两段提升管催化裂解组合进料多产丙烯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于石油资源的紧缺以及我国轻质油资源相对匮乏,重油催化裂化已成为石油加工过程的重要组成部分。随着世界炼油化工一体化趋势越来越明显,丙烯作为石油化工的主要有机原料之一,其供需矛盾日益加剧,多产丙烯已向国内外众多催化裂化装置提出了严峻要求。两段提升管催化裂化(TSRFCC)工艺因分段反应从而可以实现催化剂接力、短反应时间、大剂油比操作,有利于重质油催化裂化生产丙烯。
     “高温、大剂油比、短停留时间”是混合C4气体和轻汽油催化裂解生产丙烯的适宜条件,而“低温、大剂油比、适宜的停留时间”则是重油催化裂化生产丙烯的适宜条件,以TSRFCC工艺为基础,对两段提升管催化裂解组合进料最大限度多产丙烯技术(TMP)进行了研究。
     该技术可以将第一段提升管反应生成的混合C4气体、催化裂化轻汽油馏分(简称轻汽油,LCG)以及回炼油浆(或重油原料)于不同的位置分层注入第二段提升管反应器进行回炼,实现了轻、重原料于“适宜的反应温度、适宜的停留时间、大剂油比”的环境下反应,避免了不同原料在催化剂上的竞争吸附和反应,在降低干气低价物收率的同时可以实现最大限度保持汽油收率和辛烷值、降低汽油烯烃含量、增产丙烯的目的。采用实验室小型提升管装置进行TMP模拟实验,对该工艺的反应条件、组合进料位置以及与催化剂的匹配进行了初步研究。
     实验结果表明,采用两段提升管催化裂化工艺配合组合进料技术,大庆渣油的总转化率可达90wt%以上,干气收率控制在5.18wt%,丙烯收率达到21wt%,汽油、柴油收率分别为24wt%和16wt%,汽油中烯烃含量降至33wt%,辛烷值保持较高,开拓了一条重油催化裂解生产丙烯的有效途径。
Because of the shortage of petroleum resource and the light oil resource in our state, the catalytic cracking of heavy oil has become an important part in refining industry. Along with the trend of refining and chemical becomes more and more evident, propylene as one of the petro-chemical material, the conflict between supply and demand become more and more acuity. Propylene maximum put forward an austere requirement for catalytic cracking units around the world. Two-stage riser fluid catalytic cracking (TSRFCC) technology can carry out catalytic relay, short reaction time, large catalytic to oil ratio operation because of subsection reaction, favoring the production of propylene with heavy oil.
     “High temperature, large catalyst to oil, short resident time”are favorable conditions for converting C4 mixture and light gasoline to propylene, while“low temperature, large catalyst to oil, fitting resident time”are favorable conditions for converting heavy oil to propylene. Based on TSRFCC technology, stratified injection technology for maximizing propylene are studied, which is TSR-Maximizing Propylene (TMP) technology.
     The C4 mixture gas, light catalytic cracking gasoline (i.e light gasoline, LCG) and cycle oil (or heavy feedstock oil) produced from the first stage riser are injected into the second stage riser reactor for further refining, realizing the aim that different feedstocks react under“fitting reaction temperature, fitting resident time and large catalyst to ratio”. The technology can maintain gasoline yield and octane number, decrease olefin content in gasoline, produce more propylene while decrease low-value products just like dry gas and so on. The experiment utilizes pilot unit to simulate the TMP technology. The reaction conditions, the stratified injection position and the matching catalysts are primary researched.
     The experiment results show that using TSRFCC technology and stratified injection technology, with Daqing AR as feedstock, the total conversion can reach above 90wt%, the dry gas yield can be restricted to 5.18wt%, propylene yield can reach 21wt%, gasoline and diesel yield are 24wt% and 16wt%, respectively. The olefin content in gasoline can decreased to 33wt%, the octane number is higher, exploiting an effective approach for maximizing propylene with heavy oil and TSRFCC technology.
引文
[1] 中国石化有机原料科技情报中心站供稿.2004;5:51
    [2] 吴 青,周 通,何鸣元.催化裂化装置多产丙烯助剂 Olefins Max 的应用试验.炼油技术与工程,2004;34(5):42
    [3] 王 巍,谢朝钢.催化裂解(DCC)新技术的开发与应用.石油化工技术经济,2005;1:9-12
    [4] 赵金立.增产丙烯的技术及其进展.炼油技术与工程,2004;34(4):1-4
    [5] 张刘军,高金森,徐春明.催化裂化 C4 烃类的研究现状与应用.天然气与石油,2005;23(3):48-51
    [6] 曹湘洪.增产丙烯,提高炼化企业盈利能力.化工进展,2003;22(9):911-919
    [7] 山红红.两段提升管催化裂化(TSRFCC)技术应用基础研究(博士论文),中国石油大学,2004
    [8] 张 昕,王建伟,钟 进等.C4 烯烃催化转化增产丙烯研究进展.石油化工,2004;33(8):781-787
    [9] 李春义,袁起民,陈小博等.两段提升管催化裂解多产丙烯研究.中国石油大学学报(自然科学版),2007;31(1):118-121
    [10] 袁裕霞,杨朝合,山红红等.烯烃在催化裂化催化剂上反应机理的初步研究.燃料化学学报,2005;33(4):435-439
    [11] 张 星,陈小博,张建芳等.FCC 汽油提升管内降烯烃改质工艺条件的研究.炼油技术与工程,2005;35(4):9-12
    [12] 李文光,穆文俊,于廷云等.催化裂解汽油改质的中试研究.抚顺石油学院学报,2003;23(1):16-18
    [13] A. Corma, F.V. Melo, L. Sauvanaud et al. Light cracked naphtha processing: Controlling chemistry for maximum propylene production. Catalysis Today, 2005; 107-108: 699-706
    [14] Avelino Corma, FranciscoV. Melo, Laurent Sauvanaud et al. Different process schemes for converting light straight run and fluid catalytic cracking naphthas in a FCC unit for maximum propylene production. Applied Catalysis A, 2004; General 265: 195-206
    [15] J. Verstraete, V. Coupard, C. Thomazeau et al. Study of direct and indirect naphtha recycling to a resid FCC unit for maximum propylene production. Catalysis Today, 2005; (106): 62-71
    [16] Oleg Bortnovsky, Petr Sazama, Blanka Wichterlova. Cracking of pentenes to C2-C4 light olefins over zeolites and zeotypes role of topology and acid site strength and concentration. Applied Catalysis A, 2005; General 287: 203-213
    [17] 姚爱智,高金森,徐春明.催化汽油改质降烯烃多产丙烯反应规律的研究.当代化工,2005;34(5):301-305
    [18] 陈小博,张 星,韩忠祥等.催化裂化汽油裂解制备低碳烯烃.石油化工,2005,34(10):943-947
    [19] 许友好,张久顺,马建国等.生产清洁汽油组分并增产丙烯的催化裂化工艺.石油炼制与化工,2004,35(9):1-4
    [20] 姜 红,张远才,李光亮等.在重油催化裂化装置上生产低烯烃汽油.石油炼制与化工,2004;35(3):6-11
    [21] 谢朝钢.催化热裂解生产乙烯技术的研究及反应机理的探讨.石油炼制与化工,2000;31(7):41-43
    [22] 山红红,张建芳,段爱军等.两段提升管催化裂化技术研究.石油大学学报(自然科学版),1997;21(4):55-57
    [23] SHAN hong-hong, DONG Hui-jie, ZHANG jian-fang, et al. Expeimental study of two-stage riser FCC reactions. Fuel, 2001; 80(8): 1179-1185
    [24] 李 正,张建芳,山红红等.两段提升管催化裂化新技术的开发Ⅱ:提高轻质产品收率、降低催化汽油烯烃含量.石油学报(石油加工),2001;17(5):26-30
    [25] 山红红,李春义.催化裂化技术进步近况.当代石油化工,2006;14(1):29-31
    [26] 杨朝合,山红红,张建芳.两段提升管催化裂化系列技术.炼油技术与工程,2005;35(3):28-33
    [27] 张建芳,山红红,李 正等.两段提升管催化裂化新技术的开发Ⅰ.两段串联提升管反应器.石油学报(石油加工),2000;16(5):66-69
    [28] 王松汉.乙烯装置技术,北京:中国石化出版社,1994 年
    [29] 卢捍卫.多产丙烯的催化裂化工艺技术探讨.炼油设计,2000;30(11):10-14
    [30] 崔中强.用 HCC 技术优化大庆油加工方案.炼油设计,2001;31(11):15
    [31] 沙颖逊,崔中强,王明党等.重质油裂解制烯烃的 HCC 工艺.石油化工,1999;28:621
    [32] 沙颖逊,崔中强,王明党等.重油直接裂解制乙烯技术的开发.炼油设计,2000;30(1):16-18
    [33] 王文柯.FDFCC 多产柴油和液化气工艺研究. 河南石油,2004;18(1):59-60
    [34] 王文柯.FDFCC 工艺降低催化裂化汽油烯烃含量.石化技术与应用,2004;22(2):115-119
    [35] 孙昱东,窦锦民,黄小海.催化裂化生产低碳烯烃技术综述 Ⅰ. 生产低碳烯烃工艺.石油与天然气化工,2004;33(3):160-163
    [36] J.Ryczkowski. Deep Catalytic Cracking for Production of Light Olefins from Heavy Feedstocks. Applied Catalysis A, 1996; General 141: 4-5
    [37] 辛 毅.ARGG 工艺技术的工业应用.化工时刊,2001;7:37-38
    [38] 谢朝钢,汪燮卿,郭志雄等.催化热裂解(CPP)制取烯烃技术的开发及其工业试验.石油炼制与化工,2001;32(12):7-9
    [39] 张执刚,谢朝钢,施至诚等.催化热裂解制取乙烯和丙烯的工艺研究.石油炼制与化工,2001;32(5):21-23
    [40] Chem.Eng., 1998; 105(7): 25
    [41] 刘俊涛,谢在库,徐春明等.C4 烯烃催化裂解增产丙烯技术进展.化工进展,2005;24(12):1347-1351
    [42] 蒋世新.国外天然气转化利用技术评述,当代石油石化,2001;9(7):36
    [43] 姚爱智,徐春明,高金森.多产丙烯的催化裂化技术.石化技术,2004;11(3):46-48
    [44] 翟 勇,唐华荣,白尔铮等.C4烯烃歧化制丙烯技术.石油化工,2003,31(2):1017-1021
    [45] 白尔铮,胡云光.四种增产丙烯催化工艺的技术经济比较.工业催化,2003,11(5):7-12
    [46] Schwab, et al. Preparation of propene.US6271430, 2001-08-07
    [47] Schwab, et al. Preparation of olefins. US6166279, 2000-12-26
    [48] 姚国欣.因地制宜合理选择丙烯生产技术.现代化工,2004;24(8):7-8
    [49] 曹湘洪.增产丙烯,提高炼化企业赢利能力.化工进展,2003;22(9):911-919
    [50] European Chemical News, 2000; 72(1902): 47
    [51] 徐占武.催化裂解多产丙烯新技术.炼油技术与工程,2006;36(8):4-8
    [52] Bozena Silberova, Marcus Fathi, Anders Holmen. Oxidative dehydrogenation of ethane and propane at short contact time. Applied Catalysis A, 2004; General 276: 17-28
    [53] 路 勇,何鸣元,宋家庆等.氢转移反应与催化裂化汽油质量.炼油设计,29(6): 5-12
    [54] 程义贵,茅文星,贺英侃. 烃类催化裂解制烯烃技术进展.石油化工,2001;30(4): 311-314
    [55] J. Scott Buchanan, Y.G. Adewuyi. Effects of high temperature and high ZSM-5 additive level on FCC olefins yields and gasoline composition. Applied Catalysis A, 1996; General 134: 247-262
    [56] A. Aitani, T. Yoshikawa, T. Ino. Maximization of FCC light olefins by high severity operation and ZSM-5 addition. Catalysis Today, 2000; 60: 111-117
    [57] K.D. Maher, D.C. Bressler. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology, 2007:2351-2368
    [58] Farouq A. Twaiq, Noor Asmawati M. Zabidi, Abdul Rahman Mohamed, et al. Catalytic conversion of palm oil over mesoporous aluminosilicate MCM-41 for the production of liquid hydrocarbon fuels. Fuel Processing Technology,2003;84:105-120
    [59] Yean-Sang Ooi, Ridzuan. Zakaria, Abdul Rahman Mohamed, et al. Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel. Biomass and Bioenergy, 2004; 27: 477-484
    [60] Farouq A.A. Twaiq, A.R. Mohamad, Subhash Bhatia. Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Processing Technology, 2004; 85: 1283-1300
    [61] Farouq A. Twaiq, Abdul Rahman Mohamed, Subhash Bhatia. Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous and Mesoporous Materials, 2003; 64: 95-107
    [62] Yean-Sang Ooi, Ridzuan Zakaria, Abdul Rahman Mohamed, et al. Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking. Applied Catalysis A, 2004; General 274: 15-23
    [63] Yean-Sang Ooi, Ridzuan Zakaria, Abdul Rahman Mohamed, et al. Hydrothermal stability and catalytic activity of mesoporous aluminum-containing SBA-15. Catalysis Communications, 2004; 5: 441-445
    [64] Yean-Sang Ooi, Ridzuan Zakaria, Abdul Rahman Mohamed, et al. Catalytic Conversion of Fatty Acids Mixture to Liquid Fuel and Chemicals over Composite Microporous/Mesoporous Catalysts. Energy & Fuels, 2005; 19: 736-743
    [65] Farouq A. Twaiq, Noor A. M. Zabidi, Subhash Bhatia. Catalytic Conversion of Palm Oil to Hydrocarbons: Performance of Various Zeolite Catalysts. Ind. Eng. Chem. Res., 1999; 38: 3230-3237
    [66] Yean-Sang Ooi, Ridzuan Zakaria, Abdul Rahman Mohamed, et al. Catalytic Cracking of Used Palm Oil and Palm Oil Fatty Acids Mixture for the Production of Liquid Fuel: Kinetic Modeling. Energy & Fuels, 2004; 18: 1555-1561
    [67] Pramila Tamunaidu, Subhash Bhatia. Catalytic cracking of palm oil for the production of biofuels: Optimization studies. Bioresource Technology, 2007; ××:1-9
    [68] Yean-Sang Ooi, Subhash Bhatia. Aluminum-containing SBA-15 as cracking catalyst for the production of biofuel from waste used palm oil. Microporous and Mesoporous Materials, 2007; ××:1-8
    [69] Sai P. R. Katikaneni, John D. Adjaye, Narendra N. Bakhshi. Studies on the Catalytic Conversion of Canola Oil to Hydrocarbons: Influence of Hybrid Catalysts and Steam. Energy & Fuels, 1995; 9: 599-609
    [70] Sai P. R. Katikaneni, John D. Adjaye, Raphael O. Idem, et al. Catalytic Conversion of Canola Oil over Potassium-Impregnated HZSM-5 Catalysts: C2-C4 Olefin Production and Model Reaction Studies. Ind. Eng. Chem. Res., 1996; 35: 3332-3346
    [71] Raphael O. Idem, Sai P.R. Katikaneni, Narendra N. Bakhshi. Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Processing Technology, 1997; 51:101-125
    [72] Raphael O. Idem, Sai P. R. Katikaneni, Narendra N. Bakhshi. Thermal Cracking of Canola Oil: Reaction Products in the Presence and Absence of Steam. Energy & Fuels, 1996; 10: 1150-1162
    [73] Sai P. R. Katikaneni, John D. Adjaye, Narendra N. Bakhshi. Performance of Aluminophosphate Molecular Sieve Catalysts for the Production of Hydrocarbons from Wood-Derived and Vegetable Oils. Energy & Fuels, 1995; 9:1065-1078
    [74] Levent Dandik, H. Ayse Aksoy, Ayse Erdem-Senatalar. Catalytic Conversion of Used Oil to Hydrocarbon Fuels in a Fractionating Pyrolysis Reactor. Energy & Fuels, 1998; 12: 1148-1152
    [75] Daniela G. Lima, Valerio C.D. Soares, Eric B. Ribeiro, et al. Diesel-like fuel obtained by pyrolysis of vegetable oils. J. Anal. Appl. Pyrolysis, 2004; 71:987-996
    [76] John D. Adjaye, Sai P.R. Katikaneni, Narendra N. Bakhshi. Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Processing Technology, 1996; 48:115-143
    [77] Ronald W. Thring, Sai P.R. Katikaneni, Narendra N. Bakhshi. The production of gasoline range hydrocarbons from Alcell? lignin using HZSM-5 catalyst. Fuel Processing Technology, 2000; 62: 17-30
    [78] K.D. Maher, D.C. Bressler. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology, 2007:2351-2368
    [79] 杨 宁,魏 飞,李 强.下行床催化裂化植物油制备清洁汽油小型热态实验研究.中国石油学会第五届石油炼制学术年会,2005;5:653-656
    [80] Ana G. Gayubo, Andre′s T. Aguayo, Alaitz Atutxa, et al. Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids. Ind. Eng. Chem. Res., 2004; 43: 2619-2626
    [81] Enrico Vonghia, David G. B. Boocock, Samir K. Konar, et al. Pathways for the Deoxygenation of Triglycerides to Aliphatic Hydrocarbons over Activated Alumina. Energy & Fuels, 1995; 9: 1090-1096
    [82] F. Billaud, Y. Guitard, A.K. Tran Minh, et al. Kinetic studies of catalytic cracking of octanoic acid. Journal of Molecular Catalysis A: Chemical, 2003; 192: 281-288
    [83] 陈建九,史海英,汪 泳.丙烷脱氢制丙烯工艺技术.精细石油化工进展,2000;3(12):23-28
    [84] 尤兴华,桑运超,刘永红等.两段提升管催化裂化技术在玉门炼油化工总厂的应用.中国石油大学学报(自然科学版),2007;31(1):132-138
    [85] 李晓红.两段提升管催化裂解生产乙烯、丙烯催化剂的研究(硕士论文).中国石油大学,2004
    [86] 沙有鑫.两段提升管多产丙烯和柴油的研究(硕士论文).中国石油大学,2006
    [87] 张刘军,徐春明,高金森.催化裂化 C4 烃催化转化增产丙烯.石油化工,2005;34(8):714-717
    [88] 于国良.低碳烯烃的生产技术进展及工业应用.齐鲁石油化工,2006,34 ( 1 ) :58-63
    [89] 彭 颖.混合 C4 催化裂解制丙烯研究(硕士论文).中国石油大学,2005
    [90] 张刘军,高金森,徐春明.催化裂化 C4 烃类的研究现状与应用.天然气与石油,2005;23(3):48-51
    [91] Xiangxue Zhu, Shenglin Liu, Yueqin Song, et al. Catalytic cracking of C4 alkenes to propene and ethene: Influences of zeolites pore structures and Si/Al2 ratios, Applied Catalysis A, 2005; General 288: 134-142
    [92] Li Li, Jinsen Gao, Chunming Xu, et al. Reaction behaviors and mechanisms of catalytic pyrolysis of C4 hydrocarbons. Chemical Engineering Journal, 2006; 116: 155-161
    [93] 董孝利,孟祥海,徐春明等.重油催化裂解 C4 烃的二次裂解性能研究.炼油技术与工程,2005;35(3):7-10
    [94] 阎平祥,高金森,徐春明.不同组成的 C4 烃类催化转化反应规律的实验研究.炼油技术与工程,2004;34(12):5-8
    [95] 李吉春,申建华,林泰明.炼化一体化低成本低碳烯烃生产技术与进展.石化技术与应用,2005;23(5):333-337
    [96] 李晓红,张新功,袁起民等.利用流化催化裂化汽油生产低碳烯烃联产高辛烷值汽油.石油大学学报(自然科学版),2004;28(5):99-103
    [97] Katica Sertic′-Bionda, Vladimir Kuzmic′, Miroslav Jednacˇak. The influence of process parameters on catalytic cracking LPG fraction yield and composition. Fuel Processing Technology, 2000; 64: 107-115
    [98] J.S. Buchanan. The chemistry of olefins production by ZSM-5 addition to catalytic cracking units. Catalysis Today, 2000; 55: 207-212
    [99] 周 琼.FCC 装置增产轻烯烃技术.工业催化,2001;9(3):14-19
    [100] M.A. den Hollander, M. Wissink, M. Makkee, et al. Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts. Applied Catalysis A, 2002; General 223: 85-102
    [101] 陈洪林,申宝剑,潘惠芳.ZSM-5/Y 复合分子筛的酸性及其重油催化裂化性能.催化学报,2004;25(9):715-719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700