抗VEGFR2-奥沙利铂免疫脂质体对结直肠癌靶向治疗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分抗VEGFR2-奥沙利铂免疫脂质体的制备
     目的探讨生物素―链霉亲和素桥接作用制备抗VEGFR2-奥沙利铂免疫脂质体。
     方法采用逆向旋转蒸发法制备生物素化的聚乙二醇脂质体(PEG-脂质体),通过生物素―链霉亲和素桥接作用将生物素化VEGFR2单克隆抗体与生物素化的PEG-脂质体连接,构建抗VEGFR2-免疫脂质体。采用激光粒度仪、扫描电镜分析脂质体的粒径和电位大小;激光共聚焦显微镜和流式细胞仪检测抗VEGFR2-免疫脂质体的特征及抗体活性;高效液相色谱仪分析抗VEGFR2-奥沙利铂免疫脂质体的包封率及体外药物释放率。
     结果免疫脂质体的平均粒径为185.34±28.08 nm,电位为-19.98±2.96 mv。脂质体呈球型,分散均匀,无聚集粘附成团现象;激光共聚焦显示罗丹明标记的二抗可在抗VEGFR2-免疫脂质体表面有效结合,流式细胞仪检测结合率达75%以上;高效液相色谱仪分析免疫脂质体的包封率为(58.07±6.94)%,体外累积释放率在120 h可达89%以上。
     结论通过链霉亲和素与生物素桥接作用将生物素化VEGFR2构建在生物化PEG-脂质体表面是一种可行的方法,制备的抗VEGFR2-奥沙利铂免疫脂质体具有一定的包封率和体外释放率。
     第二部分抗VEGFR2-奥沙利铂免疫脂质体对人结直肠癌THC8307/L-OHP细胞的靶向效应
     目的探讨抗VEGFR2-奥沙利铂免疫脂质体对人结直肠癌THC8307/L-OHP细胞的凋亡诱导作用及可能机制。
     方法采用免疫荧光、Western blot和RT-PCR分析VEGFR2在THC8307/L-OHP细胞的表达;流式细胞仪、免疫荧光、扫描电镜分析抗VEGFR2-免疫脂质体对THC8307/L-OHP细胞的靶向结合。MTT筛选给药浓度,分析抗VEGFR2-奥沙利铂免疫脂质体对THC8307/L-OHP细胞的毒性。THC8307/L-OHP细胞经抗VEGFR2-奥沙利铂免疫脂质体处理,流式细胞仪及TUNEL分析细胞的凋亡与增殖;RT-PCR分析Bcl-2、Bax、Caspase-3、Ki-67 mRNA的表达;Western blot检测Bcl-2、Bax、活化Caspase-3/P17蛋白的表达;免疫组化分析Ki-67阳性细胞数;检测P38、ERK、JNK的mRNA和蛋白的表达变化。THC8307/L-OHP细胞经SP600125预处理后,分析抗VEGFR2-奥沙利铂免疫脂质体对细胞凋亡调节。
     结果与HUVEC比较,VEGFR2在THC8307/L-OHP细胞有高表达。抗VEGFR2-免疫脂质体与THC8307/L-OHP细胞的结合能力高于非免疫脂质体(P<0.05);游离奥沙利铂(50μg/ml),奥沙利铂PEG-脂质体(含奥沙利铂50μg/ml)和抗VEGFR2-奥沙利铂免疫脂质体(含奥沙利铂50μg/ml)分别处理THC8307/L-OHP细胞12 h,细胞凋亡率分别为(10.02±0.69)%,(15.29±1.70)%和(55.89±8.90)%,正常组为(6.69±0.35)%。各组间比较,差异有统计学意义(P<0.01,P<0.05)。TUNEL检测THC8307/L-OHP细胞凋亡量的变化趋势与流式结果类似;CFSE平均荧光强度的相对比值分别为1.83±0.21,1.56±0.16和1.29±0.10。各组间比较,P<0.05。Bcl-2、Ki-67的mRNA和蛋白的表达显著下调,Bax、Caspase-3的mRNA和蛋白的表达上则调(P< 0.01,P<0.05);在MAPK信号通路中,P38的mRNA和蛋白表达各组间比较无显著变化(P>0.05),ERK表达随细胞凋亡的增加下调,JNK表达上调(P<0.05)。SP600125预处理THC8307/L-OHP细胞后,抗VEGFR2-奥沙利铂免疫脂质体对细胞的凋亡作用不被SP600125抑制剂所抑制,Bcl-2的mRNA和蛋白的表达显著下调(P<0.01),Bax、Caspase-3则上调(P<0.01)。
     结论抗VEGFR2-奥沙利铂免疫脂质体具有增强与THC8307/L-OHP细胞相结合的能力,并对细胞有显著凋亡诱导作用,可能与ERK、JNK信号通路参与凋亡调节有关。
     第三部分抗VEGFR2-奥沙利铂免疫脂质体对裸鼠异种移植瘤的靶向作用
     目的探讨抗VEGFR2-奥沙利铂免疫脂质体在裸鼠异种移植瘤体内的靶向效应。
     方法建立裸鼠异种移植瘤模型,经尾静脉注射荧光标记(Dio标记)的抗VEGFR2-免疫脂质体,运用活体荧光显像和免疫荧光技术检测免疫脂质体在瘤体组织内的聚集能力;分析游离奥沙利铂(5μg/g),奥沙利铂PEG-脂质体(含奥沙利铂5μg/g),抗VEGFR2-奥沙利铂免疫脂质体(含奥沙利铂5μg/g)对荷瘤鼠的瘤体抑制率和生存期的影响;高效液相色谱法检测瘤体组织内药物的含量;免疫组化和Western blot分析瘤体细胞凋亡与增殖的变化。
     结果活体荧光显像观察到Dio标记的抗VEGFR2-免疫脂质体在瘤体的聚集能力高于非免疫脂质体,免疫双标显示其在瘤体细胞内和血管周围大量分布;分别用游离奥沙利铂,PEG-奥沙利铂及抗VEGFR2-奥沙利铂免疫脂质体处理裸鼠,瘤体的抑制率为(39.55±9.38)%,(50.34±8.86)%和(61.20±9.77)%,组间比较差异有统计学意义(P<0.05)。抗VEGFR2-奥沙利铂免疫脂质体处理组裸鼠的生存率高于其它各组;给药2 h后,游离奥沙利铂处理组瘤体组织内药物的含量明显降低。给药24 h后,奥沙利铂PEG-脂质体处理组和抗VEGFR2-奥沙利铂免疫脂质体处理组在瘤体组织内药物的含量均达高值,但抗VEGFR2-奥沙利铂免疫脂质体组的含量高于奥沙利铂PEG-脂质体组(P<0.05),并且在72 h后仍可维持较高值;瘤体细胞的凋亡指数在抗VEGFR2-奥沙利铂免疫脂质体处理组显著高于其它各组(P<0.001,P<0.01,P<0.05),而增殖指数显著低于其它各组(P<0.001,P<0.01,P<0.05);Bcl-2蛋白表达下调,Bax、P17蛋白表达上调(P<0.01,P<0.05)。
     结论抗VEGFR2-奥沙利铂免疫脂质体能有效抑制荷瘤鼠瘤体的生长,并影响瘤体细胞的凋亡与增殖。
     第四部分抗VEGFR2-奥沙利铂免疫脂质体对人结直肠癌THC8307/L-OHP细胞多药耐药的影响
     目的探讨抗VEGFR2-奥沙利铂免疫脂质体对人结直肠癌THC8307/L-OHP细胞的耐药逆转作用。
     方法MTT方法分析抗VEGFR2-奥沙利铂免疫脂质体对THC8307/L-OHP细胞的耐药逆转倍数。免疫组化、RT-PCR、Western blot分析游离奥沙利铂和不同剂量的抗VEGFR2-奥沙利铂免疫脂质体处理细胞12 h,P-gp/MDR1、ABCG2的表达变化。分析相同剂量的抗VEGFR2-奥沙利铂免疫脂质体处理细胞不同时间,P-gp/MDR1、ABCG2的表达变化。采用Western blot分析游离奥沙利铂和不同剂量的抗VEGFR2-奥沙利铂免疫脂质体作用细胞48 h,ABCG2、P-gp/MDR1、GST3、Bcl-2和P17蛋白的表达变化。采用免疫组化技术分析瘤体组织ABCG2和P-gp/MDR1的阳性表达。
     结果抗VEGFR2-奥沙利铂免疫脂质体对THC8307/L-OHP细胞的耐药逆转倍数为1.21。25μg/ml的游离奥沙利铂,抗VEGFR2-奥沙利铂免疫脂质体组Ⅰ(含25μg/ml奥沙利铂)和抗VEGFR2-奥沙利铂免疫脂质体组Ⅱ(含50μg/ml奥沙利铂)作用细胞12 h,P-gp/MDR1的mRNA表达分别为2.22±0.33,2.67±0.40,3.26±0.4(7组间比较,P<0.05);ABCG2的mRNA表达分别为2.85±0.43,7.74±1.16,8.68±1.30(组间比较,P<0.05与P<0.01);P-gp/MDR1的蛋白表达分别为5.68±0.85,10.04±1.51,17.62±2.64。组间比较差异有显著性(P<0.01);ABCG2蛋白表达分别为2.06±0.31,3.74±0.56,4.56±0.68。组间比较差异有显著性,P<0.05和P<0.01;抗VEGFR2-奥沙利铂免疫脂质体(含25μg/ml奥沙利铂)处理细胞12 h,24 h,48 h和72 h,P-gp/MDR1蛋白表达分别为8.57±1.28,16.36±2.45,3.42±0.51,0.75±0.11。各组间比较,差异有统计学意义(P<0.01);ABCG2蛋白含量分别为1.27±0.19,2.13±0.32,1.63±0.24,0.55±0.08。各组间比较,差异有统计学意义(P<0.05);P-gp/MDR1、ABCG2耐药基因的mRNA表达在24 h升高明显,72 h显著降低。与正常对照组比较,差异有统计学意义(P<0.01,P<0.05)。游离奥沙利铂和抗VEGFR2-奥沙利铂免疫脂质体(组Ⅰ、Ⅱ)作用细胞48 h,游离奥沙利铂处理组的P-gp/MDR1、ABCG2、GST3、Bcl-2、P17蛋白的表达无显著变化(P>0.05,与正常对照组比较);抗VEGFR2-奥沙利铂免疫脂质体处理组(组Ⅰ,组Ⅱ)P-gp/MDR1、ABCG2、GST3、Bcl-2蛋白的表达呈下调趋势,P17则上调。各组间比较,差异有统计学意义(P<0.01,P<0.05);瘤体组织中存在P-gp/MDR1和ABCG2阳性细胞,但随处理因素增加其表达减弱。
    
     结论抗VEGFR2-奥沙利铂免疫脂质体逆转THC8307/L-OHP细胞的多药耐药可能与P-gp/MDR1、ABCG2、GST3的下调有关。抗凋亡蛋白Bcl-2,Caspase-3可能参与抗VEGFR2-奥沙利铂免疫脂质体对THC8307/L-OHP细胞耐药性的调节。
PART ONE PREPARATION OF ANTI-VEGFR2 IMMUNOLIPOSOMAL OXALIPLATIN
     Objective We aimed to investigate a novel method for the preparation of anti-VEGFR2 immunoliposomal oxaliplatin to elucidate the bridging role of Streptavidin-biotin.
     Methods Biotinylated PEG-liposomes were prepared using reverse rotary evaporation. The biotinylated PEG-liposomes were linked to streptavidin molecules that act as a bridge between the biotinylated VEGFR2 antibody and the biotinylated PEG-liposomes. The size and zeta-potential of the liposomes were determined by a Laser particle size analyzer and by scanning electron microscopy; Laser confocal microscopy and flow cytometry detection were used to determine the characteristics and antibody activity of anti-VEGFR2 immunoliposomes; and the encapsulation efficiency and in-vitro drug release rate of anti-VEGFR2 immunoliposomal oxaliplatin were detected by HPLC.
     Results We obtained immunoliposomes with a particle size of 185.34±8.08 nm and zeta-potential of 19.98±2.96 mv. The evenly shaped liposomes had smooth surfacesand were evenly dispersed without aggregation or adhesion into groups. Confocal microscopy revealed a strong interaction between the rhodamine-labeled secondary antibodies and the anti-VEGFR2 primary antibodies. Flow cytometry analysis revealed binding of the secondary antibody to over 75% of the liposomes. The entrapment efficiency of the liposomes was (58.07±6.94)%, and after 120 h we observed an increase in cumulative percentage release of over 89%, as determined by HPLC.
     Conclusion The bridging role of Streptavidin-biotin is a feasible method for biotinylated VEGFR2 antibody binding to biotinylated PEG-liposomes. The preparation of anti-VEGFR2 immunoliposomal oxaliplatin is important as it determines the entrapment efficiency and in-vitro release rate of the therapy.
     PART TWO ANTI-VEGFR2 IMMUNOLIPOSOMAL OXALIPLATIN TARGETING IN HUMAN COLORECTAL CARCINOMA THC8307/L-OHP CELLS
     Objective We aimed to investigate anti-VEGFR2 immunoliposomal oxaliplatin induction of THC8307/L-OHP cell apoptosis and to elucidate the underlying mechanism.
     Methods We used immunofluorescence, Western blot, and RT-PCR to analyse the effect of VEGFR2 expression on THC8307/L-OHP cells, and the binding of anti-VEGFR2 immunoliposomes to cells was analyzed by flow cytometry, immunofluorescence, and scanning electron microscopy. MTT analysis was used to determine the administration drug dose and the cytotoxicity of anti-VEGFR2 immunoliposomal oxaliplatin. Apoptosis or proliferation was detected by flow cytometry and TUNEL analyses; RT-PCR analysis was performed to measure the mRNA expression of Bcl-2, Bax, Caspase-3, Ki-67, P38, ERK, and JNK. We performed Western blot analysis to determine protein expression of Bcl-2, Bax and activation of Caspase-3/P17, P38, ERK, and JNK. Whereas Ki-67 positive cells were visualized using immunohisto- chemisty. SP600125 was used as the pretreatment for THC8307/L-OHP cells in order to detect the induction of apoptosis by anti-VEGFR2 immunoliposomal oxalipolatin.
     Results We found that VEGFR2 was highly expressed in THC8307/L-OHP cells, compared with HUVE cells. The anti-VEGFR2 immunoliposomes were proactively combined with cells than non-immunoliposomes (P<0.05). THC8307/L-OHP cells were treated with free oxaliplatin (50μg/ml), PEG-liposomal oxaliplatin (containing oxaliplatin 50μg/ml), or anti-VEGFR2 immunoliposomal oxaliplatin (containing oxaliplatin 50μg/ml) for 12 h and the apoptosis rate was (10.02±0.69)%, (15.29±1.70)% and (55.89±8.90)%, respectively. There was statistical significance, compared with each group (P <0.01, P <0.05). The results of apoptosis analyzed by TUNEL were similar to the results obtained through flow cytometry. The mean CFSE relative fluorescence intensity ratio was 1.83±0.21, 1.56±0.16, and 1.29±0.10, respectively. It was statistical significance (P <0.05). The mRNA and protein expression of Bcl-2 and Ki-67 were significantly down-regulated, however, Bax and Caspase-3/P17 were significantly up-regulated (P <0.01, P<0.05). In the MAPK signaling pathway, the mRNA and protein expression of P38 were not changed significantly (P >0.05) and expression of ERK was down-regulated, while apoptosis was enhanced and JNK was up-regulated (P <0.05). After SP600125 pre-treatment, THC8307/L-OHP cells, apoptosis induced by anti-VEGFR2 immunoliposmal oxaliplatin was not inhibited by SP600125. Additionally, the mRNA and protein expression of Bcl-2 were down-regulated significantly (P <0.01), whereas Bax and Caspase-3/P17 were up-regulated (P <0.01).
     Conclusion The anti-VEGFR2 immunoliposomes were fortified combined with THC8307/L-OHP cells, and anti-VEGFR2 immunoliposomal oxaliplatin significantly induced apoptosis. These findings indicated that the ERK and JNK signaling pathways may be involved in apoptotic regulation.
     PART THREE ANTI-VEGFR2 IMMUNOLIPOSOMAL OXALIPLATIN TARGETING IN A NUDE MOUSE TUMOR-XENOGRAFT MODEL OF COLORECTAL CARCINOMA
     Objective We investigated the antitumor efficiency of anti-VEGFR2 immunoliposomal oxaliplatin potentialization in a nude mouse tumor-xenograft model of colorectal carcinoma.
     Methods In a tumor-bearing nude mouse model, we observed intravenous tail vein injections of (Dio)-labeled anti-VEGFR2 immunolipsomes using fluorescence imaging and in-vivo imaging systems. Mice were treated with free oxaliplatin (5μg/g), PEG-liposomal oxaliplatin (containing oxaliplatin 5μg/g), and anti-VEGFR2 immunoliposomal oxaliplatin (containing oxaliplatin 5μg/g) via the tail vein intravenous injections, followed by analysis of the accumulation of oxaliplatin in tumor tissues by HPLC, observation of the tumor volume, and the survival rate. Cell apoptosis and the proliferation of tumors was detected by the TUNEL assay, immunohistochemistry, and Western blot.
     Results The Dio-labeling anti-VEGFR2 immunoliposomal aggregation was greater than that of the non-immunoliposomal aggregation in the tumor tissues as visualized by the in-vivo imaging system: the majority of anti-VEGFR2 liposomes were found in the tumor cells and the surrounding capillary vessels in the tumor. The tumor volume suppression rate was determined to be (39.55±9.38)%, (50.34±8.86)%, and (61.20±9.77)%, respectively. There was statistical significance, compared with each group (P <0.01, P <0.05). Longer survival was observed in the nude mice that were treated with anti-VEGFR2 immunoliposomal oxaliplatin. After intravenous injection of free oxaliplatin, tumor tissue accumulation of oxaliplatin quickly decreased at 2 h. Upon administration of PEG-liposomal oxaliplatin and anti-VEGFR2 immunoliposomal oxaliplatin, the maximum value was detected at 24 h. Moreover, treatment with anti-VEGFR2 immunoliposomal oxaliplatin led to greater values than that treatment with PEG-liposomal oxaliplatin, with values maintaining a high level 72 h. The apoptotic index in tumor tissue was higher compared to the other groups (P <0.001, P <0.01 vs. P <0.05, respectively), but the proliferation index predominance was reduced (P <0.001, P <0.01vs. P <0.05, respectively). Additionally, protein expression of Bcl-2 was down-regulated, whereas Bax and P17 expression was up-regulated (P <0.01, P <0.05).
     Conclusion In this study, we demonstrated that anti-VEGFR2 immunoliposomes exhibit a strong aggregation ability. Moreover, treatment with anti-VEGFR2 immunoliposomal oxaliplatin is able to suppress growth of tumor tissue, contribute to tumor cellular apoptosis, and suppress tumor cell proliferation in a nude mouse tumor-xenograft model of colorectal carcinoma.
     PART FOUR ANTI-VEGFR2 IMMUNOLIPOSOMAL OXALIPLATIN INFLUENCES MULTIDRUG RESISTANCE OF HUMAN COLORECTAL CARCINOMA THC8307/L-OHP CELLS
     Objective We next analysed the effect of anti-VEGFR2 immunoliposomal oxaliplatin on the multidrug resistance of human colcrectal carcinoma THC8307/L-OHP cells.
     Methods A significant level of drug resistance reversal was observed in THC8307/L-OHP cells treated with anti-VEGFR2 immunoliposomal oxaliplatin as analyzed by MTT. Immunohistochemistry, RT-PCR, Western blot were performed to determine the expression of P-gp/MDR1, and ABCG2 when THC8307/L-OHP cells were treated with free oxaliplatin, various doses of Anti-VEGFR2 immunoliposomal oxaliplatin at 12 h, or one dose of Anti-VEGFR2 immunoliposomal oxaliplatin at distinct time points. The protein expression of ABCG2, P-gp/MDR1, GST3, Bcl-2, and Caspase-3/P17 were obtained by Western blot after THC8307/L-OHP cells were treated with either free oxaliplatin or various doses of anti-VEGFR2 immunoliposomal oxaliplatin for 48 h. P-gp/MDR1 and ABCG2 positive cells were analyzed by immunohistochemistry.
     Results A 1.21-fold reversal of drug resistance was observed. After THC8307/L-OHP cells were treated with free oxaliplatin (25μg/ml) and anti-VEGFR2 immunoliposomal oxaliplatin (containing oxaliplatin 25μg/ml vs. 50μg/ml) at 12 h, the observed mRNA expression of P-gp/MDR1 and ABCG2 was 2.22±0.33 and 2.67±0.40 vs. 3.26±0.47; and 2.85±0.43 and 7.74±1.16 vs. 8.68±1.30, respectively. Group comparison, P<0.05 vs. P<0.01. Furthermore, the protein expression of P-gp/MDR1 and ABCG2 was 5.68±0.85 and 10.04±1.51 vs. 17.62±2.64 (P <0.01); and 2.06±0.31 and 3.74±0.56 vs. 4.56±0.68 (P <0.05 vs. P <0.01), respectively. THC8307/L-OHP cells treated with anti-VEGFR2 immunoliposomal oxaliplatin (containing oxaliplatin 25μg/ml) at 12 h, 24 h, 48 h, and 72 h exhibited P-gp/MDR1 protein expression levels of 8.57±1.28, 16.36±2.45, 3.42±0.51, and 0.75±0.11, respectively. There was statistical significance, compared with each group (P <0.01, P <0.05). Protein expression levels of ABCG2 were found to be 1.27±0.19, 2.13±0.32, 1.63±0.24, and 0.55±0.08 (P <0.05), respectively. The P-gp/MDR1 and ABCG2 mRNA expression of resistance genes was significantly increased at 24 h, followed by a significant reduction in expression at 72 h (P <0.01 and P <0.05, compared with the control group). After treatment with free oxaliplatin (25μg/ml) at 48 h, the protein expression levels of P-gp/MDR1, ABCG2, GST3, Bcl-2, and Caspase-3/P17 were not changed significantly (P >0.05, vs. control). After treatment with anti-VEGFR2 immunoliposomal oxaliplatin (containing oxaliplatin 25μg/ml vs. 50μg/ml), the protein expression levels of P-gp/MDR1, ABCG2, GST3, and Bcl-2 were reduced, whereas Caspase-3/P17 was up-regulated. Compared with each group, P <0.01 vs. P <0.05. There were positive cells of P-gp/MDR1 and ABCG2 in tumor tissue. Nevertheless, the protein expression was to weaken following administration agent augmentation.
     Conclusion We found that the anti-VEGFR2 immunoliposomal oxaliplatin reversed multidrug resistance of human colorectal carcinoma THC8307/L-OHP cells, this may be attributed to the down-regulation of P-gp/MDR1, ABCG2, and GST3. Moreover, anti-apoptotic proteins Bcl-2 and Caspase-3 may be involved in the anti-VEGFR2 immunoliposomal oxaliplatin regulation leading to the multidrug resistance of THC8307/L-OHP cells.
引文
[1] Suh SH, Kwon HC, Jo JH, et al. Oxaliplatin with biweekly low dose leucovorin and bolus and continuous infusion of 5-fluorouracil (Modified FOLFOX4) as a salvage thrapy for patients with advanced gastric cancer[J]. Cancer Res Treat, 2005, 37(5): 279-283.
    [2] Pasetto LM, D’Andrea MR, Rossi E, et al. Oxaliplatin-related neurotoxicity:how and why[J]? Crit Rev Oncol Hematol, 2006, 59(2): 159-168.
    [3] Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice[J]. Br J Cancer, 2008, 99(3): 392-397.
    [4] Hussain S, Pluckthun A, Allen TM, et al. Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system[J]. Mol Cancer Ther, 2007, 6(11): 3019-3027.
    [5] Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential[J]. Int J Nanomedicine, 2006, 1(3): 297-315.
    [6] Hillerdal G, Sorensen JB, Sundstr?m S, et al. Treatment of malignant pleural mesothelioma with carboplatin, liposomized doxorubicin, and gemcitabine: a phase II study[J]. J Thorac Oncol, 2008, 3(11): 1325-1331.
    [7]陈姝,娄世锋,张颖,等. GM-CSF偶联米托蒽醌脂质体的制备及体外抑瘤作用的实验研究[J].第三军医大学学报, 2007, 29(10): 925-928.
    [8]周力,吴肖群.脂质体及其应用[M].现代化工, 1997, 9: 18-20.
    [9]现代药物新新剂型和新技术[M].北京.人民军医出版社, 2002: 197-228.
    [10] Yaroslavov AA, Sybachin AV, Kesselman E, et al. Liposome Fusion Rates Depend upon the Conformation of Polycation Catalysts[J]. J Am Chem Soc, 2011, 133(9): 2881-2883.
    [11] Lasic DD. Novel applications of liposomes[J]. Trends in Biotechnology, 1998, 16(7): 307-321.
    [12] Torchilin VP. Affinity liposomes in vivo: factors influencing target accumulation[J]. J Mol Recognit, 1996, 9(5-6): 335-346.
    [13] Hong M, Zhu S, Jiang Y, et al. Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin[J]. J Control Release, 2009, 133(2): 96-102.
    [14] Suzuki S, Lnoue K, Hongoh A, et al. Modulation of doxombicin resistance in a doxorubicm-resistant human leukaemia cell by all immunoliposome targeting transferring receptor[J]. BrJ Cancer, 1997, 7(1): 83-89.
    [15] Ikumi S, Yasuyuki S. Characterization of Novel Mixed Polyethyleneglycol Modified Liposomes[J]. Biol. Pharm. Bull, 2007, 30(1): 208-211.
    [16] Sadzuka Y, Nakade A, Tsuruda T, et al. Study on the characterization of mixed polyethyleneglycol modified liposomes containing doxorubicin[J]. J Control Release, 2003 Sep 4, 91(3): 271-280.
    [17] Sadzuka Y, Sugiyama I, Tsuruda T, et al. Characterization and cytotoxicity of mixed polyethyleneglycol modified liposomes containing doxorubicin[J]. Int J Pharm, 2006, 312(1-2): 83-89.
    [18] Otterson GA, Villalona-Calero MA, Hicks W, et al. Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non-small cell lung cancer[J].Clin Cancer Res, 2010, 16(8): 2466-2473.
    [19]阮新建,季锡清,刘畅,等.紫杉醇脂质体联合顺铂治疗晚期非小细胞肺癌的临床观察[J].实用癌症杂志, 2010, 25(3): 292-294.
    [20] Gordon AN, Fleagle JT, Guthrie D, et al. Recurrent epithelial ovarian carcinoma:a randomized phase III study of pegylated liposomal doxorubicin versus topotecan[J]. J Clin Oncol, 2001, 19(14): 3312-3322.
    [21] Masa-Aki S, Jayakrishna A, Eiko S, et al. Endogenous soluble VEGF Receptor-2 isoform suppresses lymph node metastasis in a mouse immunocompetent mammary cancer model[J]. BMC Medicine 2010, 8:69. doi:10.1186/1741-7015-8-69.
    [22]伍星,王志刚,唐毅,等.携VEGFR2单抗靶向微泡评价小鼠肿瘤新生血管[J].中国医学影像技术, 2009, 25(6): 932-934.
    [23] Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis[J]. J Biochem Mol Biol, 2006, 39(5): 469-478.
    [24]杨军,陈明清,董坚. VEGF/VEGFR2信号转导通路在抗肿瘤血管生成中的作用[J].世界华人消化杂志, 2007, 15(34): 3611-3616.
    [25] Abu-Lila T, Suzuki Y, Doi T, et al. Oxaliplatin targeting to angiogenic vessels by PEGylated cationic liposomes suppresses the angiogenesis in a dorsal air sac mouse model[J]. J Control Release, 2009,134(1): 18-25.
    [26]张奇,邓英杰.冻融法制备52氟尿嘧啶脂质体及其稳定性考察[J].沈阳医科大学学报, 2000, 17(2): 87-89.
    [27] Orciani M, Cavaletti G, Fino V, et al. Exploiting CD38-mediated endocytosis for immunoliposome internalization[J]. Anti-Cancer Drugs, 2008, 19(6): 599-605.
    [28]赵利刚,杨清敏,杨光丽,等.酒石酸长春瑞滨长循环脂质体的包封率测定及药效研究[J].中国药科大学学报, 2010, 41(6):508-512.
    [29] Yuan F, Dellian M, Fukumura D: Vascular perme-ability in a human tumor xenograft:molecular size dependence and cutoff size[J].Cancer Res 1995, 55(17): 3752-3756.
    [30]周平红,姚礼庆,秦新裕,等.磁性阿霉素纳米脂质体的研制及其磁靶向定位研究[J].中华实验外科杂志, 2004, 21(4): 492.
    [31] Carvalho Júnior AD, Vieira FP, et al. Preparation and cytotoxicity of cisplatin-containing liposomes[J]. Brazilian Journal of Medical and Biological Research, 2007, 40(8): 1149-1157.
    [32] Allen C, Dos Santos N, Gallagher R, et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol)[J]. Biosci Rep, 2002, 22( 2): 225-250.
    [33] Desai SK, Naik SR: Preparation, relative toxicity, chemotherapeutic activity, and pharmacokinetics of liposomal SJA-95: a new polyene macrolide antibiotic[J]. J Liposome Res 2008, 18(4 ): 279-292.
    [34] Allen TM, Hansen C, Martin F, et al. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo[J].Biochim Biophys Acta, 1991, 1066(1): 29-36.
    [35] RichéEL, Erickson BW, Cho MJ. Novel long-circulating liposomes containing peptide library-lipid conjugates: synthesis and in vivo behavior[J]. J Drug Target, 2004, 12(6): 355-361.
    [36] Tagami T, Ernsting MJ, Li SD. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin[J]. J Control Release, 2011 Feb 19. [Epub ahead of print]
    [37] Lowery A, Onishko H, Hallahan DE, et al. Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors[J]. J Control Release, 2011,150(1):117-124.
    [38]顾吉晋,邓英杰,董晓东.二次乳化-冻融法制备5-氟尿嘧啶脂质体及其包封率的测定[J].中国药剂学杂志, 2009, 7(2): 44-51.
    [39]刘小平,耿丹青,徐海星,等.奥沙利铂脂质体的制备工艺研究[J].武汉理工大学学报. 2008, 30(9): 50-53.
    [40] Xu S, Liu Y, Tai HC, et al. Synthesis of transferrin (Tf) conjugated liposomes via Staudinger ligation[J]. Int J Pharm, 2011, 404(1-2): 205-210.
    [41] Lu RM, Chang YL, Chen MS, et al. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery[J]. Biomaterials, 2011, 32(12): 3265-3274.
    [42] Gao J, Liu W, Xia Y, et al. The promotion of siRNA delivery to breast cancer overexpressing epidermal growth factor receptor through anti-EGFR antibody conjugation by immunoliposomes[J]. Biomaterials, 2011, 32(13): 3459-3470.
    [43] Manjappa AS, Chaudhari KR, Venkataraju MP, et al. Antibody derivatization and conjugation strategies: Application in preparation of stealth immunoliposome to target chemotherapeutics to tumor[J]. J Control Release, 2011, 150(1): 2-22.
    [44] Elia G. Biotinylation reagents for the study of cell surface proteins[J]. Proteomics, 2008, 8(19): 4012-4024.
    [45] Rezler EM, Khan DR, Tu R, et al. Peptide-mediated targeting of liposomes to tumor cells[J]. Methods Mol Biol, 2007, 386: 269-298.
    [46] Zhao H, Li GL, Wang RZ, et al. A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes[J]. J Int Med Res, 2010, 38(3): 957-966.
    [47] Ansell SM, Harasym TO, Tardi PG, et al. Antibody conjugation methods for active targeting of liposomes[J]. Methods Mol Med, 2000, 25:51-68.
    [48] Kobatake E, Yamano R, Mie M. Targeted delivery using immunoliposomes with a lipid-modified antibody-binding protein[J]. Appl Biochem Biotechnol, 2011,163(2): 296-303.
    [49] Lee YJ, Karl DL, Maduekwe UN, et al. Differential effects of VEGFR-1 and VEGFR-2 inhibition on tumor metastases based on host organ environment[J]. Cancer Res, 2010, 70(21): 8357-8367.
    [50] Ramachandra S, D'Souza SS, Gururaj AE, et al. Paracrine action of sFLT-1 secreted by stably-transfected Ehrlich ascites tumor cells and therapy using sFLT-1 inhibits ascites tumor growth in vivo[J]. J Gene Med, 2009, 11(5): 422-434.
    [51] Gupta SC, Kim JH, Prasad S, et al. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals[J]. Cancer Metastasis Rev, 2010, 29(3): 405-434.
    [52] Garofalo A, Goossens L, Six P, et al. Impact of aryloxy-linked quinazolines: A novel series of selective VEGFR-2 receptor tyrosine kinase inhibitors[J]. Bioorg Med Chem Lett, 2011 Feb 3. [Epub ahead of print].
    [53] Bertin S, Mohsen-Kanson T, BaquéP, et al. Tumor microenvironment modifications induced by soluble VEGF receptor expression in a rat liver metastasis model[J]. Cancer Lett, 2010, 298(2): 264-272.
    [54] Malecki M, Trembacz H, Szaniawska B, et al. Vascular endothelial growth factor and soluble FLT-1 receptor interactions and biological implications[J]. Oncol Rep, 2005,14(6): 1565-1569.
    [55] Oliveira SC, Machado KK, Sabbaga J, et al. Integration of anti-vascular endothelial growth factor therapies with cytotoxic chemotherapy in the treatment of colorectal cancer[J]. Cancer J, 2010,16(3): 220-225.
    [1] Maruyama K, Takizawa T, Yuda T, et al. Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies[J]. Biochim Biophys Acta, 1995, 1234(1): 74-80.
    [2] Maruyama K. PEG-immunoliposome[J]. Biosci Rep, 2002, 22(2): 251-266.
    [3] Maruyama K, Kennel SJ, Huang L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes[J]. Proc Natl Acad Sci U S A, 1990, 87(15): 5744-5748.
    [4] Gao J, Liu W, Xia Y, et al. The promotion of siRNA delivery to breast cancer overexpressing epidermal growth factor receptor through anti-EGFR antibody conjugation by immunoliposomes[J]. Biomaterials, 2011, 32(13): 3459-3470.
    [5] Iyer AK, Su Y, Feng J, et al. The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma[J]. Biomaterials. 2011, 32(10): 2605-2613.
    [6] Park JW, Kirpotin DB, Hong K, et al. Tumor targeting using anti-her2 immunoliposomes[J]. J Control Release, 2001, 74(1-3): 95-113.
    [7] Rodríguez-Antona C, Pallares J, Montero-Conde C, et al. Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis[J]. Endocr Relat Cancer, 2010,17(1): 7-16.
    [8]李琳琳,刘云鹏,侯柯佐,等. VEGFR2和c-Cbl在胃癌组织中的表达及其临床意义[J].临床肿瘤学杂志,2009,14(12): 1087-1091.
    [9] Ryden L, Linderholm B, Niesen NH, et al. Tumor specific VEGF A and VEGFR2 /KDR p rotein are co2exp ressed in breast cancer[J]. Breast Cancer Res Treat, 2003, 82 (3): 147-154.
    [10] Oliveira SC, Machado KK, Sabbaga J, et al. Integration of anti-vascular endothelial growth factor therapies with cytotoxic chemotherapy in the treatment of colorectalcancer[J]. Cancer J, 2010,16(3): 220-225.
    [11] Tille JC, Wang X, Lip son KE, et al. Vascular endothelial growth factor (VEGF ) recep tor-2 signaling mediates VEGF-C(DeltaNDeltaC) and VEGF-A-induced angiogenesis in vitro[J]. Experimental Cell Research, 2003, 285(2): 286-298.
    [12] Rezler EM, Khan DR, Tu R, et al. Peptide-mediated targeting of liposomes to tumor cells[J]. Methods Mol Biol, 2007, 386():269-298.
    [13] Zhao H, Li GL, Wang RZ, et al. A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes[J]. J Int Med Res, 2010, 38(3): 957-966.
    [14] Yuan Z, Chen D, Zhang S, et al. Preparation, characterization and evaluation of docetaxel-loaded, folate-conjugated PEG-liposomes[J]. Yakugaku Zasshi, 2010, 130(10): 1353-1359.
    [15] Abu-Lila T, Suzuki Y, Doi T, et al. Oxaliplatin targeting to angiogenic vessels by PEGylated cationic liposomes suppresses the angiogenesis in a dorsal air sac mouse model[J]. J Control Release, 2009,134(1): 18-25.
    [16] Dolai S, Pal S, Yadav RK, et al. Endoplasmic reticulum stress-induced apoptosis in Leishmania through CA2+-dependent and caspase-independent mechanism[J]. J Biol Chem, 2011 Feb 17, [Epub ahead of print]. doi: 10.1074/jbc.M110.201889.
    [17] Schultz DR, Harrington WJ Jr. Apoptosis: programmed cell death at a molecular level[J]. Semin Arthritis Rheum, 2003, 32(6): 345-69.
    [18] Antonsson B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways[J]. Mol Cell Biochem. 2004,256-257(1-2): 141-155.
    [19] Kuwana T, Newmeyer DD. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol, 2003, 15(6): 691-699.
    [20] Festjens N, van Gurp M, van Loo G, et al. Bcl-2 family members as sentinels of cellular integrity and role of mitochondrial intermembrane space proteins in apoptotic cell death[J]. Acta Haematol, 2004,111(1-2): 7-27.
    [21] Li X, Zhang Q, Cai L, et al. Inhibitor of growth 4 induces apoptosis in human lung adenocarcinoma cell line A549 via Bcl-2 family proteins and mitochondriaapoptosis pathway[J]. J Cancer Res Clin Oncol, 2009, 135(6): 829-835.
    [22]张玮莹,彭建新.凋亡体与细胞凋亡[J].生物医学杂志, 2010, 27(3): 75-78.
    [23] Chrisoulad D, Scopa MD, Athanassios C, et al. Potential Role of bcl-2 and Ki-67 Expression and Apoptosis in Colorectal Carcinoma: A Clinicopathologic Study[J]. Digestive Diseases and Sciences, 2003,48(10): 1990-1997.
    [24] Soderstrom M, Palokangas T, Vahlberg T, et al. Expression of ezrin, Bcl-2, and Ki-67 in chondrosarcomas[J]. APMIS 2010, 118: 769-76.
    [25]张谢夫,刘涛,赵春临,等.胃肠道间质瘤组织中Ki267,细胞周期素D1和细胞间黏附分子21的表达[J].郑州大学学报(医学版), 2008, 43(3): 549-551.
    [26]侯滨,单吉贤,辛彦,等. Ki-67抗原表达与大肠癌转移及预后的关系[J].中国医科大学学报, 2000; 29(1):29-30.
    [27] Ji P, Diederichs S, Wang W,et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in earlystage non-small cell lung cancer[J]. Oncogene, 2003, 22(39): 8031-8041.
    [28] Ohsie SJ, Sarantopoulos GP, Cochran AJ, et al. Immunohistochemical characteristics of melanoma [J]. J Cutan Pathol, 2008, 35 (5) : 433-444.
    [29] Veikkola T, Karkkainen M, Claesson-Welsh L, et al. Regulation of angiogenesis via vascular endothelial growth factor receptors[J]. Cancer Res, 2000, 60 (2): 203-212.
    [30] Wang D, Weng Q, Zhang L, et al. VEGF and Bcl-2 interact via MAPKs signaling pathway in the response to hypoxia in neuroblastoma[J]. Cell Mol Neurobiol, 2009, 29(3): 391-401.
    [31] Umbrasaite J, Schweighofer A, Kazanaviciute V, et al. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis[J]. PLoS One, 2010, 5(12): e15357.
    [32] Kang KA, Wang ZH, Zhang R, et al. Myricetin Protects Cells against Oxidative Stress-Induced Apoptosis via Regulation of PI3K/Akt and MAPK Signaling Pathways[J]. Int J Mol Sci, 2010,11(11): 4348-4360.
    [33] Arwert EN, Lal R, Quist S, et al. Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate[J]. Proc Natl Acad Sci U S A, 2010,107(46): 19903-19908.
    [34] Gehart H, Kumpf S, Ittner A, et al. MAPK signalling in cellular metabolism: stress or wellness?[J]. EMBO Rep, 2010,11(11): 834-840.
    [35] Ronkina N, Menon MB, Schwermann J, et al. MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochem Pharmacol, 2010, 80(12): 1915-1920.
    [36] Gaestel M. MAPKAP kinases - MKs - two's company, three's a crowd[J]. Nat Rev Mol Cell Biol, 2006, 7(2): 120-130.
    [37] Yu Y, Richardson DR. Cellular iron-depletion stimulates the JNK and p38 MAP signaling transduction pathways, dissociation of ASK1-thioredoxin and activation of ASK1[J]. J Biol Chem, 2011 Mar 5, [Epub ahead of print].
    [38] Bounoutas A, Kratz J, Emtage L, et al. Microtubule depolymerization in Caenorhabditis elegans touch receptor neurons reduces gene expression through a p38 MAPK pathway[J]. Proc Natl Acad Sci U S A, 2011, 108(10): 3982-3987.
    [39] Cassano A, BagalàC, Battelli C, et al. Expression of vascular endothelial growth factor, mitogen-activated protein kinase and p53 in human colorectal cancer[J]. Anticancer Res, 2002, 22(4): 2179-2184.
    [40] Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer[J]. Pharmacol Rev, 2008, 60(3): 261-310.
    [41] Gazel A, Nijhawan RI, Walsh R, et al. Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes[J]. J Cell Physiol, 2008, 215(2): 292-308.
    [42] Lee SK, Jang HJ, Lee HJ, et al. p38 and ERK MAP kinase mediates iron chelator-induced apoptosis and suppressed differentiation of immortalized and malignant human oral keratinocytes[J]. Life Sci, 2006, 79(15): 1419-1427.
    [43] Tenhunen O, Rys? J, Ilves M, et al. Identification of cell cycle regulatory and inflammatory genes as predominant targets of p38 mitogen-activated protein kinase in the heart[J]. Circ Res, 2006, 99(5): 485-493.
    [44]魏倩萍,邓华聪,赵劼. p38MAPK信号通路在大鼠肾小球系膜细胞表达VEGF中的作用[J].重庆医学, 2005, 34(1): 16-19.
    [45] van Houdt WJ, de Bruijn MT, Emmink BL, et al. Oncogenic K-ras activates p38 to maintain colorectal cancer cell proliferation during MEK inhibition[J]. Cell Oncol, 2010, 32(4): 245-257.
    [46] Zhang CL, Song F, Zhang J, et al. Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway[J]. Biochem Biophys Res Commun, 2010, 394(4): 976-980.
    [47] Haddad JJ. The role of Bax/Bcl-2 and pro-caspase peptides in hypoxia/reperfusion-dependent regulation of MAPK(ERK): discordant proteomic effect of MAPK(p38)[J]. Protein Pept Lett, 2007, 14(4): 361-371.
    [48] Wang X, Li M, Wang J, et al. The BH3-only protein, PUMA, is involved in oxaliplatin-induced apoptosis in colon cancer cells[J]. Biochem Pharmacol, 2006, 71(11): 1540-1550.
    [49] Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family[J]. J Biol Chem, 1998, 273(4): 2161-2168.
    [50] Kobayashi M, Takeyoshi I, Yoshinari D, et al. P38 mitogenactivated protein kinase inhibition attenuates ischemiareperfusion injury of the rat liver[J]. Surgery, 2002, 131(3): 344-349.
    [51] Kumar P, Miller AI, Polverini PJ. p38 MAPK mediates gamma-irradiation-induced endothelial cell apoptosis, and vascular endothelial growth factor protects endothelial cells through the phosphoinositide 3-kinase-Akt-Bcl-2 pathway[J]. J Biol Chem, 2004, 279(41): 43352-4360.
    [52] Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer?[J]. Cell Cycle, 2009, 8(8): 1168-1175.
    [53] Kim DI, Lee SJ, Lee SB, et al. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression[J]. Carcinogenesis, 2008, 29(9): 1701-179.
    [54] McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance[J]. Biochim Biophys Acta, 2007, 1773(8): 1263-1284.
    [55] Yuan Y, Hu HG, Ye XX, et al. K-ras gene mutation in colorectal cancer and its clinicopathologic significance[J]. Zhonghua Wai Ke Za Zhi, 2010, 48(16): 1247-1251.
    [56]沈永奇,叶韵斌,郑雄,等.结直肠癌不同病变阶段K-ras基因突变的研究[J].肿瘤, 2010, 30(2): 134-137.
    [57] Onozato W, Yamashita K, Yamashita K, et al. Genetic alterations of K-ras may reflect prognosis in stage III colon cancer patients below 60 years of age[J]. J Surg Oncol, 2011, 103(1): 25-33.
    [58] Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer[J]. Lancet Oncol, 2005, 6(5): 322-327.
    [59] Know les LM, Milner JA. Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells[J]. J Nutr, 2003, 133(9): 2901-2906.
    [60] Vial E, Marshall CJ. Elevated ERK- MAP kinase activity protects the FOS family member FRA-1 against proteasomal degradation in colon carcinoma cells[J]. J Cell Sci, 2003, 116(Pt 24): 4957- 4963.
    [61] Bos JL ,Fearon ER ,Hamilton SR ,et al . Prevalence of ras gene mutations in human colorectal cancers [J]. Nature, 1987, 327(6120): 293-297.
    [62] Zhang YH,Wei W, Xu H, et al. Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3 K signaling pat hways [J]. Chin Med J, 2007,120(9): 743-748.
    [63] Heasley LE, Han SY. JNK regulation of oneogenesis[J]. Mol Cells, 2006, 21(2): 167-173.
    [64] Uhlirova M, Jasper H, Bohmann D. Noncel1 autonomous induetion of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model[J]. Proc NatlAcad Sci USA, 2005, 102(37): l3l23-13128.
    [65] Natefi AS, Spencer-Dene B, Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development[J]. Nature, 2005, 437(7056): 281-285.
    [66] Winn RA, Marek L, Han SY, et a1. Restoration of wnt-7 a expression reverses nonsmall cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation[J]. J Biol Chem, 2005, 280(20): 19625-19634.
    [67] Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell, 2000, 103 (1): 239-252.
    [68] Chen YR, Tan TH. The c-Jun N-terminal kinase pathway and apoptotic signaling (review)[J]. Int J Oncol, 2000, 16(4): 651-662.
    [69] Hu Z, Tao YG, Tang FQ, et al. Effect of JIP on the proliferation and apoptosis of nasopharyngeal carcinoma cells throgh interaction with JNK mediated pathway[J]. Prog Biochem Biophys, 2003, 30 (4): 579-851.
    [70] Brandt B, Abou-Eladab EF, Tiedge M, et al. Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death[J]. Cell Death Dis, 2010, 1(2): e23.
    [71] Lam D, Shah S, de Castro IP, et al. Drosophila happyhour modulates JNK-dependent apoptosis[J]. Cell Death Dis, 2010, 19, 1(8): e66.
    [72]方芳,陈晓春,朱元贵,等. JNK的激活在MPP+诱导SHSY5Y细胞凋亡的信号转导中的作用[J].中国病理生理杂志, 2003, 19(2): 198-202.
    [73]张广森,刘定胜,夏梦,等.吲哚美辛诱导的HL260白血病细胞凋亡与JNK信号转导途径活化[J].湖南医科大学学报, 2003, 28(6): 557-562.
    [1] What is the role and impact of molecure markers on treatment descision for colcrectal cancer in the adjuvant setting?[J]. Discov Med, 2009, 8(42): 104-107.
    [2] Baek KK, Lee J, Park SH, et al. Oxaliplatin-induced chronic peripheral neurotoxicity: a prospective analysis in patients with colorectal cancer[J]. Cancer Res Treat, 2010, 42(4): 185-190.
    [3] Mori Y, Nishimura T, Kitano T, et al. Oxaliplatin-free interval as a risk factor for hypersensitivity reaction among colorectal cancer patients treated with FOLFOX[J]. Oncology, 2010, 79(1-2): 136-143.
    [4] Ippolito D, Bonaffini PA, Ratti L, et al. Hepatocellular carcinoma treated with transarterial chemoembolization: dynamic perfusion-CT in the assessment of residual tumor[J]. World J Gastroenterol, 2010,16(47): 5993-6000.
    [5] Rofstad EK, Mathiesen B. Metastasis in melanoma xenografts is associated with tumor microvascular density rather than extent of hypoxia[J]. Neoplasia, 2010, 12(11): 889-898.
    [6] Raica M, Mogoant? L, Kondylis A, et al. Angiogenesis in the human thymoma assessed by subclassification of tumor-associated blood vessels and endothelial cells proliferation[J]. Rom J Morphol Embryol, 2010, 51(4): 627-631.
    [7] Tai JH, Tessier J, Ryan AJ, et al. Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast-enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat[J]. Neoplasia, 2010, 12(9): 697-707.
    [8] Hashizume H, Falcón BL, Kuroda T, et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth[J]. Cancer Res, 2010, 70(6): 2213-2223.
    [9] Vidaurreta M, Sánchez-Mu?oz R, Veganzones S, et al. Vascular endothelial growth factor gene polymorphisms in patients with colorectal cancer[J]. Rev Esp Enferm Dig, 2010,102(1): 20-31.
    [10] Tol J, Punt CJ. Monoclonal antibodies in the treatment of metastatic colorectal cancer: a review[J]. Clin Ther, 2010, 32(3): 437-453.
    [11] Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort[J]. Lancet, 2010, 375(9712): 377-384.
    [12] Cacheux W, Tourneau CL, Baranger B, et al. Targeted biotherapy in metastatic colorectal carcinoma: Current practice[J]. J Visc Surg, 2011, 148(1): 12-18.
    [13] D' Alimonte I, Nargi E, Mastrangelo F, et al. Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells[J]. J Biol Regul Homeost Agents, 2011, 25(1): 57-69.
    [14] Mihci E, Ozkaynak SS, Sallakci N, et al. VEGF polymorphisms and serum VEGF levels in Parkinson's disease[J]. Neurosci Lett, 2011 Feb 18. [Epub ahead of print].
    [15] Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection[J]. Bioessays, 2004, 26(9): 943-954.
    [16] Xu JX, Zhang Y, Zhang XZ,et al. Anti-angiogenic effects of genistein on synovium in a rat model of type II collagen-induced arthritis[J]. Zhong Xi Yi Jie He Xue Bao, 2011, 9(2): 186-193.
    [17] Wood LS. Management of vascular endothelial growth factor and multikinase inhibitor side effects[J]. Clin J Oncol Nurs, 2009, 13 Suppl:13-18.
    [18] Roodhart JM, Langenberg MH, Witteveen E, et al. The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway[J]. Curr Clin Pharmacol, 2008, 3(2): 132-143.
    [19] Park MS, Ravi V, Araujo DM. Inhibiting the VEGF-VEGFR pathway in angiosarcoma, epithelioid hemangioendothelioma, and hemangiopericytoma/so- litary fibrous tumor[J]. Curr Opin Oncol, 2010, 22(4): 351-355.
    [20] Mac Gabhann F, Popel AS. Model of competitive binding of vascular endothelialgrowth factor and placental growth factor to VEGF receptors on endothelial cells[J]. Am J Physiol Heart Circ Physiol, 2004, 286(1): 153-164.
    [21] Horta BA, Sodero AC, de Alencastro RB. Investigating the differential activation of vascular endothelial growth factor (VEGF) receptors[J]. J Mol Graph Model, 2009, 28(3): 287-296.
    [22] Huang J, Zhang X, Tang Q, et al. Prognostic significance and potential therapeutic target of VEGFR2 in hepatocellular carcinoma[J]. J Clin Pathol, 2011 Jan 26, [Epub ahead of print].
    [23] Fens MH, Hill KJ, Issa J, et al. Liposomal encapsulation enhances the antitumour efficacy of the vascular disrupting agent ZD6126 in murine B16.F10 melanoma[J]. Br J Cancer, 2008, 99(8): 1256-1264.
    [24] Qi XR, Yan WW, Shi J. Hepatocytes targeting of cationic liposomes modified with soybean sterylglucoside and polyethylene glycol[J]. World J Gastroenterol, 2005, 11(32): 4947-4952.
    [25] Francis GE, Delgado C, Fisher D, et al. Polyethylene glycol modification: relevance of improved methodology to tumour targeting[J]. J Drug Target, 1996, 3(5): 321-340.
    [26] Nagykálnai T. Non-pegylated doxorubicin (Myocet?) as the less cardiotoxic alternative of free doxorubicin[J]. Magy Onkol, 2010, 54(4): 359-367.
    [27] Del Barco S, Colomer R, Calvo L, et al. Non-pegylated liposomal doxorubicin combined with gemcitabine as first-line treatment for metastatic or locally advanced breast cancer. Final results of a phase I/II trial[J]. Breast Cancer Res Treat, 2009, 116(2): 351-358.
    [28] Wu F, Chen SC, Lu ZH, et al. Comparison of the therapeutic effects of paclitaxel liposome-5-Fu versus paclitaxel-5-Fu on 67 patients with advanced gastric cancer[J]. Zhonghua Zhong Liu Za Zhi, 2010, 32(3): 234-236.
    [29] Doi Y, Okada T, Matsumoto H, et al. Combination therapy of metronomic S-1 dosing with oxaliplatin-containing polyethylene glycol-coated liposome improves antitumor activity in a murine colorectal tumor model[J]. Cancer Sci, 2010,101(11):2470-2475.
    [30] Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines[J]. J Drug Target, 2007, 15(7-8): 457-464.
    [31] Galaluce R, Miedema BM, Yesus YW. Micrometastasis in colorectal carcinoma: a review. J Surg Oncol, 1998, 67(3): 194-202.
    [32]张海梁,叶定伟.抗肿瘤血管靶向药物的研究进展[J].中国癌症杂志, 2009, 19, (6): 401-405.
    [33] Yuan F, Dellian M, Fukumura D: Vascular perme-ability in a human tumor xenograft:molecular size dependence and cutoff size[J].Cancer Res 1995, 55(17): 3752-3756.
    [34] Yuan A, Lin CY, Chou CH, et al. Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI[J]. PLoS One, 2011, 6(1): e16062.
    [35] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases[J]. Nature, 2000, 407(6801): 249-257.
    [36] Kale AA, Torchilin VP. "Smart" drug carriers: PEGylated TATp-modified pH-sensitive liposomes[J]. J Liposome Res, 2007, 17(3-4): 197-203.
    [37] Wang J, Sui M, Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics[J]. Curr Drug Metab, 2010, 11(2): 129-141.
    [38]吴燕,张福成,吴诚,等.盐酸表阿霉素长循环热敏脂质体大鼠药代动力学考察[J].药学学报, 2010, 45 (3): 365-370.
    [39] Abu Lila AS, Kizuki S, Doi Y, et al. Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model[J]. J Control Release, 2009,137(1): 8-14.
    [40] Kitazumi I, Tsukahara M. Regulation of DNA fragmentation: the role of caspases and phosphorylation[J]. FEBS J, 2011, 278(3): 427-441.
    [41] Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalkbetween autophagy and apoptosis[J]. FEBS J, 2011, 278(3): 403-413.
    [42] Laz?r D, T?ban S, Sporea I, et al. Ki-67 expression in gastric cancer. Results from a prospective study with long-term follow-up[J]. Rom J Morphol Embryol, 2010, 51(4): 655-661.
    [43] Zhao X, Liu X, Guo W,et al. Expression of carbonic anhydrase IX in NSCLC and its relationship with VEGF and Ki67 expression[J]. Zhongguo Fei Ai Za Zhi, 2010, 13(9): 861-866.
    [44]郭宝文,李琪佳,杨琳,等.凋亡相关蛋白FLIP、FADD在结直肠癌中的表达及其与细胞凋亡、增殖的关系[J].第二军医大学学报, 2010, 31(8): 912-913.
    [45] Harrison LR, Micha D, Brandenburg M, et al. Hypoxic human cancer cells are sensitized to BH-3 mimetic-induced apoptosis via downregulation of the Bcl-2 protein Mcl-1[J]. J Clin Invest, 2011, doi: 10.1172/JCI43505, [Epub ahead of print].
    [46] Liu F, Hu X, Zimmerman M, et al. TNFαcooperates with IFN-γto repress Bcl-xL expression to sensitize metastatic colon carcinoma cells to TRAIL-mediated apoptosis[J]. PLoS One, 2011,6(1): e16241.
    [47] He W, Zhang MF, Ye J, et al. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules[J]. J Zhejiang Univ Sci B, 2010, 11(9): 654-660.
    [48]于庆生,余宏亮,潘晋,等.芪黄煎剂对缺血-再灌注大鼠肠黏膜上皮细胞Bcl-2、Bax及Caspase-3、9 mRNA表达的影响[J].中国中西医结合杂志, 2011, 31(2): 223-227.
    [49] Saito R, Bringas JR, McKnight TR, et al: Distribution of liposomesinto brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging[J]. Cancer Res, 2004, 64(7): 2572-2579.
    [50] Atobe K, Ishida T, Ishida E, et al: In vitro efficacy of a sterically stabilized immunoliposomes targeted to membrane type 1 matrix metalloproteinase (MT1-MMP)[J]. Biol Pharm Bull, 2007, 30(5): 972-978.
    [1] Ichihashi N, Kitajima Y. Chemotherapy induces or increases expression of multidrug resistance-associated protein in malignant melanoma cells[J]. Br J Dermatol, 2001, 144(4): 745-750.
    [2] Baguley BC. Multiple drug resistance mechanisms in cancer[J]. Mol Biotechnol, 2010 , 46(3): 308-316.
    [3] Dizdarevic S, Peters AM. Imaging of multidrug resistance in cancer[J]. Cancer Imaging, 2011, 11(1): 1-8.
    [4] Vanessa A, Elisabet A, Susana GR, et al. The role of MMP7 and its cross-talk with the FAS/FASL system during the acquisition of chemoresistance to Oxaliplatin[J]. PLoS ONE, 2009, 4(3): e4728.
    [5] Meng RD, Shelton CC, Li YM, et al.γ-secretase inhibitors abrogate Oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells regulating in enhanced chemosensitivity[J]. Cancer Res, 2009, 69(2): 573-582.
    [6]肖治宇,李祖勇,吴畏,等.结肠癌SW480细胞FAP-1表达与奥沙利铂化疗耐药关系的研究[J].岭南现代临床外科, 2009, 9(4): 270-272.
    [7] Rezler EM, Khan DR, Tu R, et al. Peptide-mediated targeting of liposomes to tumor cells[J]. Methods Mol Biol, 2007, 386:269-298.
    [8] Zhao H, Li GL, Wang RZ, et al. A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes[J]. J Int Med Res, 2010, 38(3): 957-966.
    [9]张炎,鲁功成,张润清,等.阿霉素纳米粒的制备及体外逆转人膀胱癌细胞多药耐药的实验研究[J].临床泌尿外科杂志, 2002, 17(3): 122-123.
    [10] Fracasso PM, Blum KA, Ma MK, et al. Phase I study of pegylated liposomal doxorubicin and the multidrug-resistance modulator, valspodar[J]. Br J Cancer, 2005, 93(1): 46-53.
    [11] Giuliani F, De Vita F, Colucci G, et al. Maintenance therapy in colon cancer[J].Cancer Treat Rev, 2010, 36 Suppl (3): 42-45.
    [12] Rousseau B, Chibaudel B, Bachet JB, et al. Stage II and stage III colon cancer: treatment advances and future directions[J]. Cancer J, 2010, 16(3): 202-209.
    [13] Kwon HC, Roh MS, Oh SY, et al. Prognostic value of expression of ERCC1, thymidylate synthase, and glutathione S-transferase P1 for 5-fluorouracil/ oxaliplatin chemotherapy in advanced gastric cancer[J]. Ann Oncol, 2007, 18 (3) : 504-509.
    [14] Sinicrope FA, Hart J, Brasitus TA, et al. Relationship of P-glycoprotein and carcinoembryonic antigen expression in human colon carcinoma to local invasion, DNA ploidy, and disease relapse[J]. Cancer, 1994, 74(11): 2908-2917.
    [15] Harmsen S, Meijerman I, Febus CL, et al. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line[J]. Cancer Chemother Pharmacol, 2010, Sep 66(4): 765-771.
    [16]向征,张才全,汤为学.人结肠癌耐药细胞系HT29/L-OHP的建立及其生物学特性[J].第三军医大学学报, 2008, 30(9): 840-843.
    [17] Hua Tang, Yuan-Jun Liu, Min Liu, et al.Establishment and gene analysis of an oxaliplatin-resistant colon cancer cell line THC8307/L-OHP[J]. Anti-Cancer Drugs 2007, 18(6): 633-639.
    [18] Pérez-Tomás R. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment[J]. Curr Med Chem, 2006, 13(16): 1859-1876.
    [19] Chen KG, Valencia JC, Gillet JP, et al. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma[J]. Pigment Cell Melanoma Res, 2009, 22(6): 740-749.
    [20] Liu FS. Mechanisms of chemotherapeutic drug resistance in cancer therapy―a quick review[J]. Taiwan J Obstet Gynecol, 2009, Sep 48(3): 239-244.
    [21] Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR1 (P-glycoprotein) : recent advances and clinical relevance[J]. Clin Pharmacol Ther, 2004, 75 (1) : 13-33.
    [22]韩杰,檀碧波,耿玮,等.消化道肿瘤组织中P-gp、凋亡抑制蛋白表达与体外化疗药敏性的关系及其意义[J].癌症, 2008, 27(11):1166-1171.
    [23] Chen T. Overcoming drug resistance by regulating nuclear receptors[J]. Adv Drug Deliv Rev, 2010, 62(13): 1257-1264.
    [24] Kota BP, Allen JD, Roufogalis BD. The Effect of Vitamin D3 and Ketoconazole Combination on VDR-mediated P-gp Expression and Function in Human Colon Adenocarcinoma Cells: Implications in Drug Disposition and Resistance[J]. Basic Clin Pharmacol Toxicol, 2011, doi: 10.1111/j.1742-7843.2011.00693.x. [Epub ahead of print].
    [25] Xu JH, Deng WL, Fan ZZ. Effects of changwelqing on nuclear translocation of Y-box binding protein-1 and expregslon of P-glycoprotein in human colon cancer cell line with drug-resistance induced by vincristine[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2010, 30(7): 743-747.
    [26] Ding Z, Yang L, Xie X, et al. Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells[J]. J Cancer Res Clin Oncol, 2010, 136(11): 1697-1707.
    [27] Limtrakul P, Chearwae W, Shukla S,et al. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin[J]. Mol Cell Biochem. 2007, 296(1-2): 85-95.
    [28] Shukla S, Wu CP, Ambudkar SV. Development of inhibitors of ATP-binding cassette drug transporters: present status and challenges[J]. Expert Opin Drug Metab Toxicol, 2008, 4(2): 205-223.
    [29] Xia Z, Zhu Z, Zhang L, et al. Specific reversal of MDR1/P-gp-dependent multidrug resistance by RNA interference in colon cancer cells[J]. Oncol Rep, 2008, 20(6): 1433-1439.
    [30]曾四元,梁美蓉,于晓红,等. P-gp、GST、Topo-Ⅱ在宫颈癌组织中的表达及意义[J].实用癌症杂志, 2008, 23(3): 256-259.
    [31] Zhang Y, Byun Y, Ren YR, et al. Identification of inhibitors of ABCG2 by a bioluminescence imaging-based high-throughput assay[J]. Cancer Res, 2009,69(14): 5867-5875.
    [32] Burger H, van Tol H, Brok M, et al. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps[J]. Cancer Biol Ther, 2005, 4(7): 747-752.
    [33] Lum BL, Gosland MP. MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors[J]. Hematol Oncol Clin North Am, 1995, 9(2): 319-336.
    [34] Stein U, Lage H, Jordan A, et al. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells. Int J Cancer, 2002, 97(6): 751-760.
    [35] Ning Wang, Lin Chen, Bo Wei, et al. Expression of ABCG2 in human gastric carcinoma[J]. Chinese-German Journal of Clinical Oncology, 2010, 9(3): 145-148.
    [36]袁庶强,周志伟,梁永钜,符立梧,等.三维培养药敏实验测定的结直肠癌化疗敏感性与多药耐药基因蛋白表达的关系[J].癌症, 2009, 28(9): 932-938.
    [37] Depeille P, Cuq P, Passagne I, et al. Combined effects of GSTP1 and MRP1 in melanoma drug resistance[J]. Br J Cancer, 2005, 93(2): 216-223.
    [38]夏国盛,王亚东,张文,等.结肠癌细胞中TS、TP、GST-π、Pgp、MRP1表达对奥沙利铂化疗敏感性的预测价值[J].现代消化及介入诊疗,2010, 15(3): 147-151.
    [39] Kim SH, Kwon HC, Oh SY, et al. Prognostic Value of ERCC1, Thymidylate Synthase, and Glutathione S-Transferase- for 5-FU/Oxaliplatin Chemotherapy in Advanced Colorectal Cancer[J]. Am J Clin Oncol, 2009, 32(1): 38-43.
    [40] Patel KJ, Tannock IF. The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors[J]. BMC Cancer, 2009, 9: 356-366.
    [41] Wu CP, Calcagno AM, Ambudkar SV. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies[J]. Curr Mol Pharmacol, 2008, 1(2): 93-105.
    [42] Lopes EC, ScolnikM,Alvarez E, et al. Modulator activity of PSC 833 andcyclosporin-A in vincristine and doxorubicin-selected multidrug resistantmurine leukemic cells[J]. Leuk Res, 2001, 25 (1): 85-93.
    [43]杜芹,杨锡贵.肿瘤耐药机制及其逆转措施的研究[J].实用癌症杂志, 2008, 23(4): 427-429.
    [44] Gao P, Zhou GY, ZhangQH, et al. Reversal MDR in breast carcinoma cells by transfection of ribozyme designed according the secondary structure of mdr1 mRNA[J]. Chin J Physiol, 2006, 49 (2): 96-103.
    [45] Kaszubiak A, Holm PS, Lage H. Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes[J]. Int J Oncol, 2007, 31(2): 419-430.
    [46] Chai S, To KK, Lin G. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines[J]. Chin Med, 2010, 25(5): 26-35.
    [47]万光升,孙珏,李琦.中医药逆转大肠癌耐药的实验研究进展[J].肿瘤防治研究, 2010, 37(8): 959-962.
    [48]李玉莹,马武开.中医药逆转白血病多药耐药细胞的研究进展[J].世界中西医结合杂志, 2010, 5(10): 906-907.
    [49] Krishna R, Mayer LD. The use of liposomal anticancer agents to determine the roles of drug pharmacodistribution and P-glycoprotein (PGP) blockade in overcoming multidrug resistance (MDR)[J]. Anticancer Res. 1999, 19(4B): 2885-2891.
    [50] Fracasso PM, Blum KA, Ma MK, et al. Phase I study of pegylated liposomal doxorubicin and the multidrug-resistance modulator, valspodar[J]. Br J Cancer, 2005, 93(1): 46-53.
    [51]孟胜男,王欣,王怀良.卡莫氟固脂纳米粒对人大肠癌细胞多药耐药的逆转的机制研究J].药物生物技术, 2008, 15(2): 120-123.
    [52] Kazuo M. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects[J]. Advanced Drug Delivery Reviews, 2010 Oct 27, [Epub ahead of print].
    [53] Ryo S, Tomoko T, YK, et al. Effective anti-tumor activity of oxaliplatinencapsulated in transferrin–PEG-liposome[J]. International Journal of Pharmaceutics, 2008, 346(1-2): 143-150.
    [54] Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example[J]. Handb Exp Pharmacol, 2010, (197): 3-53.
    [55] Huwyler J, Drewe J, Kr?henbuhl S. Tumor targeting using liposomal antineoplastic drugs[J]. Int J Nanomedicine, 2008, 3(1): 21-29.
    [56]杨闯,刘海忠,傅仲学.奥沙利铂长循环脂质体的制备及其对人结直肠癌SW480细胞活性影响[J].中华实验外科杂志, 2011, 28(1): 27-29.
    [57]杨闯,刘海忠,傅仲学.奥沙利铂长循环脂质体对人结直肠癌SW480细胞凋亡影响[J].第三军医大学学报, 2011, 33(4): 368-371.
    [58] Lee AS. GRP78 induction in cancer: therapeutic and prognosticim plications[J]. Cancer Res, 2007, 67(8): 3496-3499.
    [59] Daneshmand S, Quek ML, Lin E, et al. Glucose regulated protein GRP78 is up regulated in prostate cancer and correlates with recurrence and survival[J]. Human Pathol, 2007, 38(10): 1547-1552.
    [60]李啸峰,迟宝荣,马琳.大肠癌多药耐药研究进展[J].吉林大学学报(医学版), 2003, 29(5): 700-702.
    [61] Rumsby MG, Drew L, Warr JR. Protein kinases and multidrug resistance[J]. Cytotechnology, 1998, Sep 27(1-3): 203-224.
    [62] Harguindey S, Pedraz JL, García Ca?ero R, et al. Hydrogenion-dependent oncogenesis and parallel new avenues to cancer prevention and treatment using a H (+) -mediated unifying approach: pH-related and pH-unrelated mechanisms[J]. Crit Rev Oncog, 1995, 6(1): 1-33.
    [63] Lu Y, Pang T, Wang J, et al. Down-regulation of P-glycoprotein expression by sustained intracellular acidification in K562/Dox cells[J]. Biochem Biophys Res Commun, 2008, 377(2): 441-446.
    [64] Ziegler K, Kolac C, Ising W. ATP-dependent transport of the linear renin-inhibiting peptide EMD 51921 by canalicular plasma membrane vesicles of rat liver: evidence of drug-stimulatable ATP-hydrolysis[J]. Biochim Biophys Acta, 1994, 1196(2):209-217.
    [65]叶果,柯爱武,李羲. MRK-16修饰阿霉素免疫脂质体逆转肺癌细胞多药耐药研究[J].现代肿瘤医学, 2007, 15(6):754-757.
    [66] Dong J, Zhao YP, Zhou L, et al. Bcl-2 Upregulation Induced by miR-21 Via a Direct Interaction Is Associated with Apoptosis and Chemoresistance in MIA PaCa-2 Pancreatic Cancer Cells[J]. Arch Med Res, 2011, 42(1): 8-14.
    [67] Kikuchi T, Akazawa H, Tabata K, et al. 3-O-(E)-p-Coumaroyl Tormentic Acid from Eriobotrya japonica Leaves Induces Caspase-Dependent Apoptotic Cell Death in Human Leukemia Cell Line[J]. Chem Pharm Bull (Tokyo), 2011, 59(3): 378-381.
    [68] Cheng JP, Betin VM, Weir H, et al. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis[J]. Cell Death Dis, 2010, 1(10): e82.
    [69] Liu XD, Sun H, Liu GT. 5-Bromotetrandrine enhances the sensitivity of doxorubicin-induced apoptosis in intrinsic resistant human hepatic cancer Bel7402 cells[J]. Cancer Lett, 2010, 292(1): 24-31.
    [70] FantappièO, Solazzo M, Lasagna N, et al. P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines[J]. Cancer Res, 2007, 67(10): 4915-4923.
    [71]黄艳,金淑静,柳红,等. P-gp和bcl-2在大肠癌中的表达及相关性的研究[J].广州医药[J]. 2004, 35(2): 6-9.
    [72]赵新汉,马欣,李琳琳,等. Caspase-3和Bcl-2在白血病细胞株凋亡过程中的表达及其与多药耐药的关系[J].西安交通大学学报(医学版), 2005, 26(6):2851-2855.
    [73] Fernandes J, Weinlich R, Castilho RO, et al. Pomolic acid may overcome multidrug resistance mediated by overexpression of anti-apoptotic Bcl-2 proteins[J]. Cancer Lett, 2007, 245(1-2): 315-320.
    [74] Miao ZH, Tang T, Zhang YX, et al. Cytotoxicity, apoptosis induction and downregulation of MDR-1 expression by the anti-topoisomerase II agent, salvicine, in multidrug-resistant tumor cells[J]. Int J Cancer, 2003, 106(1): 108-115.
    [1] Kosmider S, Lipton L. Adjuvant therapies for colorectal cancer[J]. World J Gastroenterol, 2007,13(28): 3799-3805.
    [2] Chau I, Cunningham D. Chemotherapy in colorectal cancer: new options and new challenges[J]. Br Med Bull, 2002, 64:159-180.
    [3] Baumgaertner I, Ratziu V, Vaillant JC, et al. Hepatotoxicity of metastatic colorectal cancer chemotherapy: systematic review[J]. Bull Cancer, 2010, 97(5): 559-569.
    [4] Olszewski U, Hamilton G. A better platinum-based anticancer drug yet to come?[J]. Anticancer Agents Med Chem, 2010, 10(4): 293-301.
    [5] Ochenduszko SL, Krzemieniecki K. Targeted therapy in advanced colorectal cancer: more data, more questions[J]. Anticancer Drugs, 2010,21(8): 737-748.
    [6] Bangham AD. Liposomes: the Babraham connection[J]. Chem Phys Lipids, 1993, 64(1-3): 275-285.
    [7] Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases[J]. Biochem J, 1971, 124(5): 58P.
    [8] Schroeter A, Engelbrecht T, Neubert RH, et al. New nanosized technologies for dermal and transdermal drug delivery. A review[J]. J Biomed Nanotechnol, 2010, 6(5): 511-528.
    [9] Layek B, Mukherjee B. Tamoxifen Citrate Encapsulated Sustained Release Liposomes: Preparation and Evaluation of Physicochemical Properties[J]. SciPharm, 2010, 78(3): 507-515.
    [10] Buse J, El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances[J]. Nanomedicine (Lond), 2010, 5(8): 1237-1260.
    [11] Teissier E, Zandomeneghi G, Loquet A, et al. Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol[J]. PLoS One, 2011, 6(1): e15874.
    [12] TLayek B, Mukherjee B. amoxifen Citrate Encapsulated Sustained Release Liposomes: Preparation and Evaluation of Physicochemical Properties[J]. Sci Pharm, 2010, 78(3): 507-515.
    [13] Tu Y, Kim JS. Selective gene transfer to hepatocellular carcinoma using homing peptide-grafted cationic liposomes[J]. J Microbiol Biotechnol, 2010, 20(4): 821-827.
    [14] Funamoto K, Ichihara H, Matsushita T, et al. Marked therapeutic effects of hybrid liposomes on the hepatic metastasis of colon carcinoma[J].Yakugaku Zasshi, 2009, 129(4): 465-473.
    [15] Yuan ZP, Chen LJ, Fan LY, et al. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models[J]. Clin Cancer Res, 2006, 12(10): 3193-3199.
    [16] He Y, Zhang L, Song C. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes[J]. Int J Nanomedicine, 2010, 5:697-705.
    [17] Elbayoumi TA, Torchilin VP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice[J]. Mol Pharm, 2009, 6(1): 246-254.
    [18]杨彤.新型脂质体的研究进展[J].医药导报, 2009, 28(3): 336-338.
    [19] Pohlen U, Buhr HJ, Berger G. Improvement of biodistribution with PEGylated liposomes containing docetaxel with degradable starch microspheres for hepatic arterial infusion in the treatment of liver metastases: a study in CC-531 liver tumor-bearing WAG RIJ rats[J]. Anticancer Res, 2011, 31(1): 153-159.
    [20] Li X, Ding L, Xu Y, et al. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin[J]. Int J Pharm, 2009, 373(1-2): 116-123.
    [21] Elbayoumi TA, Torchilin VP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice[J]. Mol Pharm, 2009, 6(1): 246-254.
    [22] Moghimi M, Moghimi SM. Lymphatic targeting of immuno-PEG-liposomes: evaluation of antibody-coupling procedures on lymph node macrophage uptake[J]. J Drug Target. 2008 Aug;16(7):586-590.
    [23] Asai T, Miyazawa S, Maeda N, Hatanaka K, et al. Antineovascular therapy with angiogenic vessel-targeted polyethyleneglycol-shielded liposomal DPP-CNDAC[J]. Cancer Sci, 2008, 99(5): 1029-1033.
    [24] Zhao P, Wang H, Yu M, et al. Paclitaxel-loaded, folic-acid-targeted and TAT-peptide-conjugated polymeric liposomes: in vitro and in vivo evaluation[J]. Pharm Res, 2010, 27(9): 1914-1926.
    [25] Ishida O, Maruyama K, Tanahash IH, et al. Liposomes bearing polyethylenegly col2coup led transferrin with intracellular targeting p roperty to the solid tumors in vivo [J]. Pharm Res, 2001, 18 (7):1042-1048.
    [26]孙霁,陈琰,钟延强. pH敏感脂质体作为基因载体的研究进展[J].解放军药学学报, 2010, 26(6): 553-557.
    [27]黄桂华,祝侠丽,张娜,等.洛莫司汀热敏脂质体的制备及体外抗肿瘤活性研究[J].中国药学杂志, 2007, 24(12): 914-918.
    [28]黄波涛,段磊,吴小玲,等.肿瘤治疗用新型纳米磁靶向药物载体的制备及表征鉴定[J].中国病理生理杂志, 2010, 26(10): 2007.
    [29]李钦,张信岳,陈爱君.非病毒载体用于基因治疗技术的研究进展[J].浙江省医学科学院学报, 2008,1: 34-38.
    [30] Yuan F, Dellian M, Fukumura D: Vascular perme-ability in a human tumor xenograft:molecular size dependence and cutoff size[J].Cancer Res 1995, 55(17): 3752-3756.
    [31] Rofstad EK, Mathiesen B. Metastasis in melanoma xenografts is associated withtumor microvascular density rather than extent of hypoxia[J]. Neoplasia, 2010, 12(11): 889-898.
    [32] Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery[J]. Mol Pharm, 2009, 6(4): 1041-1051.
    [33] Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines[J]. J Drug Target, 2007, 15(7-8): 457-464.
    [34]杨志,张青,牟阿平,等.顺铂的标记与生物分布[J].同位素, 1995, 8(3): 48-52.
    [35] Maeda H, Fang J, Inuzuka T, et a. Vascular permeability enhancement in solid tumors : various factors, mechanisms involved and its implications[J]. Int Immunopharmacol, 2003, 3(3): 319-328.
    [36] Maeda H. The enhanced permeability and retention(EPR) effect in tumor vasoulature:the key role of tumor-selective macromolecular drug targeting[J]. Adv Enzyme Regul, 2001, 41: 189-207.
    [37] Fang J, Sawa T, Maeda H. Factors and mechanism of "EPR" effect and the enhanced antitumor effects of macromolecular drugs including SMANCS[J]. Adv Exp Med Biol, 2003, 519: 29-49.
    [38] Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting[J]. Methods Mol Biol, 2010, 624: 25-37.
    [39] Bian AN, Gao YH, Tan KB, et al. Preparation of human hepatocellular carcinoma-targeted liposome microbubbles and their immunological properties[J].World J Gastroenterol, 2004, 10(23): 3424-3427.
    [40] Keating GM. Spotlight on panitumumab in metastatic colorectal cancer[J]. BioDrugs, 2010, 24(4): 275-278.
    [41] Boku N. Perspectives for personalization in chemotherapy of advanced gastric cancer[J]. Discov Med, 2010,9(45): 84-89.
    [42] Raez LE, Kobina S, Santos ES. Oxaliplatin in first-line therapy for advanced non-small-cell lung cancer[J]. Clin Lung Cancer, 2010, 11(1): 18-24.
    [43] Zhao Q, Zhang H, Li Y, et al. Anti-tumor effects of CIK combined with oxaliplatinin human oxaliplatin-resistant gastric cancer cells in vivo and in vitro[J]. Exp Clin Cancer Res, 2010, 29(1): 118-131.
    [44] Ohtani H, Arimoto Y, Nishio K, et al. Efficacy and toxicity of fluorouracil, leucovorin plus oxaliplatin (FOLFOX4 and modified FOLFOX6) followed by fluorouracil, leucovorin plus irinotecan(FOLFIRI)for advanced or metastatic colorectal cancer--case studies[J]. Gan To Kagaku Ryoho, 2008, 35(10): 1769-1774.
    [45] Messersmith WA, Jimeno A, Jacene H, et al. Phase I trial of oxaliplatin, infusional 5-fluorouracil, and leucovorin (FOLFOX4) with erlotinib and bevacizumab in colorectal cancer. Clin Colorectal Cancer, 2010, 9(5): 297-304.
    [46] Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer[J]. J Clin Oncol, 2009 , 27(5): 663-671.
    [47]张文.晚期结肠癌的化疗进展[J].中国癌症杂志, 2004, 14(4): 378-382.
    [48] Shimizu T, Satoh T, Tamura K, et al. Oxaliplatin/fluorouracil/leucovorin (FOLFOX4 and modified FOLFOX6) in patients with refractory or advanced colorectal cancer: post-approval Japanese population experience[J]. Int J Clin Oncol, 2007, 12(3): 218-223.
    [49] Rosenthal DI, Yom SS, Liu L, et al. A phase I study of SPI-077 (Stealth liposomal cisplatin) concurrent with radiation therapy for locally advanced head and neck cancer[J]. Invest New Drugs, 2002, 20(3): 343-349.
    [50] Stathopoulos GP. Liposomal cisplatin: a new cisplatin formulation[J]. Anticancer Drugs, 2010, 21(8): 732-736.
    [51] McWhinney SR, Goldberg RM, McLeod HL. Platinum neurotoxicity pharmacog- enetics[J]. Mol Cancer Ther, 2009, 8(1): 10-16.
    [52] Nanjwade BK, Singh J, Parikh KA, et al. Preparation and evaluation of carboplatin biodegradable polymeric nanoparticles[J]. Int J Pharm, 2010, 385(1-2):176-180.
    [53] Lu B, Zhang JQ, Yang H. Lung-targeting microspheres of carboplatin[J]. Int J Pharm, 2003, 265(1-2): 1-11.
    [54] Lagarce F, Cruaud O, Deuschel C. Oxaliplatin loaded PLAGA microspheres:design of specific release profiles [J]. Int J Pharm, 2002, 242(1-2): 243-246.
    [55]刘小平,耿丹清,徐海星,等.奥沙利铂脂质体的制备工艺研究[J].武汉理工大学学报, 2008, 30(9): 50-53.
    [56]杨美燕,李煜蒙,梅兴国,等.奥沙利铂长循环热敏脂质体的包封率测定及体外释放考察[J].军事医学科学院院刊, 2007, 31(5): 448-450.
    [57] Han I, Jun MS, Kim MK, et al. Liposome formulations for effective administration of lipophilic malonatoplatinum(II) complexes[J]. Jpn J Cancer Res, 2002, 93(11): 1244-1249.
    [58] Boulikas T, Vougiouka M. Cisplatin and platinum drugs at the molecular level. (Review)[J]. Oncol Rep, 2003, 10(6):1663-1682.
    [59] Dragovich T, Mendelson D, Kurtin S, et al. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer[J]. Cancer Chemother Pharmacol, 2006, 58(6): 759-764.
    [60] Doi Y, Okada T, Matsumoto H, et al. Combination therapy of metronomic S-1 dosing with oxaliplatin-containing polyethylene glycol-coated liposome improves antitumor activity in a murine colorectal tumor model[J]. Cancer Sci, 2010, 101(11): 2470-2475.
    [61] Jain A, Jain SK, Ganesh N, et al. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer[J]. Nanomedicine, 2010, 6(1): 179-190.
    [62]杨闯,刘海忠,傅仲学.奥沙利铂长循环脂质体的制备及其对人结直肠癌SW480细胞活性的影响[J].中华实验外科杂志, 2011, 28(1): 27-29.
    [63] Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome[J]. Int J Pharm, 2008, 346(1-2): 143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700