~(99)Tc~m标记2PEG_4修饰RGD二聚体在神经胶质瘤动物模型的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     RGD多肽(RGD:含有氨基酸序列Arg-GIy-Asp的一小肽段的缩写)能与整合素αvβ特异性结合,从而进行肿瘤的诊断和治疗。为增强RGD多肽与整合素αvβ结合的亲和力,提高肿瘤对标记探针的摄取,我们在前期研究的基础上,对RGD二聚体进行结构改造,以联肼尼克酰胺(HYNIC)为双功能连接剂,N-三(羟甲基)甲基甘氨酸(tricine)和三苯基磷三磺酸钠(TPPTS)为协同配体(coligand),制备了99Tcm示记的由2PEG4修饰的RGD二聚体(Dimer:E[c(RGDfK)]2):99Tcm-HYNIC-2PEG4-Dimer,并与99Tcm-HYNIC-Dimer:进行比较,期望2PEG4的引入能有效改善标记探针的药代动力学性质,降低其在正常组织的摄取。
     方法:
     用免疫组化实验方法测定U87MG人神经胶质瘤细胞以及肿瘤组织中的整合素αvβ3的表达。通过U87MG细胞受体竞争结合实验测定RGD环肽单体c(RGDyK). HYNIC(联肼尼克酰胺)-Dimer和HYNIC-2PEG4-Dimer对125I-c(RGDyK)的半数抑制浓度(IC50)值。采用无亚锡一步法制备99Tcm-HYNIC-2PEG4-Dimer和99Tcm-HYNIC-Dimer,并测定各自的标记率和放化纯。评价99Tcm-HYNIC-2PEG4-Dimer和99Tcm-HYNIC-Dimer在荷U87MG瘤裸鼠的生物分布,进行γ显像。采用非配对t检验法对实验数据进行分析。
     结果
     免疫组化实验结果证实:在U87MG细胞和荷瘤裸鼠肿瘤组织中高表达整合素αvβ。HYNIC-2PEG4-Dimer比c(RGDyK)和IYNIC-Dimer有更高的整合素αvβ3亲和力(IC50值分别是0.8 nmol/L、27 nmol/L和2.4 nmol/L)。99Tcm-HYNIC-Dimer和99Tcm-HYNIC-2PEG4-Dimer的99Tcm标记率均>95%,经Sep-Pek C18柱纯化后其放化纯>99%。生物分布实验显示,两种标记物均主要经肾脏排泄,在注射后2 h,肿瘤对99Tcm-HYNIC-2PEG4-Dimer的摄取为99Tcm-HYNIC-Dimer的2.7倍(5.71±0.96%ID/g V.S.2.10±0.50%ID/g),摄取显著增高(t=4.80,P<0.05),与体外受体竞争结合实验数据相一致。γ显像结果显示,注射后99Tcm-HYNIC-2PEG4-Dimer 0.5h肿瘤即清晰可见,随时间延长,体内放射性本底明显减低,显像对比度增高。
     结论
     99Tcm-HYNIC-2PEG4-Dimer与整合素αvβ3的结合亲和力更高,肿瘤对其的摄取摄取率更高,是一个有应用前景的用于整合素αvβ3阳性肿瘤显像的放射性示踪剂。
Objective
     RGD peptide (containing amino acid sequence Arg-Gly-Asp of a small peptide abbreviation) can specifically bind with the integrinαvβ3, which for the diagnosis and treatment of cancer. To enhance the RGD peptide and integrinαvβ3 binding affinity, and increase tumor uptake of the labeled probe, On the basis of preliminary studies on the RGD dimer structural transformation, we using joint hydrazine nicotinamide (HYNIC) as bifunctional agent, N-tris (hydroxymethyl) methyl glycine (tricine) and triphenylphosphine three sulfonate (TPPTS) as ligand coordination (coligand), prepared the 2PEG4 99Tcm-modified RGD dimer (Dimer:E [c (RGDfK)] 2): 99Tcm-HYNIC-2PEG4-Dimer, and with 99Tcm-HYNIC-Dimer comparison, expecting 2PEG4 can effectively improve the pharmacokinetic properties, reducing its normal tissue uptake.
     Methods
     The expression of integrinαvβ3 in the U87 human glioma cells as well as tumor tissues were determined by immunofluorescence staining. The 50% inhibitory concentration (IC50) values of c(RGDyK), HYNIC-Dimer and HYNIC-2PEG4-Dimer were determined on U87 human glioma cells with 125I-c(RGDyK) as the integrinαvβ3-pecific radiotracer。99Tcm-HYNIC-2PEG4-Dimer and 99Tcm-HYNIC-Dimer was prepared using non-SnCl2 formulation. The biodistribution and y imaging were performed in nude mice bearing human glioma xenografts.The unpaired t test were used for statistical analysis.
     Results
     High expression of integrinαvβ3 integrinαvβ3 in the U87 human glioma cells as well as tumor tissues can be seen. The labeling yield of the two radiotracers was more than 95%, and the radiochemical purity was more than 99% after purification with Sep-Pek C18 cartridge. HYNIC-2PEG4-Dimer had significantly higher integrinαvβ3 binding affinity than c(RGDyK) and HYNIC-Dimer (The IC50 values were 0.8 nmol/L,27 nmol/L and 2.4 nmol/L, respectively).Biodistribution data showed that 99mTc-HYNIC-2PEG4-Dimer was mainly excreted via the renal route. The tumor uptake of 99Tcm-HYNIC-2PEG4-Dimer was about 2.7 times higher than that of 99Tcm-HYNIC-Dimer at 2 h postinjection (5.71±0.96V.s.2.10±0.50%ID/g), t= 4.80, P< 0.05. y imaging revealed that the xenografted tumors were visible at 0.5 h postinjection, and the image contrast increased at 4 h postinjection with the rapid clearance of the radiotracer.
     Conclusion
     99Tcm-HYNIC-2PEG4-Dimer has higher integrinαvβ3 binding affinity,and the tumor uptake of its is higher, so it is a more promising radiotracer for integrinαvβ3-positive tumor imaging.
引文
[1].张春丽,王荣福.肿瘤受体显像。国外医学:放射医学核医学分册[J].2000,24(3):124-127,F003
    [2].Carmeliet P. Angiogenesis in health and disease. Nat Med[J],2003,9:653-660.
    [3].Mizejewski Gj.Role of integrins in cancer:survey of expression patterns.Proc Soc Exp Boil Med[J],1999,222(2):124-38.
    [4]. Varner JA Cheresh DA[J].Integrins and cancer. Curr Opin Cell Boil,1996,8(5)724-30.
    [5].Liu S, Robinson SP, Edwards DS. Radiolabeled integin αvβ3 angiogenesis as radiopharmaceuticals for tumor radiotherapy. Top Curr Chem[J],2005,252:193-216.
    [6]. Haubner R,Wester HJ. Radiolabeled tracer for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des[J],2004,10:1439-1455.
    [7].Byzova TV, Rabbani R, D'Souza SE,et al.Role of integrin alpha(v)beta3 in vascular biology. Thromb Haemost[J],1998,80(5):726-34.
    [8]. Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging(reviews). Molecular Phamaceutics[J].2006; 3(5): 472-487.
    [9].Liu S. Integrin avβ3 targeted radiotracers for tumor imaging:a review. Mol Pharm[J], 2006,3:472-487.
    [10].余子磷,刘昭飞,贾兵,等.99Tcm标记RGD环肽四聚体在神经胶质瘤裸鼠模型中的显像研究.中华核医学杂志[J],2009,29:103-109.
    [11].刘昭飞,贾兵,史继云,等.99Tcm-RGD环肽二聚体的制备及其体内外评价.中华核医学[J],2007,27:205-209.
    [12].肖伦.放射性同位素技术[M],原子能出版社,2000.
    [13].Okarvi SM. Peptide-Based Radiopharmaceuticals:Future tools for diagnostic imaging of cancers and other diseases. Medicinal Research Review s [J].2004; 24(3): 357-397.
    [14].Haubner R, Wester H-J, Burkhart F, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med[J].2001; 42:326-36.
    [15].Harris JM, Martin NE, Modi M. Pegylation:A novel process for modifying pharmacokinetics. Clin Pharmacokinet[J].2001; 40 (7):539-551.
    [16].Chen X, Park R, Shahinian AH, et al. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol [J].2004; 31: 11-9.
    [17]. Janssen M, Oyen W J G, Massuger L F A G, et al. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm, [J] 2002,17:641-646.
    [18].余子磷,刘昭飞,贾兵,等.90Tcm标记RGD环肽四聚体在神经胶质瘤裸鼠模型中的显像研究.中华核医学杂志[J],2009,29:103-109.
    [19]. Liu S. Radiolabeled muhimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracer for tumor imaging. Mol Pharm [J],2006,3:472-487.
    [20]. Thumshirn G, Hersel U, Goodman, S L, et al. Multimeric cyclic RGD peptides as potential tools for tumor targeting:solid-phase peptide synthesis and chemoselective oxime ligation. Chem. Eur [J],2003,9:2717-2725.
    [21]. Shi JY, Wang LJ, Kim YS, et al. Improving tumor uptake and excretion kinetics of 99Tcm-labeled cyclic Arginine-Glycine-Aspartic (RGD) dimers with triglycine linkers. J Med Chem[J].2008,51:7980-7990.
    [1].张春丽,王荣福.肿瘤受体显像。国外医学:放射医学核医学分册[J],2000,24(3):124-127,F003
    [2].Krenning EP, Kwekkeboom DJ, Valkema R, et al. Peptide receptor
    [3].Soresi E, Bombardieri E, Chiti. 111Indium-DTPA-octreotide scintigraphy modulation by treatment with unlabelled stomatostatin analogue in small-cell lung cancer. Lung cancer[J].1995; 13:230-231.
    [4].Thakur M L, Kolan H, Li J, Wiaderkiewicz. Radiolabelled somatostatin analogues in prostate cancer. Nucl Med Bio[J].1997; 24:105-113.
    [5].Kim M, Carman CV, Springer TA. Biodirectional transmemnbrane signaling by cytoplasmic domain separation in integrins[J]. Science,2003,301(5640):1720-1725.
    [6]. Mizejewski GJ. Role of integrins in cancer:survey of expression patterns. Proc Soc Exp Biol Med[J],1999,222(2):124-38.
    [7].varner JA Cheresh DA.Integrins and cancer. Curr Opin Cell Boil[J],1996,8(5)724-30.
    [8].Bloch W,Forsberg E,Lentini S,et al. β1 integrin is essential for teratoma growth and angiogenesis. J Cell Biol[J],1997,139 (1):265-278.
    [9]Plow EF, Haas TA, Zhang L, Loftusi J, Smith JW. Ligand Binding to Integrins. J Biol Chem[J].2000; 275:21785-21788.
    [10].Kim S, Bell K, Mousa SA[J]. Regulation of angiogenesis in vivo by ligation of integrin alpha5betal with the central cell-binding domain of fibronectin[J]. Am J Pathol, 2000,156(4):1345-1362.
    [11].黄云鹏.中国肿瘤[J].2007,16(1):35-38.
    [12]. Boudreau N, Sympson CJ, Werb Z, et al. Suppression of ICE and apoptosis in mammary epithelial cells by extracelluar matrix [J]. Science,1995,267 (5199):891-893.
    [13].Scatena M, Almeida M, Chaission ML, et al. NF-[Kappa] B Mediates [alpha] v [beta] 3 integrin-induced endothelial cell survival [J]. J Cell Biol, 1998,141(4):1083-1093.
    [14]. Bao W, Stromblad S. Integrin{alpha}v-mediated inactivation of p53 controls a MEK1-dependent melanoma cell survival pathway in three-dimensional collagen. This indicates that integrin alphav-mediated inactivation of p53[J]. J Cell Biol,2004, 167(4):745-756.
    [15].Eliceiri BP, Cherish DA. The role of alphav integrins during angiogenesis. Mol Med[J].1998; 4(12):741-750.
    [16]. Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T. Tissue factor, osteopontin,αvβ3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br J Cancer[J].2000; 82(12):1967-1973.
    [17]. Byzova TV, Rabbani R, D'Souza SE,et al.Role of integrin alpha(v)beta3 in vascular biology. Thromb Haemost[J],1998,80(5):726-34.
    [18].肖斌,朱永红(综述),邹全明(审校).RGD肽在肿瘤治疗中的研究进展.中国肿瘤临床[J],2005,32(19):1135.1137.
    [19].Bogdanowich-Knipp SJ, Chakrabarti S, Williams TD, et al. Solution stability of linear VS. cyclic RGDpeptides. J Pept Res[J],1999,53(5):530-41.
    [20]. Bogdanowich-Knipp SJ, Jois DS, Siahaan TJ. The effect of conformmion on the solution stability of linear VS. cyclic RGD peptides. J Pept Res[J], 1 999,53(5):523-9.
    [21]. Richards J, Miller M, Abend J, et al. Engineered fibronectin type III domain with a RGDWXE sequence binds witll enhanced affinity and specificity to human alphavbeta3 integrin. J Mol Biol[J],2003,326(5):1475-88.
    [22]. Humphries MJ, Mould AP. Structure. An anthropomorphic integrin. Science[J], 2001,294(5541):3 16-7.
    [23]. Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging(reviews). Molecular Phamaceutics[J].2006; 3(5): 472-487.
    [24]Liu S. Integrin αvβ3 targeted radiotracers for tumor imaging:a review. Mol Pharm[J], 2006,3:472-487.
    [25].余子磷,刘昭飞,贾兵,等.99Tcm标记RGD环肽四聚体在神经胶质瘤裸鼠模型中的显像研究.中华核医学杂志[J],2009,29:103-109.
    [26]刘昭飞,贾兵,史继云,等.99Tcm-RGD环肽二聚体的制备及其体内外评价.中 华核医学[J],2007,27:205-209.
    [27]. Costopoulos B, Varvarigou AD, Sivolapenko G, et al. Radiochemical and radiobiological evaluation of a synthetic peptide labelled with 99mTc [Abstr.]. In Proceedings of the 8th ISORBE Congress,24-27 May 1997, Castel Gandolfo, Rome, Italy.
    [28]Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, et al. Imaging of metastatic melanoma utilizing a technetium-99m labeled RGD-containing synthetic peptide. Eur J Nucl Med[J].1998; 25:1383-1389.
    [29]. Liu S, Robinson SP, Edwards DS. Radiolabeled integrin αvβ3 antagonists as radiopharmaceuticals for tumor radiotherapy. Top Curr Chem[J].2005; 252,117-153.
    [30]Liu S, Edwards DS. Fundamentals of receptor-based diagnostic metalloradiopharmaceuticals. Top Curr Chem[J].2002; 222,259-278.
    [32].Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science[J].2002; 296:151-5.
    [32].Gottschalk KE, Kessler H. The structures of integrins and integrin-ligand complexes: Implications for drug design and signal transduction. Angew Chem Int Ed[J].2002; 41: 3767-3774.
    [33].Haubner R, Gratias R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H. Structural and functional aspect of RGD containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J Am Chem So[J]c.1996; 118:7461-7472.
    [34].Haubner R, Finsinger D, Kessler H. Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew Chem Int Ed Eng[J]l.1997; 36:1375-1389.
    [35].Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler, H. Arg-Gly-Asp constrained within cyclic pentapeptides strong and selective inhibitors of cell adhension to vitronectin and laminin fragment P1. FEBS Lett[J].1991; 291:50-54.
    [36].Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy[J]. J Nucl Med.2000; 41:1704-1713.
    [37]. Rajopadhye M, Harris AR, Nguyen HM, Overoye KL, Bartis J, Liu S, et al. RP593, a 99mTc labeled αvβ3/αvβ5 antagonist, rapidly detects spontaneous tumorsin mice and dogs.47th Annual Meeting of SNM, St. Louis,Missouri. J Nucl Med[J].2000; 41: 34P.
    [38]. Janssen ML, Oyen WJ, Massuger LF, et al. comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor imaging. Cancer Biother Radiopham[J], 2002,17:641 J646.
    [39].余子磷,贾兵,刘昭飞等,99Tcm标记RGD环肽四聚体在神经胶质瘤裸鼠模型中的显像研究。中华核医学杂志[J],2009,29(2):103-108.
    [40].Li z, cai w, cao Q, et al.64Cu-labeled tetrameric and octameric RGD peptides for small animal PET of tumor αvP3 integrin expression. J Nucl Med[J],2007,48:1162-71.
    [41]. Liu s. Radiolaeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging.Mol.Pharm[J],2006,3:472-487.
    [42].尹帮顺,李明起,邓启民等,90Y发生器的研究进展[J]。2009,22(3):188-191。
    [43].肖伦.放射性同位素技术[M],原子能出版社,2000.
    [44]. Okarvi SM. Peptide-Based Radiopharmaceuticals:Future tools for diagnostic imaging of cancers and other diseases. Medicinal Research Reviews[J].2004; 24(3): 357-397.
    [45].Fichna J, Janecka A. Synthesis of target-specific radiolabelled peptides for diagnostic imaging. Bioconjug Chem[J].2003; 14(1):3-17.
    [46].Zhang YM, Liu N, Zhu ZH, Rusckowski M, Donald J. Hnatowich influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur J Nucl Med[J].2000; 27, (11):1700-1707.
    [47]. Haubner R, wester HJ, Burkhart F, et al. Glycolated RGD-confaining peptides: tracer{br tumor targeting and angiogenesis imaging with impmved biokinetics. J Nucl Med[J].2001,42:326-336.
    [48]. Bernard B, Capello A, Van Hagen M, et al. Radiolabeled RGD-DTPA-Tyr3-octreotate for receptor-targeted radionuclide therapy Cancer Biother Radiopharm[J].2004,19(2):173-180.
    [49].chen x, Park R, Shahinian AH, et al. Phamarcokinetics and tumor retention of125 I-labeled RGD peptide are improved by PEGy-lation. Nucl Med Biol[J],2004,31:11-19.
    [50].Chenx, HouY, TohmeM, et al. Pegylated Arg-Gly-Asp peptide: 64 Cu labeling and PET imaging of brain tumor avβ3-integrin expression J Nucl Med[J], 2004.45:1776-1783.
    [51].Haubner R, wester HJ, Burkhalt F, et al. Glycolated RGD confaining peptides:tracer{br tumor targeting and angiogenesis imaging with impmved biokine cs. J Nucl Med[J].2001,42:326-336.
    [52].Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, Liu S, Wang F.99mTc-labeled cyclic RGDfK dimer:initial evaluation for SPECT imaging of glioma integrin avβ3 expression. Bioconjug Chem[J].2006; 17:1069-1076.
    [53].王世真.分子核医学(第二版).中国协和医科大学出版社(M).2004
    [54].Peter J Ell. Highlights of the annual congress of the european association of 46 nuclear medicine, Helsinki 2004, and a dash of horizon scanning. Eur J Nucl Med Mol Imaging[J].2005; 32:113-126.
    [55]. Bieke VDB, Christophe VW. Receptor imaging in oncology by means of nuclear medicine:current status. Journal of Clinical Oncology[J].2004; 22(17):3593-3607.
    [56].于巍.当代PET显像技术的特点及其应用.医疗卫生设备[J].2000;6:31-34.
    [57].Sharma V, Luker GD, Piwnica-Worms D. Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging[J].2002; 26(4):336-351.
    [58].Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF. Frielink C,Edwards DS, et al. Tumor targeting with radiolabeled α v β3 integrin binding peptides in a nude mouse model[J]. Cancer Res 2002;62:6146-51
    [59].Wu Y. Zhang X, Xiong Z, Cheng Z, Fisher DR. Liu S, et al.MicroPET imaging of glioma integrin a v β 3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med [J]2005;46:1707-18.
    [60].Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R,Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides:tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med[J] 2001;42:326-36
    [61]. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI,Goodman SL, et al. Noninvasive imaging of a v β 3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res[J] 2001;61:1781-5.
    [62]. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin a v gene expression in human melanoma tumorigenicity. J Clin Invest[J] 1992;89:2018-22.
    [63]. Myoken Y, Kayada Y, Okamoto T, Kan M, Sato GH, Sato JD.Vascular endothelial cell growth factor (VEGF) produced by A-431 human epidermoid carcimoma cells and identification of VEGF membrane binding sites. Proc Natl Acad Sci U S A 1991;88:5818-23.
    [64]. Pichler BJ, Kneilling M, Haubner R, Braumuller H, Schwaiger M, Rocken M, et al. Imaging of elayed-type hypersensitivity reaction by PET and 18F-Galacto-RGD. J Nucl Med[J] 2005;46:184-9.
    [65]. Liu, S.; Edwards, D. S.; Ziegler, M. C.; Harris, A. R.; Hemingway,S. J.; Barrett, J. A.99mTc-Labeling of a hydrazinonicotinamideconjugated vitronectin receptor antagonist useful for imaging tumor. Bioconjugate Chem[J].2001,12,624-629.
    [66].Liu, S.; Hsieh, W. Y.; Kim, Y. S.; Mohammed, S.I. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconjugate Chem[J].2005,16,1580-1588. 91.
    [67].Jia, B.; Shi, J.; Yang, Z.; Xu, B.; Liu, Z.; Zhao, H.; Liu, S.; Wang, F.99mTc-labeled cyclic RGDfK dimer:initial evaluation for SPECT imaging of brain tumor integrin Rva3 expression. Bioconjugate Chem[J],17 (4) 1069-76.
    [68].Liu, S.; Robinson, S. P.; Edwards, D. S. Integrin Rva3 directed radiopharmaceuticals for tumor imaging. Drugs Future [J] 2003,28,551-564.
    [69]. Beer, A. J.; Haubner, R.; Goebel, M.; Luderschmidt, S.; Spilker,M. E.; Webster, H.-J.; Weber, W. A.; Schwaiger, M. Biodistribution and pharmacokineticss of the Rva3-selective tracer 18FGalacto-RGD in cancer patients. Nucl. Med [J].2005,46, 1333-1341.
    [70]. Haubner, R.; Weber, W. A.; Beer, A. J.; Vabulience, E.; Reim,D.; Sarbia, M.; Becker, K.-F.; Goebel, M.; Hein, R.; Wester, H.-J.; Kessler, H.; Schwaiger, M. Noninvasive visuallization of the activiated Rvd3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLOS Med[J].2005,2, e70,244-252.
    [71].刘晓飞.正电子核素标记的RGD肽的基础研究[D].军医进修学院,解放军总医院.学位论文.
    [72].Wu Y,Zhang, X Z, Xiong, Z M, et al. Gambhir, S. S.; Chen, X.-Y. MicroPET imaging of glioma Rv-integrin expression using 64Cu-labeled tetrameric RGD peptide. J. Nucl. Med[J].2005,46,1707-1718.
    [73].Xiaoyuan Chen, PhDl, Shuang Liu, PhD2.MicroPET Imaging of Breast Cancer av-Integrin Expression with Cu-Labeled Dimeric RGD Peptides. Molecular Imaging and Biology[J].2004,6(5),350-359.
    [74]. Zhaofei Liu, Gang Niu, Jiyun Shi, et al.68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 Iinkers:promising agents for tumor integrin α v β 3 PET imaging. Eur J Nucl Med Mol Imaging[J].2009,36:947-957.
    [75].Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated a v β 3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med[J].2005;2:29.
    [76].Beer AJ, Haubner R, Wolf I, Goebel M, Luderschmidt S,Niemeyer M, et al. PET-based dosimetry in man of [18F]Galacto-RGD, a new radiotracer for imaging of α v β 3 expression.J Nucl Med[J] 2006;47:763-9.
    [77]. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink CD, Edwards S. Tumor targeting with radiolabeled integrin avβ3 binding peptides in a nude mouse model. Cancer Re s[J].2002; 62:6146-6151
    [78].史继云,余子磷,贾兵,赵慧云,王凡.177Lu-DOTA-Bz-RGD dimer和177Lu-DOTA-Bz-PEG4-RGD dimer的制备及生物评价.同位素[J].2007;20(4):214-217.
    [79].王凡,刘昭飞.RGD多肽放射性药物的研究现状及发展趋势.中华核医学杂志[J]。2008,28(2)142-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700