溶剂法分离蒽、菲和咔唑的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒽、菲、咔唑是煤焦油中的主要组分,是精细化工的重要原料。在我国大多数的工厂中,由粗蒽制取精蒽、精菲和精咔唑常使用溶剂萃取结晶法。因此,蒽、菲和咔唑在有机溶剂中的溶解度数据对其工艺的改进具有重要的指导意义。但迄今为止有关这方面的研究甚少,使用的有机溶剂不多,且实用性不强。虽然蒽、菲、咔唑在有些有机溶剂中的溶解度报道过,但是它们都缺乏理论上的探讨,不能从根本上了解这些溶剂之间的差别。
     本文实验测定了蒽、菲和咔唑在DMF(N,N–二甲基甲酰胺)、DMA(N,N–二甲基乙酰胺)和NMP(1–N–2甲基吡咯烷酮)中的溶解度数据,理论分析了蒽、菲和咔唑在溶剂中溶解度大小差异的原因,并用溶解度-温度经验关系式lnx=A +BlnT进行了关联。同时应用基团贡献法建立了蒽、菲、咔唑在DMF,DMA和NMP中的溶解度的模型方程,采用MATLAB语言对模型方程进行了求解,计算得到了蒽和菲在DMF、DMA和NMP中的溶解度,并将计算结果与实验测得到的结果进行了比较。蒽在DMF、DMA和NMP中溶解度的计算值与实验值的平均相对偏差分别为43.23%,36.38%和27.49%,菲在DMF、DMA和NMP中溶解度的计算值与实验值的平均相对偏差分别为6.80%,5.07%和0.97%,但两者总体规律一致,随着温度的升高溶解度都急剧增加,且它们在DMF、DMA和NMP中的溶解度大小顺序一致。因此,UNIFAC可以较好的预测蒽和菲在DMF,DMA和NMP中的溶解特性,应用UNIFAC计算可以为粗蒽的分离选取合适的溶剂和优化工艺提供一定的理论依据。
     最后,本文对用溶剂结晶分离蒽、菲和咔唑的结晶条件进行了研究,得到了结晶分离蒽、菲和咔唑的最佳结晶条件。蒽、菲和咔唑中的大量的菲可以先由苯在常温下溶解萃取除去,DMF在溶解温度80℃,结晶温度20℃,养晶时间1h,固液比1.8g/ml时候对分离蒽和咔唑混合物中的咔唑效果最好。
Anthracene,phenanthrene and carbazole is the main component of coal tar and the important raw material of fine chemical. During the process of the separation and extraction of anthracene,phenanthrene and carbazole from coal tar by solvent extraction, the optimization of process conditions and the rational choice of solvents are closely related to the solubility of anthracene,phenanthrene and carbazole in solvents. It is very important to measure the solubility of anthracene,phenanthrene and carbazole in different solvents for improving the extraction process.
     The solubility of anthracene, phenanthrene and carbazole in N , N-dimethyformamide (DMF), N,N-dimethylacetamide(DMA) and N–methyl- 2-pyrrolidone (NMP) was determined in the temperature range from 20 to 95℃using a liquid-solid phase equilibrium method. The solubility behavior of anthracene ,phenanthrene and carbazole in DMF、DMA and NMP was also obtained using the UNIFAC group contribution method and the model equations were solved by MATLAB. The comparative average error between the calculated results and experimental data of anthracene is 43.23%,36.38% and 27.49% in DMF、DMA and NMP respectively, which is 6.80%,5.07% and 0.97% for phenanthrene. The UNIFAC model can be applied to predict the solubility of anthracene in DMF、DMA and NMP. The work provides a elementary basis for selecting a solvent and optimizing process during the separation and purification of crude anthracene process by solvent methods.
     Through the experiment, it is known that the dissolving effect of benzene to Phenanthrene in some studied organic solvent is best, moreover DMF to carbazole is best. So benzene and DMF from the some solvents can be used to separate crude anthracene. At 80℃,crystal-keeping time 60min, the solvent ratio 1.8g / m1, the effect of DMF is the best to separate carbazole from the compound of anthracene and carbazole.
引文
[1] 孙虹. 焦油中精蒽/咔唑提取工艺的评述[J]. 煤炭转化,1998,21(2):29~32
    [2] ZvaigneA I,; Acree W E. Solubilty of anthracene in binary alkane + 2-butanol solvent mixtures[J] J. Chem. Eng. Data, 1994, 39(1):114-116
    [3] 《炼焦化产理化常数》冶金工业出版社,1980
    [4] 周霞萍, 高晋生. 精蒽加工工艺的研究现状和进展[J]. 煤炭转化, 1995, 18 (3): 22~26
    [5] 张超群, 田华. 从粗蒽中提取精蒽和精咔唑的研究[J]. 燃料与化工, 1999, 30 (2): 68~71
    [6] 朱富斌,陈光明. 从蒽油中提取精蒽和精咔唑的新工艺[J]. 燃料与化工, 2003,34 (6): 321~323
    [7] 北京炼焦化学厂技术委员会.炼焦化学文集[M]. 北京, 化学工业出版社,1989: 331~358
    [8] 高克萱,孙虹,叶煌. 煤焦油馏分加工提纯工艺评述[J]. 煤化工, 2000, 增刊: 1~4
    [9] 李松岳. 精蒽提纯溶剂的选择和应用[J]. 煤化工, 1999,(4): 50~53
    [10] G Collin, 高晋生. 煤焦油化工的新进展[J]. 燃料与化工, 1991,22 (5): 259~265
    [11] 周卫国,吴旭洲. 煤焦油中蒽、菲、咔唑的精制及利用[J]. 煤化工,2002, (1): 1~5
    [12] 郭存悦,王志忠. 粗蒽精制方法评述[J]. 煤化工,1999,(1): 20~23
    [13] 杨建民. 精蒽生产技术进展[J]. 煤化工,2004,(4): 13~15
    [14] 陈嘉翔. 制浆原理与工程[M]. 北京: 中国轻工业出版社,1995:210-217
    [15] 谢秋生. 萃取法生产咔唑的研究[J]. 燃料与化工,2003,34 (3): 153~154
    [16] 安开博. 用重结晶从蒽油中分离精制蒽[J]. 芳香烃(日), 1976, 28 (6): 25~87
    [17] 苑元,王曾辉,高晋生. 全国煤焦油深加工技术研讨会论文集 [C]. 成都,1997,47
    [18] 赵振波. 粗蒽分离精制过程中的溶剂选择[D]. 硕士论文,太原:太原理工大学,2003
    [19] 孟贺,薛永强,王志忠. 蒽、菲、咔唑的分离提纯方法[J]. 山西化工,2003, 23(4): 4~7
    [20] 福尔曼 E,塔尔比斯基 J,埃德曼 W. 改善从粗蒽中提取纯产物产率的蒸馏方法[P]. CN1172791A. 1998-02-11
    [21] Burkitt, DavidT. Producing Anthracene from creosote[P]. US4313012. 1982-01-22
    [22] 杰齐波莱克泽克,齐格芒特利西科,特里萨特克扎. 煤焦油衍生物蒽的分离和纯化方法[P]. CN1043309A.1990-06-27
    [23] 李建,张大戈,石林. 工业菲的制取方法[P]. CN1212250A. 1999-03-31
    [24] 柳来栓,许文林,刘有智. 反应-水解法从粗蒽中提取高纯度咔唑[J]. 化学工程,2001, (6): 58~59
    [25] 张永华,杨锦宗. 菲的提纯[J]. 首都师范大学学报(自然科学版),2000, 21 (3): 51~54
    [26] 王进. 溶剂结晶法分离煤焦油中蒽和咔唑的基础研究[D]. 硕士论文,扬州:扬州大学,2006
    [27] Jürgen G,; Gmehling J,; Thomas F. Solid-Liquid Equilibria Using UNIFAC[J]. Ind. Eng. Chem. Fundam, 1978, 17(4): 269-273
    [28] Fredenslund Aa,; Gmehling J,; Prausnitz J M. Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients[J]. Ind. Eng. Chem. Process Des. Dev. 1977, 16 (4): 450-453
    [29] Wilson G M,; Deal C H. Activity coefficients and molecular structure[J]. Ind. Eng. Chem. Fundam. 1962, 1(1): 20~23
    [30] Ghanima K, Al-Sharrah, Sami H. Ali. Solubility of Anthracene in two binary solvents containing toluene. Fluid Phase Equilibria, 2002, 193 (1~2): 191~201
    [31] Ming-Jer Lee, Yao-Kun Chang, Ho-mu Lin. Separation of morpholinepropanesulfonic acid from its aqueous solution [J]. Ind. Eng. Chem. Res. 1997, 36 (12): 5399~5402
    [32] Z. Atik, J. Ahlers, J. Lohmann, J. Gmehling. Binary solid-liquid equilibria of N, N-Dimethylacetamide with 1,2-Dichloroethane, Dichloromethane, and 1-Propanol [J]. J. Chem. Eng. Data 2001, 46 (5): 1190~1192
    [33] Roland Wittig, Dana Constantinescu, Ju1rgen Gmehling Binary. Solid-liquid equilibria of organic systems containing e-caprolactone [J]. J. Chem. Eng. Data 2001, 46 (6): 1490~1493
    [31] Hiroyuki Matsuda, Kenji Ochi, Kazuo Kojima. Determination and correlation of LLE and SLE data for the methanol + cyclohexane, Aniline + Heptane, and Phenol + Hexane System [J]. J. Chem. Eng. Data, 2003, 48 (1): 184~189
    [35] Zygmunt Lisicki, algorzata E. Jamroz. (Solid + liquid) equilibria in (polynuclear aromatic + teriary amide) systems [J]. J. Chem. Thermodynamics, 2000, 32 (10): 1335~1353
    [36] Fredenslund, Aa., Jones, R. L., Prausnitz, J. m. Group-contribution estimation of activity coefficient in nonidesl liquid mixtures. [J]. Fluid phase equilibria, 1975, 21(6): 1086~1099
    [37] Jürgen G. Gmehling, Tomas F. Anderren, John M. Prausnitz. Solid-liquid Equilibria Using UNIFAC [J]. Ind. Eng. Chem. Fundem, 1978, 17 (4): 269~273
    [38] Sandra Gracin, Tore Brinck, àke C. Rasmuson. Prediction of Solid Organic Compounds in Solvent by UNIFAC [J]. Ind. Eng. Chem. Res, 2002, 41 (20): 5114~5124
    [39] Abolghasem Jouyban, Mir-Reza Majidi, F Armaz Jabbaribar, Karim Asadpour-Zeynali. Solubility prediction of Anthracene in binary an ternary solvents by artificial neural networks (ANNs) [J]. Fluid phase equilibria, 2004, 225 (9): 133~139
    [40] Gmehling J,; Rasmussen P,; Fredenslund Aa. Vapor-Liquid Equilibria by UNIFACGroup Contribution. Revision and extension 2[J]. Ind. Eng. Chem. Process Des. Dev. 1982, 21 (1): 118-122
    [41] Jürgen G.,; Gmehling J. Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and extension.3[J]. Ind. Eng. Chem. Process Des. Dev. 1983, 22 (4): 676-679
    [42] Zvaigzne A I,; Acree W E J r. Solubility of Anthracene in Binary Alkane + 3-Methyl-1-butanol Solvent Mixtures[J]. J Chem Eng Data, 1994, 39(1): 708~712
    [43] Wei Dongwei,; Jiang Haoxi,; Jing Xin,; Yuan Jitang. Measurement and correlation of solubilities of 4-hydroxybenzaldehyde and its bromo-derivatives in choroform[J]. J. Chem. Eng. Data, 2004, 55(7):1193-1195
    [44] Roberts K L, Rousseau R W, Teja A S. Solubility of Long-Chain n-Alkanes in Heptane between 280 and 350 K [J]. J. Chem. Eng. Data, 1994, 39(4):793~796
    [45] Zhou Cairong, Jiang Denggao, Wang Fei. Measurement and correlation of solubilities of 1,2-cyclohexanediol[J]. J Chem Eng Data, 2004, 55 (9):1413~1416
    [46] Lu, J.; Song, Y. X.; Zhang, D. X.; Gao, J. S. Study on the liquid-solid phase equilibrium of anthracene and carbazole in some organic solvents[J]. Journal of East China University of Science and Technology. (Social Science Edition) (China) 2000, 26, 70-73
    [47] Zhao, Z. B.; Wang, Z. Z. Study on solubility of anthracene and carbazole in organic solvents[J]. Coal Conver. (China) 2002, 25, 92-94
    [48] C 赖卡特, 张新(译).有机化学中的溶剂效应[M].北京化学工业出版社.1987.12,256-304
    [49] Song, Y. X.; Hu, Z. Q.; Gao, J. S. Study on the liquid-solid phase equilibrium of anthracene in some organic solvents[J]. Coal Conver. (China) 1999, 22, 94-96
    [50] Emilio A, C.; Beatriz, G.; Mario, D. Solubility of anthracene and anthraquinone in some pure and mixed solvents[J]. J. Chem. Eng. Data 1989, 34(3), 273-275
    [51] Zygmunt, L.; Malgorzata E, J. (Solid + liquid) equilibria in (polynuclear aromatic + tertiary amide) systems[J]. J.Chem.Thermodyn 2000, 32(10), 1334-1353
    [52] Lu, Y. C.; Lin, Q.; Luo, G. S.; Dai, Y. Y. Solubility of Berberine Chloride in Various Solvents[J]. J. Chem. Eng. Data 2006, 51(2), 642-644
    [53] Wang, L.C.; Wang, F.A. Solubility of Niacin in 3-Picoline+water from (287.65 to 359.15) K[J]. J. Chem. Eng. Data 2004, 49(1), 154-156
    [54] Hao, H. X.; Wang, J. K.; Wang, Y. L. Solubility of Dexamethasone Sodium Phosphate in Different Solvents[J]. J. Chem. Eng. Data 2004, 49(6), 1697-1698
    [56] Cheng, Y.; Wang, Q.; Wang, L.; Li, X. Solubility of N-Hydroxyphthalimide in Binary Acetic Acid + Water Solvent Mixtures at (293.2 to 363.2) K[J] . J. Chem. Eng. Data 2007, 52(3), 1025-1027
    [57] Schwaighofer, A.; Schroeter, T.; Mika, S.; Laub, J.; ter Laak, A.; Sulzle, D.; Ganzer, U.; Heinrich, N. Accurate Solubility Prediction with Error Bars for Electrolytes: A Machine Learning Approach[J] . J. Chem. Eng. Data 2007, 47(2), 407-424
    [58] Yang, Z.J.; Hu, H. B.; Zhang, X. H.; Xu, Y. Q. Solubility of Phenazine-1-carboxylic Acid in Water, Methanol, and Ethanol from (278.2 to 328.2) K[J] . J. Chem. Eng. Data 2007, 52(1), 184-185
    [59] Bai, T.C,; Zhu, J. J,; Zhang, H. Li. Solubility of silybin in aqueous hydrochloric acid solution[J]. Fluid Phase Equilibria, 2007, 254(1), 204-210
    [60] Apelblat, A.; Manzurola, E. Solubilities of o-Acetylsalicylic, 4-Aminosalic, 3,5,-Dinitrosalicylic, and p-Toluic Acid, and Magnesium-DL-Aspartate in water from T= (278 to 348) K[J]. J. Chem. Thermodyn 1999, 31(2), 84-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700