. But at different velocities of secondary air and double disposed positions apart from horizontal patch board 2300mm whose positions are stagger, it can form annular flow which strengthen the mix of air and particles, and also can prolong the residue time of the particles in the CFB. In another, the bigger in the particles diameter, the more easily for those return to the dense phase zone. The simulation results of the particles velocities also show that when the double secondary air was used, the accelerated time will be extended, which will make the turbulence energy be strong and the reaction between the air phase and solid phase.
     In all, the results shows that in the circulating fluidized bed (CFB) reactor which adopted the technology of combined combustion to retrofit, when keep the velocity at 2m/s and the double disposed position at 2300mm and apart from centrosymmetric face about 700mm and also the double secondary air about 35m/s, the air vortex will form. This will strengthen the mixing between air and particle and make the residue time be extended. And also double secondary air makes the turbulence energy strong. In addition, higher particle-concentration will be formed above the dense phase zone,and make the particles combusted at high temperature. So this is the best way for optimum design. The study results in this paper have important reference and application value, and pave the way for the CFB combined combustion.
引文
[1]成玉琪,俞珠峰. 洁净煤技术是中国洁净能源新技术的重点领域洁净煤技术[J]. 2000,6(2):22-25
    [2]杜铭华,俞珠峰. 发展洁净煤技术,缓减石油供需矛盾[J]. 2001,(1):15-16
    [3]国家经贸委、科技部联合发布煤矸石综合利用技术政策要点[J]. 洁净煤技术. 2000,(1):56
    [4]胡维淳.煤矿发展煤矸石相关问题研究[J]. 中国能源,2004,26(6):20-23
    [5]文忠和,卢清兰. 煤矸石资源化开发利用途径[J]. 萍乡高等专科学校学报. 2002,(4):56-59
    [6]曾小梅. 我国煤矸石的综合利用现状[J]. 山东煤炭科技,2005(2):8-10
    [7]林宗虎,魏敦松,安恩科,李茂德. 循环流化床锅炉[M]. 北京:化学工业出版社,2004.2
    [8]朱皑强,芮新红编.循环流化床锅炉设备及系统[M],北京:中国电力出版社,2004,12
    [9]冉景煜、张力、辛明道等. 旋流气固分离器内气粒两相运动特性及分离效率[J].化工学报,2003,54(10),1391-1396
    [10] 刘德昌,循环流化床锅炉大型化中的问题[J],东方锅炉,1996 (4)
    [11] 骆仲泱.燃烧循环流化床的燃烧技术[D]. 杭州:浙江大学,1990
    [12] J. M.博特里尔等,流化床的燃烧和应用[M]. 科学出版社
    [13] 冯俊凯.根据烘煤性质论电站锅炉燃烧方法的发展[J].动力工程,1995,15(3):34-38
    [14] 徐秀清,徐向华,循环流化床锅炉原理及其设计和运行中的若干问题[J].动力工程,1995,15(1),40-45.
    [15] 刘柏谦.煤矸石在流化床着火特性研究和百叶迷宫煤矸石循环流化床锅炉设计[J].燃烧科学与技术,2003,9(5):419-421
    [16] 冉景煜,牛奔,张力等.煤矸石综合燃烧性能及其燃烧动力学特性研究[J]. 中国电机工程学报,2006,26(15):58-62
    [17] De S,Lal A K,Nag P K. An experiment investigation on pressure drop and collection efficiency of simple plate-type impact separator[J]. Power Technology, 1999(106):132-137.
    [18] 冉景煜,牛奔,张力等. 煤矸石热解特性及热解机理热重法研究[J]. 煤炭学报,2006,31(5):640-644
    [19] 牛奔,冉景煜,张力,蒲舸,唐强. 煤矸石燃烧特性及动力学热重法研究[C]. 中国工程热物理学会第十一界年会论文集. 2005.11,187-193
    [20] 池涌,蒋旭光等. 洗煤泥煤矸石流化床混燃过程研究[J].煤炭学报,2001,26(2):204-208
    [21] 岑可法,杨家林等. 洗煤泥煤矸石流化床混烧技术工业应用研究[J].动力工程,1999,19(1):78-82
    [22] 池涌,严建华等.洗煤泥煤矸石流化床混烧过程基础研究与工业应用[J].洁净煤技术.2002,8(1):23-26
    [23] Suksankraisorn, K, Patumsawad, S, Vallikul, P, Fungtammasan, B, Accary, A. Co-combustion of municipal solid waste and Thai lignite in a fluidized bed Energy Conversion and Management, 2004,45(6): 947-962
    [24] 冉景煜,张力,辛明道. 城市生活垃圾循环流化床垃圾颗粒三维运动特性[C]. 中国高等学校工程热物理学会年会论文集.2003.10
    [25] Ran jingyu, Zhangli, Xin mingdao. 3-D simulation for motion character of MSW particles in CFB[C]. Proceedings of the 3rd International Conference on Combustion Incineration/ Pyrolysis and Emission Control. 2004.10
    [26] Folgueras, M.Belén, María Díaz, R., Xiberta, Jorge.Sulphur retention during co-combustion of coal and sewage sludge. Fuel . 2004,83(10) : 1315-1322
    [27] 冉景煜,张力,杨琳,辛明道. 固态医疗垃圾循环流化床不同密相区形状对气固运动特性影响数值研究[J]. 中国电机工程学报,2006,26(14):86-92
    [28] 冉景煜. 固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验[D]. 重庆大学博士学位论文 , 2003 .
    [29] Zhang Li, RAN Jingyu,et al Research on the characteristics of mixed municipal solid waste and its combustion products in Chongqing,, Proceedings of International Conference on Energy and the Environment, 2003, Shanghai, China, 1708-1712
    [30] Fang, M.; Yang, L.; Chen, G.; Shi, Z.; Luo, Z.; Cen, K. Experimental study on rice husk combustion in a circulating fluidized bed[J]. Fuel Processing Technology, 2004,85(11): 1273-1282
    [31] Hartge, E.-U.; Luecke, K.; Werther, J. The role of mixing in the performance of CFB reactors .Chemical Engineering Science.1999,54(22): 5393-5407.
    [32] 牛奔. 煤矸石和煤层气循环流化床混烧特性试验研究[D].重庆:重庆大学,2005
    [33] 李元章. 复合燃烧技术在链条锅炉上的应用[J]. 节能,2002(5):37-39
    [34] 王彦,曲广义,丁雪桦. 复合燃烧技术在链条炉上的应用[J]. 热能动力工程,2001,16(96):673-674
    [35] 腾秀清,王玉坤. 链条锅炉采用煤粉复合燃烧技术[J]. 节能与环保,1996(6):29-31
    [36] 许忠春,张精华. 采用“复合燃烧技术”装置改造旧锅炉的效果[J]. 节能,1999(12):35-36
    [37] 张瑞华,李晗,等.负荷分配对链条炉排加煤粉复合燃烧锅炉热力特性的影响[J]. 电站系统工程,2001,17(5):269-270
    [38] 杨明新,吴少华等. 链条炉排加煤粉复合燃烧技术[J]. 热能动力工程,1996,11(1),20-24
    [39] 曾东海,陈超,牛谦.复合燃烧锅炉及复合燃烧方法[P].中国专利:200610106930.0,2007.03.07
    [40] 韩家德. 链条炉炉膛加煤粉复合燃烧的辐射换热计算[J]. 哈尔滨理工大学学报.,2003,8(1):70-72
    [41] 赵广播,黄怡珉, 秦裕琨. 链条炉排加煤粉复合燃烧锅炉炉膛传热计算基本方程. 燃烧科学与技术,2003,9(1):81-84
    [42] 成庆刚. 链条锅炉加煤粉复合燃烧技术的经济效益分析[J]. 电站系统工程,1994,10(5):37-42
    [43] 孟晓钧. 链条锅炉采用“加煤粉复合燃烧技术”是提高锅炉出力的有效途径[J].内蒙古石油化工,2001(27):55-57
    [44] 解鲁生. 链条炉排分层燃烧及煤粉复合燃烧技术应用的探讨[J]. 建筑热能通风空调,1999,(1):6-10
    [45] 王伟,李明. 城市生活垃圾与煤粉复合燃烧方式的可行性探讨[J]. 中国城市环境卫生,2004(4),21-23
    [46] 姜少军,孙庆斌. 应用复合燃烧技术改造链条锅炉[J]. 锅炉制造,2004(8),58-59
    [47] 王群,潘名麟. 用复合燃烧技术改造链条锅炉[J]. 电站系统工程,1997,13(2),53-56
    [48] 赵广播,朱群益等. 双燃料煤粉流化床复合燃烧锅炉的物质平衡与热量平衡[J]. 热能动力工程,1997,12(1),8-10
    [49] 赵广播, 秦裕琨. 流化床-煤粉复合燃烧锅炉的炉膛传热计算方法[J]. 动力工程,2000,20(4),740-744,759
    [50] 赵广播,黄怡珉,秦裕琨.流化床-煤粉复合燃烧锅炉炉膛热平衡方程[J].哈尔滨工业大学学报,1999,32(1):63-64,68
    [51] 赵广播等. 负荷分配对流化床-煤粉复合燃烧锅炉热力特性的影响[J]. 电站系统工程,1998,14(3):7-11,15
    [52] 吴少华等. 煤粉流化床复合燃烧[J]. 节能技术,1992(1),15-17
    [53] 包钢,邓素碧,王祖温. 75 t/h 树皮一煤粉复合燃烧系统的建模与仿真[J]. 热能动力工程,2001,16(96):644-645,649
    [54] Kuipers, JAM. A Numerical model of gas-solid fluidized beds[J]. Chemical Engineer Science, 1992, 47(8), 1913-1924.
    [55] Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. Boston:Academic Press.Tsuo Y D, Gidaspow D. Computation of flow patterns in circulating fluidized beds[J]. AICHE J, 1990,36(6): 885-896.
    [56] S.Benyahia, H.Arastoopour, T.M.Knowlton, H.Massah. Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase[J]. Powder Technology 2000, (112) : 24-33.
    [57] Fariborz Taghipour, Naoko Ellis, Clayton Wong. CFD Modeling of a Two-Dimensional Fluidized-bed Reactor[J]. http://tetra.mech.ubc.ca/CFD03/papers/paper29AF3.pdf.
    [58] Luben Cabezas-Gomez,Fernando Eduardo Milioli. Numerical study on the influence of various physical parameters over the gas-solid two-phase flow in the 2D riser of a circulating fluidizedbed[J]. PowderTechnology. 2003 (132) , 216-225.
    [59] 洪若瑜,李洪钟,程圩,等.基于双流体模型的流化床的模拟,化工学报,1995,46(3):349-355.
    [60] Gao Jinsen, Xu Chunming, Yang Guanghua, et al.Numerical simulation on gas-solid two-phase turbulence flow in FCC riser reactor(Ⅰ ) Turbulent gas-solid flow reaction model. Chinese Jue of Chemical Engineer, 1998,6(1): 12-20.
    [61] Yu Zheng, Xiaotao Wan, Zhen Qian, et al. Numerical simulation of the gas-particl turbulent flow in riser reactor based on k-ε -kp- ε p -Θ two-fluid model.[J] Chemical Engineer Science,2001 (56), 6813-6822.
    [62] 张力,冉景煜,辛明道等. 气固两相旋流中气粒两相流场特性数值模拟[J]. 热科学与技术,2003,2(1):80-84
    [63] 张力,冉景煜,李良生. 气尘两相旋流中尘粒运动特性及分离效率研究[J]. 重庆大学学报(自然科学版),1999,22(4):114-119
    [64] 冉景煜,张力,辛明道. 旋流气固分离器内气粒两相运动特性及分离效率[J].化工学报,2003,54(10):1391-1396
    [65] Gera D, Gautam M, Tsuji Y, et al. Computer simulation of bubbles in large particle fluidized beds.[J] Powder Technology, 1998,98:38-47.
    [66] Cundall P A, Strack O D L.A discrete numerical model for granular assemblies.[J] Geotechnique, 1979,29(1):47—65.
    [67] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of slug flow of cohesionless particles in a horizontal pipe. [J] Power,1992,71:239-250.
    [68] Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed.[J] Powder Technology, 1993, 77:79-87.
    [69] Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineer Science,1997, 52(16):2785-2809.
    [70] Anderson T, Jackson R. A fluid mechanical description of fluid beds[J]. I&EC Foidam, 1967,6: 527-539.
    [71] Mikami T, Kamiya H, Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed [J]. Chemical Engineer Science,1998,53(10):1927-1940.
    [72] Zhang D, Whiten W J. The calculation of contact forces between particles using spring and damping models [J]. Powder Technology,1996,88:59-64.
    [73] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two dimensional gas-solid fluidized bed: A hard-sphere approach[J]. Chemical Engineer Science,1996,51(1):99-118.
    [74] Delonij E, Kuipers J A M, Van Swaaij W P M. Dynamic simulation of gas-liquid two-phase flow: effect of column aspect ratio on the flow structure[J]. Chemical Engineer Science, 1997, 52(21/22):3759-3772.
    [75] Huber N, Sommerfeld M. Modeling and numerical calculation of dilute-phase pneumatic conveying in pipe systems [J]. Powder Technology,1998,99:90-101.
    [76] Crowe C J. The state-of-the-art in the development of numerical models for dispersed flows [C], Proc. Int. Conf.on Multiphase Flows, 91 Tsukuba,1991, 3:49-60.
    [77] Sommerfeed M and Qiu H H. Detailed measurements in a swirling particulate two-phase flow by a phase-Doppler anemometer [C], Proc. 5th Workshop on Two-phase Flow Predictions, Erlangen, 1990, 15-32, 78-86.
    [78] 周力行, 黄晓晴. 三维湍流回流两相流动的 k-e-kP 模型.工程热物理学报[J].1991,12(4):428-433.
    [79] Simonin O. Prediction of the dispersed phase turbulence in particle-laden jets [C]. Gas-Solid Flows. ASME FED-V.1991, 121:197-206
    [80] 周力行.湍流两相流动和燃烧的统一关联矩阵封闭模型[C]. 中国工程热物理学会第七届年会论文集, 四分册, 南京:1990(亦现工程热物理学报, 1991,12(2): 203-206.
    [81] 廖昌明, 林文漪, 周力行.突扩燃烧室中气一固两相湍流相互作用与颗粒弥散的数值模拟[C].中国工程热物理学会第八届年会论文集, 四分册 I .54-59, 北京, 1999.
    [82] 周一工.循环流化床锅炉设计中风机选型及气固分离器选择[J].热能动力工程,1997,12(6):968-972
    [83] 朱国桢,徐洋. 循环流化床锅炉设计与计算[M]. 北京:清华大学出版社,2004.11
    [84] Jenkins, J.T., Savage, S.B., A theory for the rapid flow of identical, smooth, nearly elastic spherical particles[ J]. Fluid Mech., 1983,130, 187-202.
    [85] Lun C.K.K., Savage S.B., Jerey D.J., Chepurniy N., Kinetic theories for granular flow: inelastic particles in Couette flow and‘ slightly inelastic particles in a general flow field.[J] Fluid Mech., 1984,140, 223-256.
    [86] Gidaspow D., Multiphase flow and fluidization, Academic Press. 1994
    [87] E., Almstedt A.E., Eulerian two-phase flow theory applied to J. Multiphase Flow, 1996, 22. Enwald H., Peirano fluidization. Int. 21-66.
    [88] Jenkins J.T., Mancini F., Balance laws and constitutive relations for plane flows of a dense binary mixture of smooth, nearly elastic circular disks. J. Appl. Mech., 1987, 54, 27-34.
    [89] Gidaspow D., Huilin L., Manger E., Kinetic theory of multiphase flow and fluidization: validation and extension to binary mixtures. In: Nineteenth Int. Cong. of Theoretical and Appl. Mech., August, Kyoto, Japan, 1996, 25-31.
    [90] Manger E., Modelling and simulation of gas/solid flow in curvilinear coordinates. Ph.D. thesis, Telemark Institute of Technology, Norway. 1996
    [91] Van Wachem, B.CxM., J.C. Schouten, C.M. van den Bleek, RKrishna and J.L. Sinclair, Comparative analysis of CFD models of Dense gas-solid systems, AICHE J., 2001a, 47(5): 1035-1051
    [92] 陆慧林, 何玉荣, 刘阳, 别如山, 刘文铁, 多组分颗粒稠密气固两相流动的数值模拟[J]. 工程热物理学报, 2002, 23(3):369-371.
    [93] Helland E., Occelli R. and Tadrist L., Numerical Study of Cluster formation in a Gas-Particle circulating fluidized bed.[J] Power Technology, 2000,110, 210-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700