调控玉米大斑病菌生长发育和致病性的STK基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由凸脐蠕孢菌引起的玉米大斑病是玉米生产上的重要病害之一,常造成严重经济损失。研究表明,MAPK信号转导途径是真菌中普遍存在的细胞外信号转导途径,并对植物病原真菌的生长、发育和致病性有重要的调控作用。本文利用候选基因法克隆了玉米大斑病菌中的3个MAPK基因(STK1、STK2、STK3),分别与调控玉米大斑病菌的渗透胁迫调节、致病性与分生孢子发育、细胞壁合成等3种类型的已知MAPK基因有非常高的同源性。在获得玉米大斑病菌STK1基因突变体的基础上,进行了玉米大斑病菌STK1基因的表达研究,确定了STK1基因在玉米大斑病菌分生孢子发育和渗透胁迫调节方面的重要功能,为研究其他MAPK基因提供了思路和方法。经对玉米大斑病菌STK1基因反义诱导表达突变体的构建,不仅为该基因作为靶基因进行病害防治奠定基础,而且STK1基因正义诱导表达突变体的构建还将为该基因在其它物种中的转化以及研究该基因与其它基因之间的关系提供了材料。对ATMT突变体和黑色素缺失突变体中STK1基因表达的研究,证明了玉米大斑病菌调控生长和发育有着更复杂的机制。本文主要结果如下:
     1.利用候选基因法克隆了3个玉米大斑病菌MAPK基因,即STK1,STK2和STK3。其中STK1和STK2基因获得了基因的cDNA全长和DNA全长,STK3基因为一个片段,获得了该基因的部分DNA序列。STK1基因cDNA全长和DNA全长的获得使前期研究获得的STK1基因片段得到完整化,并对GenBank中登录的该基因进行了更新(登录号为AY849317)。
     2.对STK1、STK2和STK3基因的结构进行了分析。STK1基因DNA全长1506bp,cDNA全长1071bp,编码356个氨基酸,有9个外显子和8个内含子,外显子1071bp,内含子共435bp;STK2基因DNA全长1277bp,cDNA全长1059bp,编码352个氨基酸,含有5个外显子,4个内含子,外显子共1059bp,内含子共218bp;STK3基因片段长度为591bp,可能存在3个内含子,共172bp,4个外显子总长419bp,该基因的编码序列从该片段的第3位开始,编码区域为417bp,预测编码蛋白中含有139个氨基酸。试验中发现的所有内含子均符合GT-AG法则。
     3.对玉米大斑病菌STK1、STK2和STK3三个MAPK基因的同源性和功能进行了分析和比较,其中STK1基因可能主要与渗透胁迫和应激胁迫调节有关:STK2基因主要与病菌的致病性和孢子发育有关;STK3基因主要与细胞壁合成有关。为了明确STK1基因的表达量的变化,本试验获得了长度为1287bp的玉米大斑病菌β-微管蛋白基因片段,该序列与玉米小斑病菌的β-微管蛋白基因同源性均为100%。以该基因为内参,利用半定量RT-PCR技术,研究了高渗条件对玉米大斑病菌STK1基因表达的影响,在高渗处理8h内,STK1基因的表达量比较稳定,但超过8h后,STK1基因的表达量迅速下降。
     4.在高渗胁迫条件下,玉米大斑病菌的菌落形态、颜色、生长速度发生严重变化,但STK1基因突变体则变化不明显。
     5.利用原核表达载体pET28a(+)及原核表达宿主菌BL21构建了玉米大斑病菌STK1基因的原核表达载体STK1-pET28a(+),并成功进行了STK1基因的原核表达分析。为STK1蛋白的分离和在细胞中的定位研究奠定了基础。Southern杂交结果表明,玉米大斑病菌的STK1基因在基因组中以单拷贝形式存在。
     6.在优化玉米大斑病菌原生质体制备和再生条件的基础上,根据基因同源重组原理构建了含有潮霉素磷酸转移酶基因和氨苄青霉素基因两个抗性标记的STK1基因敲除载体,通过PEG介导的原生质体转化,获得了246个抗性转化子,通过使用设计的潮霉素磷酸转移霉基因特异性引物及STK1基因特异性引物对转化子的筛选,得到了一个STK1基因突变体,命名为STM-35。STK1基因敲除突变体STM-35的菌丝灰白色、气生菌丝少,菌落低矮,菌落中部菌丝呈浸润状,菌丝细胞中色素沉积少、菌丝较透明,没有发现分生孢子的形成,提取的HT-毒素对感病寄主叶片的毒力显著下降,致病性分析表明,该突变体的致病性大大降低。
     7.基于pSOI质粒构建了玉米大斑病菌STK1基因的反义和正义诱导表达载体,获得了30个反义转化子,其中有5个转化子为反义抑制突变体,它们与STK1基因敲除突变体的表现基本一致。在构建玉米大斑病菌ATMT突变体库的基础上,对与STK1基因突变体在菌落和菌丝形态方面非常相似、也不产生分生孢子的ATMT突变体STAM-26,进行了STK1基因的表达分析,发现该突变体中STK1基因能够正常表达,说明调控玉米大斑病菌菌丝和分生孢子发育的机制非常复杂,并不是由某一条途径单独调控。
     结论推测,STK1基因对玉米大斑病菌菌丝的生长发育没有影响,但可能与菌丝中色素等物质的积累有关,并调控病菌分生孢子的发育、HT-毒素的活性和致病性。
Northern Com Leaf Blight, caused by Setosphaeria turcica, is one of the most important diseases in corn planting area. MAPK, the universal signal tranduction pathway in fungi, is one of the key protein kinase in regulating the growth, development and pathogenicity of fungal pathogens. Three MAPK genes, STKI (Setosphaeria turcica mitogen activated protein kinase 1), STK2 (Setosphaeria turcica mitogen activated protein kinase 2), STK3 (Setosphaeria turcica mitogen activated protein kinase 3), were cloned. The phylogenetic analyses revealed that STK1 possibly regulated the osmosis regulation and spore production, STK2 was similar to known MAPK genes in regulating pathogenicity of fungal pathogen, and STK3 was related to cell wall integrity MAP kinase genes. The mutated STK1 gene recombination vectors were constructed to study the gene function, and the results confirmed the above phylogenetic analyses of STKI gene. This work will facilitate the studies on similar functional analyses of the other two MAPK genes in S. turcica, the composition of MAPK signal pathway, and the relation between different MAPK pathways. The antisense inhibition of STK1 gene was done to make the basis of gene-targeted disease control strategy, and the positive gene expression induction vector was constructed for the transformation of the gene and studies the relationship between different genes. The ATMT mutants with similar characteristics as STK1 mutants were screened and the STK1 gene expression in these mutants were analyzed. The normal expression of STK1 gene in these mutants has shown the complex regulation mechanisms
     1.Three MAPK genes, STK1, STK2, STK3, were cloned with the candidate gene cloning strategy. The cDNA and DNA full-length sequences of STK1 and STK2, a cDNA and DNA fragment of STK3 were acquired. STK1 gene was updated in GenBank(GenBank accession AY849317).
     2.The structure of STK1, STK2 and STK3 were revealed. STK1 included a 1506bp DNA sequence with a 1071 bp coding region, nine exons and eight introns. The predicated protein of STK1 gene had 356 aa. STK2 gene includes 1277bp with a 1059bp cDNA sequence, five exons, and four introns. The predicated protein of STK2 gene had 352 aa. The STK3 gene fragment was 591bp, with three possible introns (172bp) and four possible exons (419bp). All introns were accordance with GT-AG rules.
     3.Phylogenetic analysis had shown the three genes possibly belonged to three signal pathways: STK1, related to osmosis regulation, stress reaction and spore development; STK2, related to pathogenicity; STK3, related to cell wall integrity.Aβ-microtublin gene in S. turcica were cloned, sequenced and used as the controls in studying the expression of STK1 gene in high osmosis. The STK1 gene expression was stable within the first 8 hours aider the high osmosis treatment, but rapidly descended after 8 hours treatment.
     4.Under the high osmosis stress, the wild type isolate exhibited high changes in colony morphology, color, growth speed, but changes in the STK1 mutants were not obvious.
     5.A prokaryote gene expression vector of STK1 was constructed, pET28a(+) vector, E. coli BL21, and the STK1 gene expression were confirmed by SDS-PAGE and Western blotting.Southern hybridization results have shown the STK1 gene had a single copy in the genome of S. turcica.
     6.The STK1 gene-disruption vector was constructed based on the gene homologous combination theory and PEG gene transformation system. A STK1 gene-disruption isolate was successfully screened from 246 transformants and named as STM-35 in the thesis. The STM-35 mutant exhibited grey colony, few aerobic mycelia, transparent hypha, cell lysis in the center colony, significantly reduced HT-toxin activity and pathogenicity, without conidial production.
     7.The sense and antisense STK1 gene expression induction vectors were constructed based on the plasmid pSOI, and 5 antisense STK1 gene mutants were screened from 30 transformants. The characteristics ofSTK1 antisense inhibition mutants were similar to the gene-disruption mutant STM-35.STAM-26, a mutant acquired by ATMT method, and three melanin-loss mutants induced by UV radiation, exhibit similar traits as STM-35. STK1 gene expression was undisturbed in the two mutants had predicated there were complex network regulating the growth and development in S. turcica.
     The above results can summarize the function of STK1: insignificant effect on mycelium development and growth but related to the pigment accumulation in hypha; key factor regulating the conidial development; related to the HT-toxin activity and pathogenicity.
引文
[1]Wang P, Pan X, Wangh M, et ai. Signal transduction cascades regulating fimgal development and virulence[J]. Microbiology and Molecular Biology Reviews, 2000, 64:746~785.
    [2]Warwar V, Dickman M B. Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifoii[J]. Apply of Environmental Microbiology, 1996, 62:74~79.
    [3]范永山,刘颖超,谷守芹,等.植物病原真菌的MAPK基因及其功能[J].微生物学报,2004,44(4):547~551.
    [4]Xu Jin-Rong. MAP kinases in fungal pathogens[j]. Fungal Genetics and Biology. 2000, 31: 137~152.
    [5]Dickman M B, Yarden O. Serine/threonine protein kinases and phosphatases in filamentous fungi[J].Fungal Genetics and Biology. 1999, 26: 99~117.
    [6]Herskowitz I. MAP kinase pathways in yeast: For mating and more[J]. Cell, 1995, 80: 187~197.
    [7]Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways[J].Trends Biochemistry Science, 1993, 18: 128~131.
    [8]Schaeffer H J , Webber M J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers [J]. Molecular and Cellular Biology, 1999,19: 2435~2444.
    [9]Garrington T P ,Johnson G L. Organization and regulation of mitogen-activated protein kinase signaling pathways [J]. Current Opinion in Biotechnology, 1999, 11:211~218.
    [10]Tanoue T, Adachi M, Moriguchi T, et al. A conserved docking motif in MAP kinases common to substrates,activators and regulators [J]. Nature Cell Biology, 2000, 2: 110~116.
    [11]Chang L, Karin M. Mammalian MAP kinase signalling cascades[J]. Nature, 2001, 410: 37~40.
    [12]Jonak C, Hirt H. Cytoplasmatic protein kinases in signal transduction[J]. In Protein-Protein Interactions in Plant Biology, Annual Plant Reviews, 2002, 7: 238~256.
    [13]Morrison D K, Davis R J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals[J].Annual Review of Cell & Development Biology, 2003, 19: 91~118
    [14]Reddy K B, Nabha S M, Atanaskova N. Role of MAP kinase in tumor progression and invasion[J]. Cancer Metastasis Review, 2003, 22(4): 395~403.
    [15]Tong C, Fan H Y, Chen D Y, et al. Effects of MEK inhibitor UO126 on meiotic progression in mouse oocytes: microtuble organization, asymmetric division and metaphase Ⅱ arrest[J]. Cell Research, 2003,13(5): 375~383.
    [16]James J A, Smith M A, Court E L, et al.An investigation of the effects of the MEK inhibitor UO126 on apoptosis in acute leukemia[J]. Hematology Journal, 2003, 4 (6): 427~432.
    [17]Wang Z Q, Wu D C, Huang F P, et al. Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytoldne interleukin-1 expression in focal cerebral ischemia[J]. Brain Research, 2004, 996(1): 55~66.
    [18]Jonak C, Ligterink W, Hirt H. MAP kinases in plant signal transduction[j]. Cell Molecular Life Science,1999, 55: 204~213.
    [19] Jonak C, Okresz L, Bogre L, et al. Complexity, cross talk and integration of plant MAP kinase signalling[J]. Current Opinion in Plant Biology, 2002,5(5): 415~424.
    [20] Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signaling[J] Trends in Plant Science, 2005, 10 (7): 339-346.
    [21] Banuett F. Signalling in the Yeasts: An informational cascade with links to the filamentous fungi[J]. Microbiology and Molecular Biology Reviews, 1998,62(2): 249~274.
    [22] Idnurm A, Howlett B J. Pathogenicity genes of phytopathogenic fungi[J], Molecular Plant Pathology, 2001, 2(4):241-255.
    [23] Doerig C. Protein kinases as targets for anti-parasitic chemotherapy [J]. Biochimestry. Biophysics. Acta, 2004: 155-168.
    [24] Doerig C, Billker O, Pratt D, et al. Protein kinases as targets for antimalarial intervention: Kinomics, structure-based design, transmission-blockade, and targeting host cell enzymcs[J], Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 2005, 1754 (1):132-150.
    [25] Planz O, Pleschka S, Ludwig S. MEK-specific inhibitor U0126 blocks spread of Borna disease virus in cultured cells[J]. Journal of Virology, 2001,75:4871-4877.
    [26] Luo H, Y B, Zhang J, E M, et al. Coxsackievirus B3 replication is reduced by inhibition of the extracellular signalregulated kinase (ERK) signaling pathway[J]. Journal of Virology, 2002, 76: 3365-3373.
    [27] James J A, Smith M A, Court E L, et al. An investigation of the effects of the MEK inhibitor U0126 on apoptosis in acute leukemia[J]. Hematology Journal, 2003, 4(6): 427-432.
    [28] Romeis T. Protein kinases in the plant defence response. Current Opinion in Plant Biology 2001, 4:407- 414.
    [29] Liu Q P , Xue Q Z. Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa[J]. Plant Physiology and Biochemistry, 2007,45 (1): 6-14.
    [30] Ray D, Dutta S, Banerjee S, et al. Identification, structure, and phylogenetic relationships of a mitogen-activated protein kinase homologue from the parasitic protist Entamoeba histolytica[J]. Gene, 2005,346:41-50.
    [31] Lev S, Sharon A, Hadar R, et al. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: Diverse roles for mitogen-activated protein kinase homologues in foliar pathogens[J]. Proceedings of the National Academy of Sciences USA, 1999,96: 13542 -135471.
    [32] Kronstad J, Maria A D, Funnell D, et al. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways[J]. Archives of Microbiology, 1998,170: 395-404.
    [33] Madhani H D, Fink G R. The control of filamentous differentiation and virulence in fungi[J]. Trends Cell Biology, 1998,8: 348-353.
    [34] Muller P, Aichinger C, Feldbrugge M, et al. The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis[J]. Molecular Microbiolog, 1999,34: 1007~1017.
    [35] Csank C, Schroppel K, Leberer E, et al. Roles of the Candida albicans mitogen-activated protein kinase homologue, Ceklp, in hyphal development and systemic candidacies[J]. Infective Immunology, 1998, 66: 2713-2721.
    [36] Krisak L, Strich R, Winters R S, et al. SMK1, a dcvelopmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae[J] . Genes Development, 1994, 8: 2151 -2161.
    [37] Ruiz-Roldan M C, Maier F J, Schafer W. PTK1, a mitogen activated protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity for Pyrenophora teres on barley[J]. Molecular Plant-Microbe Interaction, 2001,14: 116-125.
    [38] Mukherjee P K, Latha J, Hadar R, et al. TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark[J], Eukaryotic Cell, 2003, 2: 446-455.
    [39] Bussink H J, Osmani S A. A mitogen-activated protein kinase (MAPK) is involved in polarized growth in the filamentous fungus Alternaria nidulans [J]. FEMS Microbiology Letter, 1998, 173: 117-125.
    [40] Takano Y, Kikucki T, Kubo Y, et al. The Colletotrichum lagenarium MAP kinase gene CMKI regulates diverse aspects of fungal pathogenesis[J] . Molecular Plant Microbe Interaction, 2000,13: 374-383.
    [41] Xu J R, Hamer J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J] . Genes Development, 1996, 10:2696—2706.
    [42] Zheng L, Campbell M, Murphy J, et al. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea[J]. Molecular Plant Microbe Interaction, 2000, 13: 724—732.
    [43] Brachmann A, Schirawski J, Muller P, et al. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis [J]. EMBO Journal, 2003, 22: 2199—2210.
    [44] Xu J R, Staiger C J, Hamer J E. Inactivation of the mitogen-activated protein kinase Mpsl from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. Proceedings of the Nationd Academy of Sciences of the United States of America, 1998, 95: 12713— 12718.
    [45] Durrenberger F, Kronstad J. The ukcl gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis[J] . Molecular Gene Genetics, 1999, 261: 281 — 289.
    [46] Tsuji G, Fujii S, Tsuge S, et al. The Colletotrichum lagenariu Stel2-like gene CST1 is essential for appressorium penetration[J]. Plant Microbe Interact, 2003; 16: 315—325.
    [47] Lev S, Sharon A, Hadar R, et al. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity, diverse roles for mitogen-activated protein kinase homologs in foliar pathogens[J]. Proceedings of the Nationd Academy of Sciences of the United States of America, 1999,96: 13542-13547.
    [48] Agrawal G K, Iwahashi H, Rakwal R. Rice MAPKs [J].Biochemistry Biophysics Research Commun., 2003, 302: 171-180.
    [49] Fu S F, Chou W C, Huang D D,et al. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresscs[J]. Plant Cell Physiology, 2002,43: 958—963.
    [50] Mizoguchi T, Irie K, Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinase[J]. Trends Biotechnology., 1997, 15: 15-19.
    [51]策金拪,李正平,赵光耀,等.玉米大斑病菌毒素的结构鉴定和钝化反应[J].河北农业大学学报,1999,24(4):88~93.
    [52]Dong J O, Li Z P. Isolation and structure elucidation of HT-toxin produced by Exserohilum turcicum[J].The First Asian Conference on Plant Pathology, 2000, p310.
    [53]董金皋,周宗山,李正平.玉米大斑病菌HT-毒素组分II的结构[J].植物病理学报,2000,30(2):186~187.
    [54]Fan Y S, Gui X M, An X L, et al.Genetic diversity ofSetosphaeria turcica and HT-toxin, Proceedings of the 15th International Plant Protection Congress[J], Bei.jing, China, May 11-16, 2004, Foreigh Language Press, p370.
    [55]侯晓强,范水山,董金皋,等.玉米大斑病菌有性杂交F1代菌株的生理小种箍定和AFLP分析[J].植物保护学报,2006,33(3):257~262.
    [56]Fan Y S, Gu S Q, Dong J Q, et al. Cloning ofexpressed gene fragments down-regulated by MAP kinase in Setosphaeria turcica with MEK-specific inhibitor[J]. Cell Rearch, 2006, 16: S140.
    [57]Gu S Q, Fan Y S, Dong J G, et al. Development and mutant analysis of,Agrobacterium tumefaciens-mediated transformation system in Setosphaeria turcica[J]. Nature-Cell Research, 2006, 16:S140.
    [58]Fan Y S, Gu S Q, Dong J G, et al. Effects of MEK-specific inhibitor UO126 on the conidial germination,appressorium production, and pathogenicity of Setosphaeria turcica[J]. Agricultural Sciences in China,2007, 6 (1): 78~85.
    [59]Moriwaki A, Kihara J, Mori C, et al. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae[J]. Microbiological Research, 2007, 162:108~114.
    [60]Yang KY, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco[J]. Proceedings of the Nationd Academy of Sciences of the United States of America,2001, 98: 741~746.
    [61]Zhang S, Klessig D F. Salicylic acid activates a 48-kDa MAP kinase in tobacco[J]. Plant Cell, 1997, 9:809~824.
    [62]He P, Shah L, Lin N C, et al. Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity[J]. Ceil, 2006, 125(3): 563~575.
    [63]安鑫龙,董金皋.韩建民.应用CTAB法提取玉米大斑病菌DNA.河北农业大学学报[J],2001.24(1):38~41.
    [64]Frohman, M.A. Rapid Amplification of Complementary DNA Ends for Generation of Full-Length Complementary DNAs: Thermal RACE [J]. Methods in Enzymology, 1993, 218: 340~356.
    [65]月华,罗明,候磊,等.棉花类LRR抗病蛋白(GhLRR-RL)基因的克降及表达分析[J].遗传学报,2002.29(7):653~658.
    [66]田振东,柳俊,谢从华.cDNA文库与RACE方法结合克隆一个马铃薯病程相关蛋白基因cDNA[J].遗传学报,2003,30(11):996~1002.
    [67]王邦俊,王强,张忠刚,等.利用RACE技术扩增人豆抗病基因同源cDNA 5’末端序列[J].遗传,2003, 25(4):425~427.
    [68]沈法富.短季棉衰老的激素变化及衰老相关基因的克隆[D].中国农业科学院博士学位论文,2003.
    [69]程汉,安泽伟,黄华孙.巴西橡胶树CBFI基因的克隆和序列分析[J].热带作物学报,2005.26(3):50~55.
    [70]梁晓嫒,龚瑶琴,刘奇迹,等.人胎儿骨骼和关节RACE cDNA文库的构建[J].中华医学遗传学杂志,2001,18(1):24~27.
    [71] Cben H, Vierling R. A Molecular cloning and characterization of soybean pemxidase gene families [J].Plant Science, 2000, 150 (2):129~137.
    [72]李红,王孟薇,邵勇,等.利用RACE技术和生物信息学资源快速钓取多个供选同源基因[J].生物技术通讯,2001,12(4):257~259.
    [73]Bouche Z D. Functional genomics in plants[J]. Plant Physiology, 1998, 118:725~732.
    [74]Sire H L, John T S. A simple subtractive hybridization technique employing photoactive table biotin and phenolextraction [J]. Nucleic Acids Research, 1998,16: 10937.
    [75]Liang P, Pardee A B.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J]. Science, 1992, 257:967~971.
    [76]Lockhart D J, Dong H, Byme M C, et al Expression monitoring by hybridization to high density oligonucleotide arrays [J]. Nature Biotech, 1996,14: 1675.
    [77]Velculescu V E, Zhang L, Vogelstein B, et al Serial analysis of gene expression [J]. Science, 1995,270(5235): 368~371.
    [78]Pearson G, Robinson F, Gibson T B, et al. Mitogen-activated protein kinase pathways, regulation and physiological functions[J]. Endocr. Rev. 2001, 22:153~183.
    [79]Widmann C, Gibson S, Jarpc M B, et al. Mitogenactivated protein kinasc. Conservation of a three-kinase module from yeast to human[J]. Physiogy Review. 1999, 79: 143~180.
    [80]Kyriakis J M, Avruch J. Mammalian mitogen-activated protein kinase signal transduetion pathways activated by stress and inflammation[J]. Physiology Review. 2002, 81: 807~869.
    [81]Nakabayashi J, Sasaki A. Optimal phosphorylation step number of intracellular signal-transduction pathway[J]. Joural of Theory Biology,2005, 233:413~421.
    [82]Hazzalin C A, Mahadevan L C. MAPK-regulated transcription, a continuously variable gene switch?[J]Nature Reviews Molecular Cell Biology, 2002, 3: 30~40.
    [83]Fujita A, Hiroko T, Hiroko F, et al.Enhancement of superficial pseudohyphal growth by overexpression of the SFGl gene in yeast[J]. Saccharomyces cerevisiae Gene,2005, 363: 97~104.
    [84]Susan M. Janicki, Tsukamoto T, et al.Silencing to Gene Expression:Real-Time Analysis in Single Cells[J].Cell, 2004, 116:683~698.
    [85]Jungebloud A, Bohle K, G"ocke Y, et al. Quantification of product-specific gene expression in biopellets of Aspergillus Niger with real-time PCR [J]. Enzyme and Microbial Technology,2007, 40: 653~660.
    [86]Sugisawa N, Matsuoka M, Okuno T, et ai.Suppression of cadmium-induced .JNK/p38 activation and HSP70 family gene expression by LL-ZI640-2 in NIH3T3 cells[J]. Toxicology and Applied Pharmacology,2004.196: 206~214.
    [87]Zheng X, Li X Z, Jun D Z, et al cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients[J].Intcruational Journal of Medical Microbiology, 2006,296 : 421~434.
    [88]Barbosa A M, Felipe S A, Pesquero J B, et al. Disruption of the kinin B1 receptor gene affects potentiating effect of captopril on BK-induced contraction in mice stomach fundus [J].Peptides, 2006,27(12):3377~3382.
    [89]Yun S H., Turgeon B G, Yoder O C. REMI-induced mutants of Mycosphaerella zeae-maydis lacking the polyketide PM-toxin arc deficient in pathogenesis to corn[J]. Physiological and Molecular Plant Pathology, 1998,52(1) : 53~66.
    [90]Chaudhury D, Madanpotra S, Jaiwal R, et ai .Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpca (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny[J].Plant Science, 2007, 172(4):692~700.
    [91]Sijwali P S, Koo J, Singh N, et al. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteascs of Plasmodium falciparum[J].Molecular and Biochemical Parasitology, 2006, 150(1):96~106.
    [92]Ogawa H, Wu Q, Komiyama J, et al. Disruption of parental-specific expression of imprinted genes in uniparcntal fetuses [J].FEBS Letters, 2006, 580(22):5377-5384.
    [93]Baba S, Ono Y Abe C, Hosobuchi M. Targeted disruption of the genes, mlcR and ariB, which encode GAL4-type proteins in Penicillium citrinum [J]. Biochimica Biophysica Acta (BBA)-Gene Structure and Expression, 2006, 1759(8-9): 410~416.
    [94]Rita M, Ho Y S, Pamela J, et aLTargeted disruption of the mouse Asnal gene results in embryonic lethality[J]. FEBS Letters,2006,580(16):3559~3894.
    [95]Dcnnison P M J, Ramsdalc M, Claire L. Manson et al. Gene disruption in Candida albicans using a synthetic, codon-optimiscd Cre-loxP systcm[J].Fungal Genetics and Biology, 2005, 42(9): 737~748.
    [96]Zhao K, Zhou D, Ping W, et al. Study on the preparation and regeneration of protoplast from taxol-producing Fungus Nodulisporium sylviforme[J]. Nature and Science, 2004, 2(2): 52~59.
    [97]Gallmetzcr M, Burgstaller W, Schinner F. An optimized method for the isolation of protoplasts from Pcnicillium Simplicissimum to produc scaled plasma membrane vesicles[J]. Mycologia, 1999, 91 (1):206~212.
    [98]孙淑琴.玉米大斑病菌F2代菌株的寄生适合度变异与遗传多态性[D].保定:河北农业大学硕士学位论文,2005.
    [99]策金皋,史有艳,康绍兰等,玉米大斑病菌HT-毒素的萃取及其致病活性[J].微生物学通报,1993,20(2)73~77.
    [100]张利辉,董金皋.玉米火斑病菌2号小种毒素的生物测定与组分分析[J].河北农业大学学报,2001.24(1):42~45.
    [101]李贺年,齐巧丽,赵来顺,等.玉米黄斑病研究Ⅳ.品种抗性鉴定[J].河北农业大学学报,1998,21(4):64~68.
    [102]石洁,刘玉瑛,邵艳军,等.玉米品种(品系)对弯孢菌叶斑病抗性分析[J].华北农学报,2000, 15(增刊):80~84.
    [103]曾士迈.植物病原菌寄生适合度测定方法的研究[J].植物病理学报,1996,26(2):97~104.
    [104]安鑫龙.郑晓莲,策金皋.玉米大斑病长蠕孢生理小种的遗传变异[J].微生物学通报,2002,29(1):53~56.
    [105]Nevoigt E, Stahl U.Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Review. 1997,21:231~241.
    [106]San lose C, Alonso-Monge, Perez, D R, et al. The mitogen-activated protein kinase homologuc HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans[J]. Journal of. Bacterial,178: 5850~5852.
    [107]Aionso-Monge R., Navarro G F, Molero G, et al. Role of the mitogen-activated protein kinase Hoglp in morphogenesis and virulence of Candida albicans[J]. Bacteriology. 1999,181 : 3058~3068.
    [108]Dixon K P, Xu J R, Smirnoff N, et al. Independent signaling pathways regulate cellular turgot during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea[J]. Plant Cell 11:2045~2058.
    [109]Odaa A, Fujiwaraa S, Kamadaa H, et al. Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression [J]. FEBS Letters,2004,557:259~264.
    [110]黄建生.王吕才.任大明.爱滋病的反义抑制治疗[J].生命的化学,1995,15(2):45~48.
    [111]李明亮,韩一凡,李玲,等.ACC氧化酶cDNA克降及其对杨树体内乙烯产生的反义抑制.林业科学研究[J].1999,12(3):223~229.
    [112]刘传银.田颖川,沈全光,等.番茄ACC合成酶cDNA克隆及其对果实成熟的反义抑制[J].生物工程学报,1998,14(2):139~146.
    [113]鞠戎,田颖川,沈全光,等.番茄多聚半乳糖醛酸酶cDNA的克隆及其对番笳中PG表达的反义抑制生物工程学报[J].1994,10(2):96~102.
    [114]Atsushi O, Sumire F, Hiroshi K, et ai.Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression[J].FEBS Letters, 2004, 557(I-3):259~264.
    [115]曹志艳.玉米大斑病菌黑色素性质与功能研究.河北农业大学硕士学位论文[M].2006.
    [116]潘初沂.稻瘟病菌T-DNA捅入致病突变体的分析.祸矬农林大学硕士学位论文[M].2004.
    [117]周永力,Chihiro T,MitusyaT.农杆菌介导的玉米大斑病菌转化[J].菌物系统,2003,22(3):374-379.
    [118]Ashok K. S, Dirk Bet aL Agrobacterium tumefacicns-mcdiatcd gcnetic transformation of barley (Hordeum vulgate L.)[J].Plant Science, 2007, 172 (2) : 281~290.
    [119]Supartana P, Shimizu T, Nogawa M, et al.Development of simple and efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens Journal of Bioscience and Bioengineering[J]. 2006, 102 (3): 162~170.
    [120]Anjan K. B, Salome P, David J, et al. Efficient production of transgenic potato (S. tuberosum L. ssp.andigena) plants via Agrobacterium tumefacicns-mcdiatcd transformation [J]. Plant Science, 2006, 170 (4):732~738.
    [121]Supartana Pu, Shimizu T, Shioiri H, et al. Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens Journal of Bioscience and Bioengineering [J], 2005,100(4): 391~397.
    [122] Guo Q .Kenneth C. Sink. Optimizing shoot regeneration and transient expression factors for Agrobacterium tumefaciens transformation of sour cherry (Prunus cerasus L.) cultivar Montmorency[J].Scientia Horticulturae, 2005,106 (1): 60-69.
    [123]Chaudhury D, Madanpotra S, Jaiwal R, et al. Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpca (Vigna unguiculata L. Walp.) cultivar and transmission of transgcnes into progeny[J].Plant Science, 2007,172(4): 692—700.
    [124] Carol M M, Yun C. C, et al. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens[J].Fungal Genetics and Biology, 2005,42 (11): 904—913.
    [125]Hassanein A, Chevreau E, Dorion N. Highly efficient transformation of zonal (Pelargonium x hortorum) and scented (P. capitatum) geraniums via Agrobacterium tumefaciens using leaf discs[J]. Plant Science, 2005,169(3): 532-541.
    [126] Dong S, Qu R. High efficiency transformation of tall fescue with Agrobacterium tumefaciens[J]. Plant Science, 2005,168 (6): 1453-1458.
    [127] Han J, Wang H, Ye He, et al.High efficiency of genetic transformation and regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated proccdure[J].Plant Sciencc,2005, 168 (1 ): 73—80.
    [128] Bundock P.Mroczek K.Winkler AA , et al. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis[J]. Molecular and General Genetics 1999,26(1): 115—121.
    [129] Blaise F, Remy E, Meyer M, et al. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans[J].Fungal Genetics and Biology, 2007,44(2):, 123—138.
    [130] Ibrahim A K., Khalifa S, Khafagi I, et al. Stimulation of oleandrin production by combined Agrobacterium tumefaciens mediated transformation and fungal elicitation in Nerium oleander cell cuItures[J].Enzyme and Microbial Technology, 2007, (In Press).
    [131] Ibrahim A K., Khalifa S, Khafagi I, et al.Stimulation of oleandrin production by combined Agrobacterium tumefaciens mediated transformation and fungal elicitation in Nerium oleander cell cultures[J].Enzyme and Microbial Technology, 2007 (In Press).
    [132] Blaise F, Rimy E, Meyer M, et al. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans[J].Fungal Genetics and Biology, 2007,44 (2):123—138.
    [133] Mullins E D, Kang S. Transformation: a tool for studying fungal pathogens of plants[J]. Cell Mol Life Sci, 2001, 58: 2043-2052.
    [134]Pardo AG. HanifM, Raudaskoski M. et al. Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens[J]. Mycol Res. 2002, 106:132—137. Enzyme and Microbial Technology, In Press, 2007.
    [135] Mullins E D, Chen X, Romaine P. et al. Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer[J] . Phytopathology. 2001 , 91: 173-180.
    [136]Combier J, Melayah D, Raffier C, et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum[J] . FEMS Microbiology Letters, 2003,220(1): 141 - 148.
    [137] Sanchez O, Navarro R E, Aguirre J. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI) [J]. Molecular and General Genetics, 1998,258:89~94.
    [138] Sato T, Yaegshi K, Ishll S, et al .Transformation of the edible basidiomycete Lentinus edodes by Restricion Enzyme-Mediated Integration of plasmid DNA[J], Bioscience Biotechnology and Biochemistry, 1998, 62(12): 2346~2350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700